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Abstract: In this article, we present some results on the existence and uniqueness of random solutions
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1. Introduction

Fractional differential equations are found to be of great interest in view of their
utility in modeling and explaining natural phenomena occurring in biophysics, quantum
mechanics, wave theory, polymers, continuum mechanics, etc. [1–3]. In fact, fractional
order derivative operators have been successfully applied to generalize fundamental laws
of nature, especially in the transport phenomena. For more details, we refer the reader to
the works [4–13], and the references cited therein.

In [14], a non-linear coupled system involving both Caputo and Riemann–Liouville
generalized fractional derivatives equipped with coupled integral boundary conditions was
studied. One can find some existence results for the generalized Caputo fractional differ-
ential equations and inclusions with Steiltjes-type fractional integral boundary conditions
in [15].

In [16], some properties of Caputo-type modification of the Erdélyi–Kober fractional
derivative are provided by the authors. More information are available in [12,17]. In [18],
the authors have presented several properties related to the generalized Caputo fractional
differential equations involving retardation and anticipation. For integer-order differential
equations with retardation and anticipation, for instance, see [19].

The values of the coefficients, parameters, and initial conditions in a differential
equation are often expressed by the mean of the values acquired as a consequence of certain
experimental determinations. As a result, physical constants and parameters may be
thought of as random variables whose values are determined by a probability distribution
or law. The same may be stated for coefficients and forcing functions, which can be random
variables or random functions. We refer to publications [17,20,21] for results and further
references on differential equations with random parameters.

Foundations 2023, 3, 275–289. https://doi.org/10.3390/foundations3020022 https://www.mdpi.com/journal/foundations

https://doi.org/10.3390/foundations3020022
https://doi.org/10.3390/foundations3020022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foundations
https://www.mdpi.com
https://orcid.org/0000-0001-5350-2977
https://orcid.org/0000-0003-2795-6224
https://orcid.org/0000-0003-3063-9449
https://doi.org/10.3390/foundations3020022
https://www.mdpi.com/journal/foundations
https://www.mdpi.com/article/10.3390/foundations3020022?type=check_update&version=1


Foundations 2023, 3 276

In [22], Abd El-Salam studied the existence of at least one solution to the second-order
boundary value problem of the form

x′′(τ) = f (τ, x(τ), x′(τ)), for τ ∈ (0, 2π),

x(0) = x(2π) and
m

∑
j=1

λjx(τj) = x0,

where 0 = τ0 < τ1 < τ2 < · · · < τm < τm+1 = 2π.

Inspired by the above-mentioned papers, and with the goal of extending previous
results in mind, in this paper, we investigate the existence and uniqueness of random
solutions for the following fractional boundary value problem

CDα,ρ
0+ (x(τ, δ)− ψ(τ, x(τ, δ), δ)) = f (τ, x(τ, δ),C Dα,ρ

0+ x(τ, δ), δ), τ ∈ J := [0, 2π], (1)

x(0, δ) = x(2π, δ) and
m

∑
j=1

λjx(τj, δ) = d(δ), (2)

where 0 = τ0 < τ1 < τ2 < · · · < τm < τm+1 = 2π, 1 < α ≤ 2, CDα,ρ
0+ is the generalized

Caputo fractional derivative, f : J ×R×R× Ψ → R and ψ : J ×R× Ψ → R, are given
functions, λj are real constants such that ∑m

j=1 λj 6= 0 and Ψ is the sample space in a
probability space and δ is a random variable. For the sake of simplicity, we assume that
ψ(τj, x(τj, δ), δ) = 0; j = 0, 1, . . . , m + 1.

The structure of this paper is as follows. Section 2 presents certain notations and
preliminaries about generalized fractional derivatives used throughout this manuscript.
In Section 3, we present two existence and uniqueness results for the problem (1) and (2)
which rely on the Banach contraction mapping principle and Krasnoselskii’s fixed point
theorem. In Section 4, two examples are presented in support of the results obtained.

2. Preliminaries

First, we give the definitions and notations used in this paper. We denote by C(J,R)
the Banach space of all continuous functions from J into R with the following norm

‖χ‖J = sup{|χ(s)| : 0 ≤ s ≤ 2π}.

By BR, we denote the σ-algebra of Borel subsets of R. A mapping δ : Ψ→ R is said to
be measurable if δ−1(G) = {ξ ∈ Ψ : δ(ξ) ∈ G} ⊂ A for any G ∈ BR, whereA is a σ-algebra
defined in Ψ.

Consider the space Xp
b (0, 2π), (1 ≤ p, b ∈ R) of those complex-valued Lebesgue

measurable functions χ on J for which ‖χ‖Xp
b
< ∞, with the norm:

‖χ‖Xp
b
=

(∫ 2π

0
|τbχ(τ)|p dτ

τ

) 1
p
, (1 ≤ p < ∞, b ∈ R).

Definition 1 (Generalized Riemann–Liouville integral [23]). Let υ ∈ R, b ∈ R and f̃ ∈
Xp

b (0, 2π), the generalized RL fractional integral of order υ is given by

(ρ Iυ
0+ f̃ )(τ) =

ρ1−υ

Γ(υ)

∫ τ

0
sρ−1(τρ − sρ)υ−1 f̃ (s)ds, τ > 0, ρ > 0 (3)

where the Euler gamma function Γ(·) is given by

Γ(υ) =
∫ ∞

0
sυ−1e−sds, υ > 0.
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Definition 2 ([24]). Let τ > 0. The generalized fractional derivative is given by

ρDυ
0+ψ(τ) =

1
Γ(n− υ)

(
τ1−ρ d

dτ

)n ∫ τ

0

sρ−1ρ1−n+υ

(τρ − sρ)1−n+υ
ψ(s)ds

= δ̃n
ρ (

ρ In−υ
0+ ψ)(τ), (4)

where δ̃n
ρ =

(
τ1−ρ d

dτ

)n
.

Definition 3 ([16,24]). The Caputo-type generalized fractional derivative ρ
c Dυ

0+ is defined by

(
ρ
c Dυ

0+ f̃ )(τ) =

(
ρDυ

0+

[
f̃ (τ)−

n−1

∑
j=0

f̃ (j)(a)
j!

sj

])
. (5)

Lemma 1 ([24]). Let υ, ρ ∈ R+, then

(ρ Iυ
0+

CDυ,ρ
0+ f̃ )(τ) = f̃ (τ)−

n−1

∑
j=0

ιj

(
τρ

ρ

)j
, (6)

for some ιj ∈ R, n = [υ] + 1.

Lemma 2 ([25]). If x > n, then we have[
ρ Iυ

0+

(
τρ

ρ

)ε−1
]
(x) =

Γ(ε)
Γ(ε + υ)

(
xρ

ρ

)υ+ε−1
. (7)

Definition 4. A mapping N : Ψ×R→ R is called jointly measurable if for any G ∈ BR, one has

N−1(G) = {(ξ, x) ∈ Ψ×R : N(ξ, x) ∈ G} ⊂ A× BR,

where A× BR is the product of the σ-algebras A defined in Ψ and BR.

Definition 5. A function N : Ψ×R→ R is called jointly measurable if N(·, x) is measurable for
all x ∈ R and N(ξ, ·) is continuous for all ξ ∈ Ψ.

Then, the map κ̃ : Ψ×R → R is called a random operator if κ̃(δ, x) is measurable
in δ for all x ∈ R and it is written as κ̃(δ)x = κ̃(δ, x). In this situation, κ̃(δ) is a random
operator on R. This operator is called continuous (resp. compact, totally bounded and com-
pletely continuous) if κ̃(δ, x) is continuous (resp. compact, totally bounded and completely
continuous) in x for all δ ∈ Ψ; (see [26] for more details).

Definition 6 ([27]). Let D(X) be the family of all non-empty subsets of X and F be a mapping
from Ψ into D(X). A mapping κ̃ : {(δ, y) : δ ∈ Ψ, y ∈ F(δ)} → X is called random operator
with stochastic domain F if F is measurable (i.e., for all closed T1 ⊂ X, {δ ∈ Ψ, F(δ)∩ T1 6= ∅} is
measurable) and for all open D ⊂ X and all y ∈ X, {δ ∈ Ψ : y ∈ F(δ), κ̃(δ, y) ∈ D} is measurable.
κ̃ will be called continuous if every κ̃(δ) is continuous. For a random operator κ̃, a mapping
y : Ψ→ X is called random (stochastic) fixed point of κ̃ if for almost all δ ∈ Ψ, y(δ) ∈ F(δ) and
κ̃(δ)y(δ) = y(δ) and for all open D ⊂ X, {δ ∈ Ψ : y(δ) ∈ D} is measurable.

Definition 7. A function γ : J ×R×Ψ→ R is called random Carathéodory if

(i) The function (χ, ξ)→ γ(χ, x, ξ) is jointly measurable for each x ∈ R,
(ii) The function x → γ(χ, x, ξ) is continuous for almost each χ ∈ J and ξ ∈ Ψ.
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3. Existence of Solutions

Let us begin by defining what we mean by a random solution of the problem (1) and (2).

Definition 8. A random solution of problem (1) and (2) is a measurable function x(·, δ) ∈ C(J,R)
which satisfies the Equation (1) and the conditions (2).

Lemma 3. Let 1 < α ≤ 2 and κ, ξ : J×Ψ→ R+ be measurable functions, such that ξ(τj, δ) = 0;
j = 0, 1, . . . , m + 1. Then, the linear problem

CDα,ρ
0+ (x(τ, δ)− ξ(τ, δ)) = κ(τ, δ), for a.e. τ ∈ J, δ ∈ Ψ, (8)

x(0, δ) = x(2π, δ) and
m

∑
j=1

λjx(τj, δ) = d(δ) (9)

has a random solution given by

x(τ, δ) = ξ(τ, δ) +
d(δ)

∑m
j=1 λj

+

[
∑m

j=1 λjτ
ρ
j

∑m
j=1 λj

− τρ

]
1

(2π)ρΓ(α)

∫ 2π

0

(
(2π)ρ − sρ

ρ

)α−1

sρ−1κ(s, δ)ds

− 1
Γ(α)∑m

j=1 λj

m

∑
j=1

λj

∫ τj

0

(
τ

ρ
j − sρ

ρ

)α−1

sρ−1κ(s, δ)ds

+
1

Γ(α)

∫ τ

0

(
τρ − sρ

ρ

)α−1
sρ−1κ(s, δ)ds.

(10)

Proof. Applying Lemma 1 to Equation (8), we obtain

x(τ, δ)− ξ(τ, δ) = ρ Iα
0+κ(τ, δ) + ι0 + ι1

(
τρ

ρ

)
, (11)

where ι1 and ι2 ∈ R. Since ξ(τj, δ) = 0; j = 0, 1, . . . , m + 1, then

ι0 = x(0, δ) = x(2π, δ) = ι0 + ι1
(2π)ρ

ρ
+

1
Γ(α)

∫ 2π

a

(
(2π)ρ − sρ

ρ

)α−1

sρ−1κ(s, δ)ds

and

d(δ) =
m

∑
j=1

λjx(τj, δ) = ι0
m

∑
j=1

λj + ι1

m

∑
j=1

λj
τ

ρ
j

ρ
+

1
Γ(α)

m

∑
j=1

∫ τj

a

(
τ

ρ
j − sρ

ρ

)α−1

sρ−1κ(s, δ)ds.

Therefore, we have

ι1 =
−ρ

(2π)ρΓ(α)

∫ 2π

0

(
(2π)ρ − sρ

ρ

)α−1

sρ−1κ(s, δ)ds,

ι0 =
d(δ)

∑m
j=1 λj

+
∑m

j=1 λjτ
ρ
j

(2π)ρΓ(α)∑m
j=1 λj

∫ 2π

0

(
(2π)ρ − sρ

ρ

)α−1

sρ−1κ(s, δ)ds

− 1
Γ(α)∑m

j=1 λj

m

∑
j=1

λj

∫ τj

0

(
τ

ρ
j − sρ

ρ

)α−1

sρ−1κ(s, δ)ds.
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Substituting the values of ι0 and ι1 in (11) leads to the Equation (10).

Lemma 4. Let f : J × R × R × Ψ −→ R be a random Carathéodory function. A function
x(·, δ) ∈ C(J,R) is a random solution of the non-local and periodic problems (1) and (2) if, and
only if, x satisfies the integral equation

x(τ, δ) = ψ(τ, x(τ, δ), δ) +
d(δ)

∑m
j=1 λj

+

[
∑m

j=1 λjτ
ρ
j

∑m
j=1 λj

− τρ

]
1

(2π)ρΓ(α)

∫ 2π

0

(
(2π)ρ − sρ

ρ

)α−1

sρ−1κ(s, δ)ds

− 1
Γ(α)∑m

j=1 λj

m

∑
j=1

λj

∫ τj

0

(
τ

ρ
j − sρ

ρ

)α−1

sρ−1κ(s, δ)ds

+
1

Γ(α)

∫ τ

0

(
τρ − sρ

ρ

)α−1
sρ−1κ(s, δ)ds,

where κ ∈ C(J,R) satisfies the functional equation

κ(τ, δ) = f (τ, x(τ, δ), κ(τ, δ), δ). (12)

The hypotheses

Hypothesis 1. The functions f : J × R × R × Ψ −→ R and ψ : J × R × Ψ −→ R are
random Carathéodory.

Hypothesis 2. There exist measurable and essentially bounded functions p, q, b : J → L∞(Ψ,R+),
such that

| f (τ, y1, v1, δ)− f (τ, y2, v2, δ)| ≤ p(τ, δ)|y1 − y2|+ q(τ, δ)|v1 − v2|,

and
|ψ(τ, y1, δ)− ψ(τ, y2, δ)| ≤ b(τ, δ)|y1 − y2|,

for τ ∈ J, δ ∈ Ψ and each yi, vi ∈ R; i = 1, 2, with

p(δ) = ess sup
τ∈J
|p(τ, δ)|, q(δ) = ess sup

τ∈J
|q(τ, δ)| < 1,

and
b(δ) = ess sup

τ∈J
|b(τ, δ)|.

Set
d∗ = ess sup

δ∈Ψ
|d(δ)|.

Remark 1. For the definition of essential supremum (ess sup), see Definition 15.23 in the book [28].

Now we state and prove our existence result for problem (1) and (2) by applying the
Banach contraction mapping principle [29].

Theorem 1. Assume that (H1) and (H2) hold. If
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b(δ) +


∣∣∣∑m

j=1 λjτ
ρ
j

∣∣∣∣∣∣∑m
j=1 λj

∣∣∣ + 2(2π)ρ

 p(δ)(2π)ρ(α−1)

(1− q(δ))ραΓ(α + 1)
+

p(δ)∑m
j=1

∣∣∣∣∣∣λj

(
τ

ρ
j

ρ

)α
∣∣∣∣∣∣

(1− q(δ))Γ(α + 1)
∣∣∣∑m

j=1 λj

∣∣∣ < 1, (13)

then the problem (1) and (2) have a unique solution.

Proof. Let the operator S : C(J,R)×Ψ 7−→ C(J,R) be defined by

(Sx)(τ, δ) =
d(δ)

∑m
j=1 λj

+

[
∑m

j=1 λjτ
ρ
j

∑m
j=1 λj

− τρ

]
1

(2π)ρΓ(α)

∫ 2π

0

(
(2π)ρ − sρ

ρ

)α−1

sρ−1κ(s, δ)ds

+ ψ(τ, x(τ, δ), δ)− 1
Γ(α)∑m

j=1 λj

m

∑
j=1

λj

∫ τj

0

(
τ

ρ
j − sρ

ρ

)α−1

sρ−1κ(s, δ)ds

+
1

Γ(α)

∫ τ

0

(
τρ − sρ

ρ

)α−1
sρ−1κ(s, δ)ds,

(14)

where κ satisfies (12).
According to Lemma 4, the fixed points of S are random solutions to problem (1)

and (2).
Let x1(·, δ) and x2(·, δ) ∈ Ψ. Then, for τ ∈ J, we have

|(Sx1)(τ, δ)− (Sx2)(τ, δ)| ≤ |ψ(τ, x1(τ, δ), δ)− ψ(τ, x2(τ, δ), δ)|

+


∣∣∣∑m

j=1 λjτ
ρ
j

∣∣∣∣∣∣∑m
j=1 λj

∣∣∣ + τρ

 1
(2π)ρΓ(α)

∫ 2π

0

(
(2π)ρ − sρ

ρ

)α−1

sρ−1|κx1(s, δ)− κx2(s, δ)|ds

+
1

Γ(α)
∣∣∣∑m

j=1 λj

∣∣∣
m

∑
j=1

∣∣λj
∣∣ ∫ τj

0

(
τ

ρ
j − sρ

ρ

)α−1

sρ−1|κx1(s, δ)− κx2(s, δ)|ds

+
1

Γ(α)

∫ τ

0

(
τρ − sρ

ρ

)α−1
sρ−1|κx1(s, δ)− κx2(s, δ)|ds.

(15)

By (H2), we have

|κx1(τ, δ)− κx2(τ, δ)| = | f (τ, x1(τ, δ), κx1(τ, δ), δ)− f (τ, x2(τ, δ), κx2(τ, δ), δ)|
≤ p(τ, δ)|x1(τ, δ)− x2(τ, δ)|+ q(τ, δ)|κx1(τ, δ)− κx2(τ, δ)|
≤ p(δ)|x1(τ, δ)− x2(τ, δ)|+ q(δ)|κx1(τ, δ)− κx2(τ, δ)|.

Then

|κx1(τ, δ)− κx2(τ, δ)| ≤ p(δ)
1− q(δ)

|x1(τ, δ)− x2(τ, δ)|.

Therefore, for each τ ∈ J, we have

|(Sx1)(τ, δ)− (Sx2)(τ, δ)|

≤ b(τ, δ)|x1(τ, δ)− x2(τ, δ)|+


∣∣∣∑m

j=1 λjτ
ρ
j

∣∣∣∣∣∣∑m
j=1 λj

∣∣∣ + τρ


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× p(δ)
(1− q(δ))(2π)ρΓ(α)

∫ 2π

0

(
(2π)ρ − sρ

ρ

)α−1

sρ−1|x1(s, δ)− x2(s, δ)|ds

+
p(δ)

(1− q(δ))Γ(α)
∣∣∣∑m

j=1 λj

∣∣∣
m

∑
j=1

∣∣λj
∣∣ ∫ τj

0

(
τ

ρ
j − sρ

ρ

)α−1

sρ−1|x1(s, δ)− x2(s, δ)|ds

+
p(δ)

(1− q(δ))Γ(α)

∫ τ

0

(
τρ − sρ

ρ

)α−1
sρ−1|x1(s, δ)− x2(s, δ)|ds

≤ b(τ)‖x1(·, δ)− x2(·, δ)‖J + ‖x1(·, δ)− x2(·, δ)‖J


∣∣∣∑m

j=1 λjτ
ρ
j

∣∣∣∣∣∣∑m
j=1 λj

∣∣∣ + τρ


× p(δ)

(1− q(δ))(2π)ρΓ(α)

∫ 2π

0

(
(2π)ρ − sρ

ρ

)α−1

sρ−1ds

+ ‖x1(·, δ)− x2(·, δ)‖J
p(δ)

(1− q(δ))Γ(α)
∣∣∣∑m

j=1 λj

∣∣∣
m

∑
j=1

∣∣λj
∣∣ ∫ τj

0

(
τ

ρ
j − sρ

ρ

)α−1

sρ−1ds

+ ‖x1(·, δ)− x2(·, δ)‖J
p(δ)

(1− q(δ))Γ(α)

∫ τ

0

(
τρ − sρ

ρ

)α−1
sρ−1ds.

Since

1
Γ(α)

∫ τ

0

(
τρ − sρ

ρ

)α−1
sρ−1ds =

1
αΓ(α)

(
τρ − sρ

ρ

)α∣∣∣∣s=τ

s=0

=
1

Γ(α + 1)

(
τρ

ρ

)α

,

and τ ≤ 2π, then we obtain

|(Sx1)(τ, δ)− (Sx2)(τ, δ)|

≤

b(δ) +


∣∣∣∑m

j=1 λjτ
ρ
j

∣∣∣∣∣∣∑m
j=1 λj

∣∣∣ + 2(2π)ρ

 p(δ)(2π)ρ(α−1)

(1− q(δ))ραΓ(α + 1)

+

p(δ)∑m
j=1

∣∣∣∣λj

(
τ

ρ
j
ρ

)α∣∣∣∣
(1− q(δ))Γ(α + 1)

∣∣∣∑m
j=1 λj

∣∣∣
‖x1(·, δ)− x2(·, δ)‖J .

Thus,

‖(Sx1)(·, δ)− (Sx2)(·, δ)‖J

≤

b(δ) +


∣∣∣∑m

j=1 λjτ
ρ
j

∣∣∣∣∣∣∑m
j=1 λj

∣∣∣ + 2(2π)ρ

 p(δ)(2π)ρ(α−1)

(1− q(δ))ραΓ(α + 1)

+

p(δ)∑m
j=1

∣∣∣∣λj

(
τ

ρ
j
ρ

)α∣∣∣∣
(1− q(δ))Γ(α + 1)

∣∣∣∑m
j=1 λj

∣∣∣
‖x1(·, δ)− x2(·, δ)‖J .

Hence, by the Banach contraction principle, S has a unique fixed point which is a
unique random solution of the problem (1) and (2).
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For the following existence result, we set our terminology as follows. Let p(τ, δ) =
β1(τ, δ), q(τ, δ) = β2(τ, δ), b(τ, δ) = β4(τ, δ), β0(τ, δ) = | f (τ, 0, 0, δ)| and β3(τ, δ) =
|ψ(τ, 0, δ)|. Then, it follows by the hypothesis (H2) that

| f (τ, y1, y2, δ)| ≤ β0(τ, δ) + β1(τ, δ)|y1|+ β2(τ, δ)|y2|,

and
|ψ(τ, y1, δ)| ≤ β3(τ, δ) + β4(τ, δ)|y1|,

for τ ∈ J, δ ∈ Ψ and each y1, y2 ∈ R, where βi : J → L∞(Ψ,R+); i = 0, 1, . . . , 4 are
measurable functions, with

βi(δ) = ess sup
τ∈J
|βi(τ, δ)| and β2(δ) < 1. (16)

Theorem 2. Suppose that (H1), (H2) and (16) hold. If

` = β4(δ) +



∣∣∣∑m

j=1 λjτ
ρ
j

∣∣∣∣∣∣∑m
j=1 λj

∣∣∣ + 2(2π)ρ

 (2π)ρ(α−1)

ραΓ(α + 1)
+

∑m
j=1

∣∣∣∣λj

(
τ

ρ
j
ρ

)α∣∣∣∣
Γ(α + 1)

∣∣∣∑m
j=1 λj

∣∣∣
 β1(δ)

1− β2(δ)
< 1, (17)

then problem (1) and (2) has at least one random solution defined on J.

Proof. Consider the set

Gη∗(δ) = {ξ ∈ Ψ : ||ξ(·, δ)||J ≤ η∗(δ)},

where

η∗(δ) ≥ β3(δ)

1− `
+

d∗∣∣∣∑m
j=1 λj

∣∣∣(1− `)
+


∣∣∣∑m

j=1 λjτ
ρ
j

∣∣∣∣∣∣∑m
j=1 λj

∣∣∣ + 2(2π)ρ

 (2π)ρ(α−1)

ραΓ(α + 1)

+

∑m
j=1

∣∣∣∣∣∣λj

(
τ

ρ
j

ρ

)α
∣∣∣∣∣∣

Γ(α + 1)
∣∣∣∑m

j=1 λj

∣∣∣


β0(δ)

(1− `)(1− β2(δ))
.

(18)

We define the operators S1 and S2 on Gη∗(δ) by

(S1x)(τ, δ) =
d(δ)

∑m
j=1 λj

+

[
∑m

j=1 λjτ
ρ
j

∑m
j=1 λj

− τρ

]
1

(2π)ρΓ(α)

∫ 2π

0

(
(2π)ρ − sρ

ρ

)α−1

sρ−1κ(s, δ)ds

+ ψ(τ, x(τ, δ), δ)− 1
Γ(α)∑m

j=1 λj

m

∑
j=1

λj

∫ τj

0

(
τ

ρ
j − sρ

ρ

)α−1

sρ−1κ(s, δ)ds,

(19)

(S2x)(τ, δ) =
1

Γ(α)

∫ τ

0

(
τρ − sρ

ρ

)α−1
sρ−1κ(s, δ)ds, (20)

where κ satisfies (12). Then the fractional integral Equation (14) can be written as the
operational equation

(Sx)(τ, δ) = (S1x)(τ, δ) + (S2x)(τ, δ), x(·, δ) ∈ Ψ.

The proof will be given in several steps.



Foundations 2023, 3 283

Step 1: We prove that S1x1(·, δ) + S2x2(·, δ) ∈ Gη∗(δ) for any x1(·, δ), x2(·, δ) ∈ Gη∗(δ).
For τ ∈ J, we have

|(S1x1)(τ, δ)|

≤


∣∣∣∑m

j=1 λjτ
ρ
j

∣∣∣∣∣∣∑m
j=1 λj

∣∣∣ + τρ

 1
(2π)ρΓ(α)

∫ 2π

0

(
(2π)ρ − sρ

ρ

)α−1

sρ−1|κx1(s, δ)|ds

+
d∗∣∣∣∑m

j=1 λj

∣∣∣ + |ψ(τ, x1(τ, δ))|+
∑m

j=1
∣∣λj
∣∣ ∫ τj

0

(
τ

ρ
j −sρ

ρ

)α−1

sρ−1|κx1(s, δ)|ds

Γ(α)
∣∣∣∑m

j=1 λj

∣∣∣ .

In view of (H2) and (16), we have

|κx1(τ, δ)| = | f (τ, x1(τ, δ), κx1(τ, δ), δ)|
≤ β1(τ, δ)|x1(τ, δ)|+ β2(τ, δ)|κx1(τ, δ)|+ β0(τ, δ)

≤ β1(δ)|x1(τ, δ)|+ β2(δ)|κx1(τ, δ)|+ β0(δ).

Then we obtain

|κx1(τ, δ)| ≤ β1(δ)|x1(τ, δ)|+ β0(δ)

1− β2(δ)

≤
β1(δ)‖x1(τ, δ)‖J + β0(δ)

1− β2(δ)
.

Since x1(·, δ) ∈ Gη∗(δ), then

|κx1(τ, δ)| ≤ β1(δ)η
∗(δ) + β0(δ)

1− β2(δ)
. (21)

For each τ ∈ J, we have

|ψ(τ, x1(τ, δ), δ)| ≤ β4(τ, δ)|x1(τ, δ)|+ β3(τ, δ)

≤ β4(δ)|x1(τ, δ)|+ β3(δ).

Then, for each τ ∈ J, we obtain

|ψ(τ, x1(τ, δ), δ)| ≤ β4(δ)η
∗(δ) + β3(δ). (22)

Thus, by (21) and (22), and since τ ≤ 2π, we obtain

|(S1x1)(τ, δ)| ≤ β4(δ)η
∗(δ) + β3(δ) +


∣∣∣∑m

j=1 λjτ
ρ
j

∣∣∣∣∣∣∑m
j=1 λj

∣∣∣ + (2π)ρ

 (2π)ρ(α−1)

ραΓ(α + 1)

+
∑m

j=1

∣∣∣∣λj

(
τ

ρ
j
ρ

)α∣∣∣∣
Γ(α + 1)

∣∣∣∑m
j=1 λj

∣∣∣
 β1(δ)η

∗(δ) + β0(δ)

1− β2(δ)
+

d∗∣∣∣∑m
j=1 λj

∣∣∣ .
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Consequently, we obtain

‖(S1x1)(·, δ)‖J ≤ β4(δ)η
∗(δ) + β3(δ) +


∣∣∣∑m

j=1 λjτ
ρ
j

∣∣∣∣∣∣∑m
j=1 λj

∣∣∣ + (2π)ρ

 (2π)ρ(α−1)

ραΓ(α + 1)

+
∑m

j=1

∣∣∣∣λj

(
τ

ρ
j
ρ

)α∣∣∣∣
Γ(α + 1)

∣∣∣∑m
j=1 λj

∣∣∣
 β1(δ)η

∗(δ) + β0(δ)

1− β2(δ)
+

d∗∣∣∣∑m
j=1 λj

∣∣∣ .
(23)

Now, for operator S2 and τ ∈ J, we have

|(S2x2)(τ, δ)| ≤ 1
Γ(α)

∫ τ

0

(
τρ − sρ

ρ

)α−1
sρ−1|κx2(s, δ)|ds.

Therefore,

|(S2x2)(τ, δ)| ≤
[

(2π)ρα

ραΓ(α + 1)

]
β1(δ)η

∗(δ) + β0(δ)

1− β2(δ)
.

Hence,

‖(S2x2)(·, δ)‖J ≤
[

(2π)ρα

ραΓ(α + 1)

]
β1(δ)η

∗(δ) + β0(δ)

1− β2(δ)
. (24)

Linking (23) and (24) for every x1(·, δ), x2(·, δ) ∈ Gη∗(δ), we obtain

‖(S1x1)(·, δ) + (S2x2)(·, δ)‖J

≤ β4(δ)η
∗(δ) + β3(δ) +


∣∣∣∑m

j=1 λjτ
ρ
j

∣∣∣∣∣∣∑m
j=1 λj

∣∣∣ + 2(2π)ρ

 (2π)ρ(α−1)

ραΓ(α + 1)

+
∑m

j=1

∣∣∣∣λj

(
τ

ρ
j
ρ

)α∣∣∣∣
Γ(α + 1)

∣∣∣∑m
j=1 λj

∣∣∣
 β1(δ)η

∗(δ) + β0(δ)

1− β2(δ)
+

d∗∣∣∣∑m
j=1 λj

∣∣∣ .
By (18), we have

‖(S1x1)(·, δ) + (S2x2)(·, δ)‖J ≤ η∗(δ),

which implies that S1x1(·, δ) + S2x2(·, δ) ∈ Gη∗(δ).
Step 2: S1 is a contraction.
Let x1(·, δ), x2(·, δ) ∈ Ψ. Then, for τ ∈ J, we have

|(S1x1)(τ, δ)− (S1x2)(τ, δ)| ≤ |ψ(τ, x1(τ, δ), δ)− ψ(τ, x2(τ, δ), δ)|

+


∣∣∣∑m

j=1 λjτ
ρ
j

∣∣∣∣∣∣∑m
j=1 λj

∣∣∣ + τρ

 1
(2π)ρΓ(α)

∫ 2π

0

(
(2π)ρ − sρ

ρ

)α−1

sρ−1|κx1(s, δ)− κx2(s, δ)|ds

+
1

Γ(α)
∣∣∣∑m

j=1 λj

∣∣∣
m

∑
j=1

∣∣λj
∣∣ ∫ τj

0

(
τ

ρ
j − sρ

ρ

)α−1

sρ−1|κx1(s, δ)− κx2(s, δ)|ds.

Therefore, for each τ ∈ J, we have

‖(S1x1)(·, δ)− (S1x2)(·, δ)‖J
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≤

b(δ) +


∣∣∣∑m

j=1 λjτ
ρ
j

∣∣∣∣∣∣∑m
j=1 λj

∣∣∣ + (2π)ρ

 p(δ)(2π)ρ(α−1)

(1− q(δ))ραΓ(α + 1)

+

p(δ)∑m
j=1

∣∣∣∣∣∣λj

(
τ

ρ
j

ρ

)α
∣∣∣∣∣∣

(1− q(δ))Γ(α + 1)
∣∣∣∑m

j=1 λj

∣∣∣

‖x1(·, δ)− x2(·, δ)‖J .

By (17), the operator S1 is a contraction.
Step 3: S2 is compact and continuous.
Observe that continuity of S2 follows from that of f . Next, we prove that S2 is uni-

formly bounded on Gη∗(δ). Let x2(·, δ) ∈ Gη∗(δ). Then, by (24), we have

‖(S2x2)(·, δ)‖J ≤
[

(2π)ρα

ραΓ(α + 1)

]
β1(δ)η

∗(δ) + β0(δ)

1− β2(δ)
.

This means that S2 is uniformly bounded on Gη∗(δ). Next, we show that S2

(
Gη∗(δ)

)
is

equicontinuous. Let x(·, δ) ∈ Gη∗(δ) and 0 < τ1 < τ2 ≤ 2π. Then

|(S2x)(τ2, δ)− (S2x)(τ1, δ)|

≤

∣∣∣∣∣∣ 1
Γ(α)

∫ τ2

0

(
τ

ρ
2 − sρ

ρ

)α−1

sρ−1κ(s, δ)ds− 1
Γ(α)

∫ τ1

0

(
τ

ρ
1 − sρ

ρ

)α−1

sρ−1κ(s, δ)ds

∣∣∣∣∣∣
≤ 1

Γ(α)

∫ τ2

τ1

(
τ

ρ
2 − sρ

ρ

)α−1

sρ−1|κ(s, δ)|ds

+
1

Γ(α)

∫ τ1

0

∣∣∣∣∣∣
(

τ
ρ
2 − sρ

ρ

)α−1

sρ−1 −
(

τ
ρ
1 − sρ

ρ

)α−1

sρ−1

∣∣∣∣∣∣|κ(s, δ)|ds

≤
[
(τ

ρ
2 − τ

ρ
1 )

α

ραΓ(α + 1)

]
β1(δ)η

∗(δ) + β0(δ)

1− β2(δ)

+
β1(δ)η

∗(δ) + β0(δ)

Γ(α)(1− β2(δ))

∫ τ1

0

∣∣∣∣∣∣
(

τ
ρ
2 − sρ

ρ

)α−1

sρ−1 −
(

τ
ρ
1 − sρ

ρ

)α−1

sρ−1

∣∣∣∣∣∣ds,

which tends to zero as τ2 → τ1. This shows that S2(Gη∗(δ)) is equicontinuous on J. Therefore,
S2(Gη∗(δ)) is relatively compact on Gη∗(δ). By the Arzela–Ascoli Theorem, we deduce that
S2 is compact on Gη∗(δ).

As a consequence of Krasnoselskii’s fixed point theorem, the operator S has at least
one fixed point, which is a solution of the problem (1) and (2).

Remark 2. It is noteworthy to observe that Banach’s contraction principle is more advantageous, as
it establishes the existence, as well as uniqueness of a solution to the problem at hand. On the other
hand, Krasnoselskii’s fixed point theorem solely ensures the existence of a solution to the problem
at hand. Obviously, the contractive condition for the operator S1 used in Theorem 2 is different
from the one used in Theorem 1. Moreover, we require that β0(δ) = ess supτ∈J |β0(τ, δ)| =
ess supτ∈J | f (τ, 0, 0, δ)|, and β3(δ) = ess supτ∈J |β3(τ, δ)| = ess supτ∈J |ψ(τ, 0, δ)| in Theo-
rem 2. In case we interchange the role of operators S1 and S2 in the proof of Theorem 2, the
contractive condition also changes.
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4. Examples

Example 1. Let the space R∗− := (−∞, 0) be equipped with the usual σ-algebra consisting of
Lebesgue measurable subsets of R∗−. Consider the boundary value problem involving a generalized
Caputo fractional differential equation given by

CD
3
2 ,ρ
0+ (x(τ, δ)− ψ(τ, x(τ, δ), δ)) = sin(τ)(x(τ,δ)+1)

100(δ2+1) , τ ∈ J,

x(0, δ) = x(2π, δ), ∑2
j=1

j
3 x( jπ

3 ) = d(δ).

(25)

Set

f (τ, x(τ, δ), (CD
3
2 ,ρ
0+ x)(τ, δ), δ) =

sin(τ)(x(τ, δ) + 1)
100(δ2 + 1)

, τ ∈ J, x ∈ R,

and

ψ(τ, x(τ, δ), δ) =
(sin2(τ)−

√
3

2 sin(τ))x(τ, δ)

1000(δ2 + 1)
, τ ∈ J, x ∈ R,

with ψ(2π, x(2π, δ), δ) = ψ(0, x(0, δ), δ) = ψ(τj, x(τj, δ), δ) = 0, j = 1, 2, α = 3
2 , ρ = 1

5 , τj =
jπ
3 .

For each x1, x2, v1, v2 ∈ R and τ ∈ J, we have

| f (τ, x1, v1, δ)− f (τ, x2, v2, δ)| ≤
∣∣∣∣ sin(τ)(x1 + 1)

100(δ2 + 1)
− sin(τ)(x2 + 1)

100(δ2 + 1)

∣∣∣∣
≤ | sin(τ)|

100(δ2 + 1)
|x1 − x2|,

and

|ψ(τ, x1, δ)− ψ(τ, x2, δ)| ≤

∣∣∣sin2(τ)−
√

3
2 sin(τ)

∣∣∣
1000(δ2 + 1)

|x1 − x2|.

Therefore, (H2) is verified with

p(τ, δ) =
| sin(τ)|

100(δ2 + 1)
, b(τ, δ) =

∣∣∣sin2(τ)−
√

3
2 sin(τ)

∣∣∣
1000(δ2 + 1)

, q(τ, δ) = 0.

The condition

b(δ) +


∣∣∣∑m

j=1 λjτ
ρ
j

∣∣∣∣∣∣∑m
j=1 λj

∣∣∣ + 2(2π)ρ

 p(δ)(2π)ρ(α−1)

(1− q(δ))ραΓ(α + 1)
+

p(δ)∑m
j=1

∣∣∣∣λj

(
τ

ρ
j
ρ

)α∣∣∣∣
(1− q(δ))Γ(α + 1)

∣∣∣∑m
j=1 λj

∣∣∣
=

2 +
√

3
2000(δ2 + 1)

+

∑2
j=1

j
3 (

jπ
3 )

1
5

∑2
j=1

j
3

+ 2(2π)
1
5

 (2π)
1
5 (

2
2−1)

100(δ2 + 1)( 1
5 )

3
2 Γ( 3

2 + 1)

+

∑2
j=1

j
3

(
( jπ

3 )
1
5

1
5

) 3
2

100(δ2 + 1)Γ( 3
2 + 1)∑2

j=1
j
3

≈ 0.43478131
δ2 + 1

< 1,

is satisfied with α = 3
2 . Thus, all the conditions of Theorem 1 hold true, so the problem (25) admits a

unique random solution.
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Example 2. Consider the following problem,
CD

4
3 ,ρ
0+ (x(τ, δ)− ψ(τ, x(τ, δ), δ)) = f (τ, x(τ, δ), (CD

4
3 ,ρ
0+ x)(τ, δ), δ), τ ∈ J,

x(0, δ) = x(2π, δ), ∑2
j=1 2jx

(
τj
)
= d(δ),

(26)

where

f (τ, x1, x2, δ) =
|x1|+ |x2|+ 3

411eτ(1 + |x1|+ |x2|)(|δ|+ 2)
, τ ∈ J, x1, x2 ∈ R,

and

ψ(τ, x, δ) =
sin(τ)(cos3(τ)− cos(τ)

2 )|x|
300(|δ|+ 2)

, τ ∈ J, x ∈ R, j = 1, 2.

Notice that

ψ(2π, x(2π, δ), δ) = ψ(0, x(0, δ), δ) = ψ(τj, x(τj, δ), δ) = 0, j = 1, 2, α =
4
3

,

ρ = 1, τ1 =
π

4
, τ2 =

7π

4
.

All conditions of Theorem 2 are satisfied with

β0(δ) =
3

411(|δ|+ 2)
, β1(δ) = β2(δ) = p(δ) = q(δ) =

1
411(|δ|+ 2)

,

β3(δ) = 0, β4(δ) = b(δ) =
1

200(|δ|+ 2)
,

and

` =
1

200(|δ|+ 2)
+


 π

2
+ 7π

6
+ 4π

 (2π)
1
3

Γ( 7
3 )

+
2(π

4 )
4
3 + 4( 7π

4 )
4
3

6Γ( 7
3 )

 1
411|δ|+ 821

≈ 1
200(|δ|+ 2)

+
31.1975967219243

411|δ|+ 821

< 1.

Hence, by the conclusion of Theorem 2, the problem (26) admits at least one random solution.

5. Conclusions

In this paper, we have obtained the existence and uniqueness results concerning
the random solutions of a non-local and periodic boundary value problem of non-linear
generalized Caputo type implicit fractional differential equations by applying the standard
fixed point theorems. For the applicability of the main results, illustrative examples are
presented. Our results are new and enrich the related literature.
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