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1. Introduction

Fractional-order differential equations arise in the mathematical modeling of several
engineering and scientific phenomena. Examples include physics, chemistry, robotics, signal
and image processing, control theory and viscoelasticity (see the monographs in [1-5]). In
particular, nonlinear coupled systems of fractional-order differential equations appear often
in investigations connected with anomalous diffusion [6], disease models [7] and ecological
models [8]. Unlike the classical derivative operator, one can find a variety of its fractional
counterparts, such as the Riemann-Liouville, Caputo, Hadamard, Erdeyl-Kober, Hilfer
and Caputo-Hadamard counterparts. Recently, a new class of fractional proportional
derivative operators was introduced and discussed in [9-11]. The concept of Hilfer-type
generalized proportional fractional derivative operators was proposed in [12]. For the
detailed advantages of the Hilfer derivative, see [13] and a recent application in calcium
diffusion in [14].

Many researchers studied initial and boundary value problems for differential equa-
tions and inclusions, including different kinds of fractional derivative operators (for ex-
amples, see [15-20]). In [21], the authors studied a nonlocal initial value problem of an
order within (0,1) involving a ¢, Hilfer generalized proportional fractional derivative
of a function with respect to another function. Recently, in [22], the authors investigated
the existence and uniqueness of solutions for a nonlocal mixed boundary value problem
for Hilfer fractional ¢, -proportional-type differential equations and inclusions of an or-
der within (1, 2]. In [23], the authors discussed the existence of solutions for a nonlinear
coupled system of (k, ¢) Hilfer fractional differential equations of different orders within
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(1,2], complemented with coupled (k, ) Riemann-Liouville fractional integral boundary
conditions given by

DL Ve n(z) = T1(z, n(z)) or €H(z7(2)), z€[ar,b], by > a1 >0,

m(ay) =0,
& . 4’:#9*’#’* . 5kr(Pr79*rlIJ*
m(br) = Y m(g) + ) Gl w(8) + ) A DY ().
j=1 i=1 k=1

Here, Dz’f’ﬂ*’% is the , Hilfer fractional proportional derivative operator of the order
w € {p, 0}, 0,0 € (1,2] and type ¢ € [0,1], ¢, € (0,1], €, {i, Ay €R, H : [ag, b] xR — R

is a continuous function (or H : [a1,b1] x R — P(R) is a multi-valued map), Hfif*’w* i

the fractional integral operator of the order ¢; > 0 and ¢ jbi ik € (a1,01),j=1,2,...,m,
i=1,2,...,n,k=1,2,...,r. Very recently, in [24], the authors considered a new boundary
value problem consisting of a Hilfer fractional ¢_-proportional differential equation and
nonlocal integro-multi-strip and multi-point boundary conditions of the form

DL o(z) = ¥(z,0(2), ze[al,bﬂ

o(a) =0, /a P.(s)o ds—zqol A AC Jo(s)ds + ) 0,0(2)),
1 i =

where Dﬁ;"_’;ﬁ*"”* denotes the p, Hilfer fractional proportional derivative operator of the
order p € (1,2] and type ¢ € [0,1], 8. € (0,1], a1 < {; < & < 1 < by, 9;,0; € R,
i=12,...,nj=12,...,m 9, : [a1,b] — Risan increasing function with @;(z) # 0 for
allz € [a1,b1] and ¥ : [a1,b1] x R — R is a continuous function.

Motivated by the foregoing work on boundary value problems involving Hilfer-
type fractional ¥ -proportional derivative operators, in this paper, we aim to establish
existence and uniqueness results for a class of coupled systems of nonlinear Hilfer-type
fractional ¢ -proportional differential equations equipped with nonlocal multi-point and
integro-multi-strip coupled boundary conditions. To be precise, we investigate the follow-
ing problem:

DA b g (2) = ¥1(2,0(2),T(2)), 2 € [, 1],

Db r(z) = Wy (z,0(2),7(2)), z€ [al,bl]
b, i

ola) =0, [ PLo(s)ds = Y [ FL)T(s)ds + ze W)W
m =1 Y&

T(a1) =0, /bl E;(s)r(s)ds =Y ¢ “ @; (s)o(s)ds + Z 8,0 (z))
n i=1 d; j=1

where Dg;‘f ”’0*'%, x = 1,2, denote the Hilfer fractional i, -proportional derivative operator
of the order px € (1,2] and type ¢; € [0,1], 8« € (0,1], a1 < ; < & <13 < by, a1 <
(5] <z <€ < bl, Ki10j1¢irl9j eR,i= 1,2,...,n,j =1,2,...,m, w* : [al,bl] — Ris an
increasing function with ¢ (z) # 0 for all z € [ay,b;] and ¥q, ¥ : [ay,b1] x R x R — R are
continuous functions.

Here we emphasize that system (1) is novel, and its investigation will enhance the
scope of the literature on nonlocal Hilfer-type fractional i, -proportional boundary value
problems. It is worthwhile to mention that the Hilfer fractional ¢_-proportional derivative
operators are of a more general nature and reduce to the Hilfer generalized proportional
fractional derivative operators [12] when k = 1 and ¢, (t) = t, which unify the classical
Riemann-Liouville and Caputo fractional derivative operators. Our strategy to deal with
system (1) is as follows. First of all, we solve a linear variant of system (1) in Lemma 3,
which plays a pivotal role in converting the nonlinear problem in system (1) into a fixed-
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point problem. Afterward, under certain assumptions, we apply different fixed-point
theorems to show that the fixed-point operator related to the problem at hand possesses
fixed points. The first result (Theorem 1) shows the existence of a unique solution to system
(1) by means of Banach’s contraction mapping principle. In the second result (Theorem 2),
the existence of at least one solution to system (1) is established via the Leray—Schauder
alternative. The last result (Theorem 3), relying on Krasnosel’skii’s fixed-point theorem,
deals with the existence of at least one solution to system (1) under a different hypothesis.
We illustrate all the obtained results with the aid of examples in Section 4. In the last section,
we describe the scope and utility of the present work by indicating that several new results
follow as special cases by fixing the parameters involved in system (1).

The rest of this paper is organized as follows. In the following section, some necessary
definitions and preliminary results related to our study are outlined. Section 3 contains
the main results for system (1), while numerical examples illustrating these results are
presented in Section 4. The paper concludes with some interesting observations.

2. Preliminaries

Let us begin this section with some basic definitions.

Definition 1 ([10,11]). For 9, € (0,1] and p € R™, the fractional proportional integral of
€ L'([ay, b1], R) with respect to . of an order p is given by

b, 7 1 B bl ()=, (s)) 7 - 17! 1N\,
TG = s [T POPDG @) -0 0Tk, 2> 0 )

Definition 2 ([10,11]). Let p, € C([ay, b1], R) with ¢ (z) > 0, 8, € (0,1] and p € R*. The
fractional proportional derivative for i € C([a1, by], R) with respect to §, of an order p, is given by

]D)}’l,ﬁ*,@* z *—1 (71 z T s — - n—o— ! 7
>@—¢pmhmlﬁ”““)“W%@—%@>Pwﬁm@ﬁzmm ®

where n = [p] + 1 and [p] denotes the integer part of the real number p.
Definition 3 ([21]). Let §, be positive and strictly increasing with . (z) # 0 for all z € [ay, by

and b, P, € C™([a1, by],R). The , Hilfer fractional proportional derivative for h with respect to
another function P of an order p and type ¢, is defined by

@, 0% ,7* 7 —p), 0% ,7* , *,7 1- —0),94 ,7* ~
(D) (z) = (I8 PVO e (B (1 ORIy ), @

wheren —1 < p < n,0< ¢ <1,n e Nand 9, € (0,1]. In addition, D*¥<h(z) = (1 —
0.)h(z) + 0.

g; ((ZZ)) , and ]I('l) s the fractional proportional integral operator defined in Equation (2).

Now, we recall some known results.

Lemma 1 ([21]). The y, Hilfer fractional proportional derivative can be expressed as

D7 —0),9:,9, 0 1—9)(n—p),9:,9, 7 _ —0) 0.0 B, 7
(PoAefi) (z) = (190 () (TP TP (2) = (0PI ),

a+
where y1 = p+ @(n —p).

Remark 1 ([21]). The following relations hold:
m=p+ten—p), n-1<p m<n 0<¢p<1,

and
=20 11>9 n—y<n—en-—p).
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0P,
o(z) = H§;+lph

(z) +

Lemma?2 ([21]). Letn —1<p<nn €N, 8. € (0,1,0< ¢ <land vy =p+ ¢(n—p)be
such thatn —1 < 1 < n. Ifh € C([a1, b1], R) and ngﬁl’ﬁ*’lp*f € C"([a1, 1], R), then

(R N I N
Hﬂ1+ ]D)Ill-‘r h -

OO G, (@) @) gy
9. 17K (y; —k+1) nr '

ie

3. Main Results
Before proceeding for the existence and uniqueness results for the system (1), we

consider the following lemma associated with the linear variant of the coupled system of
Hilfer-type fractional i, -proportional differential equations considered in system (1).

Lemma 3. Let hy,hy € C([a1,b1],R) and L # 0. Then, (o, T) is a solution to the following
coupled, linear, nonlocal integro-multi-strip and multi-point, 1, Hilfer generalized proportional
fractional system:

Dgifl B, 0(z) = h(2), z€[a, b,
mﬁ”%<n= @), z€lm,bi,
by n i i/
/ ()0 (s) ZZ;«/ dHZGT@f ©)
lzl li/
/ _ Z / dS -+ Z 19 o Z]
i=1 j=

if and only if

-1

60* (¥.(2) =9, (a1)) P, (z) —
L7 'T(m)

wmnwl{M Zm/ (ST iy (5)ds

9., b _ 9., 9.,
+29]H§f+ Pha(g) = [ FOL (o)) + (By +C) (ml / (I iy (5)ds

1

by
+219]H§}f P (z) - / ()12 Yy (s )ds)}, € [a, b, ©)
and
19 (lp*(z) lp* 111) ’m ’)/1—1
— szﬁ*lp*h e ™ (lIJ*() 1/’*(”1)) : ]Ipllg*ll}*h ds
T(Z) a1+ () 1911 ] (’)/1) Z¢/ l/J Ll1+ ()

b

B, 1
Zﬂjﬂgh v hl ) /
m

B P hn(e)ds) + (B + o) Lo [P )

by
2 Oz ha() = [T s )ds>}’ € oy, 1], @)
1
where
b o B B -0.(01) (F (o) _ T S
A = /13 ’ (leES) P, (a1))M %(S)ds,
“ 81" T ()
n i Lj(%«@)*@J“l)) e 0% 71*/
B = ZKi/” ¢’ (IIJE) P, (1)) ‘P*(S)ds,
i=1 i 912 T(72)
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m e “i D)) (5 () =, (ay)) 2

=1 00T (12) ’
Ou—1 (7 —
by o 8n ($a(8)=P.(a1)) = Y21 (
b = [ (;fp Po(a))” L) ) "
" 82 T(12)
" e o o (Pu(5) 9. (a1)) P.(s) — P, (a))M 1P (s)
B, = L 1/151‘ 1971 I ds,

I'(71)
mooe L= (9.()) @(ﬂl))(lp (€ ) *({11))71*1

G o= L9

=1 977! (11)

and
L =AA;, — (Bl + (C1)(B2 + (Cz)

Proof. From Lemma 2 with n = 2, we have

Be=1 (%, (2)~, (a1) e -1
19* % 19* * e O * * * a 1 19* *
DRI o(z) = o(z) - e R, 1) o
* 1
OO @) G @)1 2,
(I o)(a1)
07 T (91 — 1) n ,
and
L3, (2)-9.(@) (5 T -1
19** 19** eﬂ* *Z_*ﬂ 1 19**
PR e = 1) - G g )
%=1 (5 (2)—P_(a — —
_¢ b (B0 1))(4]*(2)_4)*(‘11))% 2(]12 72,94, )(’11)
1912—2]7(,)/2 _ 1) ar+ ’
which yields
L)~ 9.(m)) (g -0 71-1
04,0, e 19* «\Z La
o) = L) e el
* 1
i @D (5 (2) — G (ay))n2 o
+C * * ,
1 67M(m — 1)
and
M@ (z) =, (a1)) Y2—1
B, . e O« * " N a 2
T(z) = I Vi (2) + do P (ip ((72) $.(m)
S, (2) 9. (a)) (g _ 0 122
+dle o 72(11[]*(2’) lp*(al)) 2 , (10)
9P T (12— 1)
where ¢ = (b """V o) (@), oo = (L% 0) (@), dy = (15 7P 7)(ar) and
dp = ( 51 ﬁ 209 T)(a1). Using Equations (9) and (10) in the conditions o (a;) = 0 and

T(ay1) = 0, we obtain ¢; = 0 and d; = 0, since v; € [p1,2] and 72 € [p2,2]. Hence,
Equations (9) and (10) take the forms

-1

19* ¥.(2) =9, (1)) m 1-1
( )—]I‘Zif* ¢*h ( )+Coe 1921 (;’P*((lyz) l)b*(a1>) , (11)
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and

9x—1

— @) -¥.(@) -0 72-1
o T (12)

By inserting Equations (11) and (12) into the conditions f b P (s)o(s)ds

Py [ (s)T(s)ds + LIy 057(C) and [V (s)T(s)ds = Ty @ [ @ (s)o(s)ds +
ZJ 119](7( z;), we obtain

1 L e 0 L. (5)=P.(m)) - 1—17/
[ RO o)t [ (@.l5) = 9. ()" T0)

s
" g ﬂ“lwn
(lIJ*( e 1
i 7 ()10 - me't (@, (s) = P, (a1) > 1F(s)
= K; s)I *hy(s)ds + d ds
Z l Mot OZ; /i 97 'T(12)
817 i)— — e —
e o ($i(z) *(ﬂl))(lp*(gj) — P ()7 1, .

R
+29HF’2 “hy(Z5) +do ) 6; -
/ = 07T (72)

and

1 1 '979*( «(8) =, (a1)) )
/b%mwm%m@%+%fe (7.0 = Pula) > T.6)

" o 87271 (72)
)

L. (5) =9, (m) T 17
_ A ie'i (¥,(5) = 9. (1)), (5)
= / ]Iul—l— hy(s)ds + co E ¢; /5 - T T(70) d

Em (lP*(Z;)—w*(m))@ (zj) — P, (a7))11 !
910 lp*h zi) +c 19 *7) A )
2 oI ) 0121 01 'T(n)

In light of the notation (8), we can express Equations (13) and (14) in the form of the
following system:

S

(14)

Arco— (B1 +Cq)dg = P,
—(Ba+Cp)co+A2dy = Q, (15)
where
9., 9., by 9.,
p - 2 / ()PP iy s ds+29]112f+ Py (g)) - / ()P (5)ds,
1
b
0., 0.9, 1 0.7,
0 = Yo [ TH T me @+Z%ﬂ+¢ma>j;%<mawh<w
1

By solving the system (15) for ¢y and d, we find that

= %[AzP—F (31 +(C1)Q], dg = %[AlQ—F (BZ +(C2)P].

Substituting the above values of ¢y and dy in Equations (11) and (12) leads to the solu-
tions in Equations (6) and (7), respectively. The converse of the lemma can be established
by direct computation. [



Foundations 2023, 3 247

We denote the Banach space of all continuous functions from [a1, b1] to R endowed
with the norm |[o| := max,¢y, 5, |0(2)| as X = C([a, b1], R). Obviously, the space X x X
endowed with the norm ||(¢, T)|| = ||¢|| 4 ||T| is @ Banach space.

In light of Lemma 3, we define an operator K : X x X — X x X as

= (5278 )
where
19* ( *() % ﬂl a 1—
Ki(o,)(2) = TP (2 (e, ) + e T e (2) (e

Lo T ()

{Az ZKZ/ Hgff* lp*‘Pz(s,a(s),T(s))ds
F L om G @A) - [ ROR oo o) )
o) (Lo [ POl (o)

a

+zﬂmf%%a,@>@m—/ %uﬁ%%%@dwdm%ﬁ,za%ML

and
L. b)) (G ()T 1
KQ(O’,T)(Z) = Hgf_l:* lp*‘}’ ( ( ) T(Z)) + ¢ (II)*(Z) 1/1*(111))7

L7 'T (1)

X{%(Z@/ﬂ%@Mﬁwqﬂ&dﬂf@Ms
i=1 o
b —
+Z%mf%wl o(z),7(7) = [ B (s, 0(5), 7(5))ds) (18)

M
+(By + Co) ( ZKZ/ () Iy (s, 0(s), T(s))ds

Z@ﬁ%%%g,@>@»—A?%U;F%w@m><w%ﬁ,zq%my

For convenience, in the sequel, the following notations are used:

Ql o (@*(bl) _a*(“l))pl + (@*(bl) _w*(al))yl_l |:|A ‘ (E*(bl) _ﬁ*(al))pl—i_l

87T (p1 +1) L[82 T (1) 84T (01 +2)
2 [ Bl - (.0 - Bl ]
+|B1 +Cl|<g |4’z| 195311”(p1 _|_2)
B0 T

B @*(bl)—@(m))wl o (@ 00) = B, (a)P ! = (5,(6) = Bulm))P2 1]
“ L[0T (1) [|A2|(;|l| 92T (02 +2)
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_|_

Z| |1/J* (&) = ¥.(a1))F
j

s (#.(b1) —%(m))"z“}, (19)
0T (o2 + 1)

+ By +C
)+ B+ C T (py +2)

(@, (by) — P, (a1))1 L n @) = Fo(@)P = (§,(6) — B ()]

A .
LY T (1) ( 1'2"”1' T (p1 +2)

+Z| ]| IIJ*( ) IIJ*( ))) )+‘Bz+@2|(¢*(bl)_ﬁ*(al))pl],

Qs =

19”1 T(o1 + T (py +1)

+1B; + Col (Y I

(%(bl) P (a)) | (§.(by) 9, (@) [m]‘(%(bl)—%(ﬂl))”“

00T (o2 +1) LI97 "7 () 2T (p2 +2)
n @) = Bulm)) T = (5,0 — B ()

i=1 19{izr(p2 +2)

+Z| 0 (¥..(G)) @(ﬂl))”)]

K (

0T (02 + 1)

Existence of a Unique Solution

In what follows, we prove the uniqueness of the solutions to the system (1) by applying
Banach'’s contraction mapping principle [25].

Theorem 1. Assume that ¥1,¥5 : [aq, by] x R? — R satisfy the following conditions:

(Gy) There exist constants p;,v;,i = 1,2 such that for all z € [aq1,b1] and 0;,0; € R,i = 1,2,
we have
|¥1(z,01,02) —¥1(2,01,02)| < p1]og — 61| + p2|op — 03]

and
|¥2(z,01,00) — ¥2(z,01,00)| < v1]o1 — 01| + 12|02 — 02

In addition, we suppose that

(Q1+Q3)(p1 +p2) +(Q2+Qq) (11 +12) <1, (20)

where Q;,1 = 1,2,3,4, are given in Equation (19). Then, the nonlocal integro-multi-strip and
multi-point ¢, Hilfer generalized proportional fractional system (1) has a unique solution on
[a1, b1 ].

Proof. We define supyc(, 41 %1 (z,0,0) = N7 < o and SUPpc (o] ¥,(2,0,0) = N < o0
and consider the set B, = {(0,7) € X x X : [|(0,7)|| < r} with

r> (Q1 4+ Q3)N; + (Q2 + Q4)Ny . 1)

—[(@1 +Qs3) (1 + p2) + (Q2 + Q) (v1 + 12)]

In the first step, it will be shown that KB, C B,, where the operator K is given by
Equation (16).
; S, () 9.()
For (0, 7) € By, and using 0 < e o "+ W) <1, we have

7, 7)(2)]

< TP (s, 0(s), T(s)) — ¥i(s,0,0)| + [¥1(s,0,0)|]

— a1+

+ew(%(2>—%(u1)) (¥, (z) — 9, (ag))n 1

L8 T(11)

{|Az| Lol [P D2l 0(5), (6)) — Fals, 0,0) + [¥a(50,0) s
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+ z 10118277V (1952, 0(2), T(5)) — ¥2(2;,0,0)| + [¥2(2;,0,0)]
+ / PO [¥1(5,0(), 7(5) = ¥1(5,0,0) | + [¥1(s,0,0) Jds)
HBy +Cy zw / BT [¥, (5, 0(s), T(s)) — ¥1(s,0,0)| + [¥1(5,0,0) | ds

0,
+Z 8,160 P [[¥1(zj,0(zj), T(z))) — ¥1(2},0,0)[ + [¥1(2},0,0)|]

+ / ()2 [y (s,0(s), T(s)) — ¥a(s,0,0)| + |‘P2(s,0,0)|]ds)}

@, (01) =, (ar))" !
L6771 T (1)

O
{lAzl Loll [ B ]+ vl + N

B,
< ]Iﬁh “[palloll + p2llTll + NiJ(br) +

+ Z 6162 [l + vall7l] + Na) (4))

04
+ / POL ol + pall 7] + NJas)
04
+|By + €4 Dcm [P Gl + pallel + N

B.F
+ Z [0 [ o) + ez + Nl z7)

+ / P o] + valll] + Nolds)

(l/)*( ) 4’*(“1)) (E*(bl)*@*(m))'ﬂ—l
T (oy + 1) [allofl + p2ll ]l + N1 + Lo 1T ()

w @) = () = (8 — ()]
X{|A2|(Z|KZ| l%zzr(p2 )

i=1 +
(.(5) ~ . (@)
X[l + vall ] + No] +]le9| Wy 1 1

IN

[vi|lo|| + val|T]| + No]

L @(b) = (a0

+ +N
Tz Mlell +pelTl+ M)

() = . (00))P+! = (8,6 — $.. (o)1

n
B+ Tl (Y
i=1

9T (01 +2)
(¥, (zj) — ¥, (a1))
x[pillo]| + p2llT|l + Ni] +]Z%\l9| # (o + 1) (allo|l + p2lT| 4+ Nq

(¥, (b1) =, (ar))> "
8T (p2 +2)

_ (@*(bl) _ﬁ*(‘zl))pl + (¢*<b1> _a*(al))’hil (|A |(¢*(b1> _i*(al))pl+l
8T (o1 +1) LI827TT () 2T oy +2)

ol +vallll + Na]) }




Foundations 2023, 3 250
o ) e G0 e
+|By + 1|l;|¢z| T (1 1+ 2)
= ) (¢*(Z]) _w*(al))pl
LI )}[#1IUII+;42IITII+N1]
Y, (b)) — -1 LC (?* (UZ) - @* (al))p2+l - (¢*<§l> - E*(al))p2+l
g 00 i”f(””) (12l X b | pz |
|1LW1 (1) 82T (02 +2)
(¥.(Z) — ¢, (a1))P> (@, (b1) = 9, (ay))2
+2| | pzr(p To B G ) (Wl el + N
= Ql[#lHUH + pol| Tl + N1J + Qa[v1[|o || + vaf| ]| + N2
= (Qu1 +Quuy)|lof] + (Qrp2 + Qava) || 7| + Q1 Ny + Q2N>
< (Qupr 4+ Qovy 4+ Qupz + Qoup)r + Qi Ny + Q2 Ny,
In a similar manner, we can obtain
1Kz (o, 7)(z)| < (Qap1 + Qavr + Qapo + Quun)r 4+ Q3N + Q4Np.
In light of the foregoing inequalities, we have
1Ko, D)l = [Ki(o, D)l + K2 (e, )
< Q1 +Qs3) (1 + p2) + (Qa + Qq) (v1 +v2)]r
+(Q1 +Q3)N1 + (Q2 + Qu)N2 <77,
which implies that KB, C B;.
Now, for (02, 72), (01, 11) € X x X, and for any z € [a1, by], we obtain
\H§1(02, )(z) — Kq(o1, 1) (2)]
< MY9¥ (2, 00(2), 12(2)) — Yi(z,01(2), ()|
IO (2) ()
)
IL[97 T (1)
{|A2| Z|Kz|/ v, ]Igff s “[Ya(z,02(2), 1a(z)) — Ya(z,01(2), 71 (2)|ds
+ 2 65112 %21, 02(2), 7 (8))) — Y2801 (E), 1 (E))]
+ [T PO 20, @) - i1 2,1 ) as)
Jr|]1331+C1| Z|4’z|/ AE Hﬁif V¥ (2,00(2), 10(2)) — ¥a (2,01 (2), 71 (2)|ds
Zﬁ;ﬂi}f V11 (21, 0a(2), 2 (2) — Ya(z,01(2), 1 ()|
+/a @i(s)ﬂgff*'w*|‘I’2(Zr02(Z)IT2(Z)) ‘Ijz(zftfl(z)le(ZWS)}
<

(@b =P | @b o), () = (o)
7 + (12l
%' T(o1+1) IL[87 "I (1) 8 T(o1 +2)
b oY (@, (e) = B (@)t = (§,(6) — . (an))r+]
+|B1 + 1|(l;|¢i| T (py +2)
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(ﬂl))P
p1+1)

+Z| ]| 19,011"( )}}(}41||(72—(71||+H2||72—T1||)

T(b)—T n-1 n W, () — ¢, (1)) — (9, (&) — ¢, (ag))P2H!
+ (.(b1) ﬂ*(al)) {|A2(| Y il [ 23 }
L& T (1) iz 87T (02 +2)
(.. (5j) — ¢.(a1))F? (9, (b1) — 9, (a1))2*!
* Zl gl 0T (pp +1) )+ [Bi+ Gl 92T (02 +2)
- @1(#1H02 — || + a2l — ul)) + Qa(viloz — a1l + v2fl2 — 7 l])
= (Quu1+Quuy)lloz — o1 || + (Qip2 + Qava) |2 — 1|,

]}(Vlefz — o1l +vallee — )

Consequently, we obtain

[K1(02, 2) = Ki(op, @) || < (Qip1 + Qavi + Qupn + Qowa)|[|loz — 1| + [[72 — wl[]- (22)
Similarly, it can be established that
[Ka(02,22) — Ka(o1,21) || < (Qapr + Qqvr + Qapz + Quua)||loz — o1 ]| + [[72 — wl[]- (23)

It follows from Equations (22) and (23) that

[K(02, 72) = K(op, 1) | < [(Q1 +Q3)(p1 + p2) + (Q2 + Q) (v1 +12)|([[o2 — a1l + [[72 — wl])-

Since (Qq + Q3) (u1 + p2) + (Q2 4+ Q4) (v1 +v2) < 1 under the condition in Equation (20),
the operator K is a contraction. Therefore, the conclusion of Banach’s contraction mapping
principle applies, and hence the operator K has a unique fixed point. As a consequence,
there exists a unique solution to the nonlocal integro-multi-strip and multi-point i, Hilfer
generalized proportional fractional system (1). [

The following result is based on the Leray-Schauder alternative [26]:

Theorem 2. Let Y1, %) : [a1,b1] x R2 — R be continuous functions such that the following
condition holds:

(Gy) There exist t;,@; > 0 for i = 1,2 and 719, @y > 0 such that for any o, T € R, we have

[¥1(z,0,7)| < o+ m|o| + maT],
[¥2(z,0,7T)| < @+ @1]0] + @2|T|-

If (Q1+Qs)m + (Q2 + Qu)oy < 1and (Q1 + Q3)7z + (Q2 + Qu)2 < 1, where Q;,
i =1,2,3,4 are given in Equation (19), then the nonlocal integro-multi-strip and multi-point ¢,
Hilfer generalized proportional fractional system (1) has at least one solution on [aq, by ].

Proof. Observe that the operator K defined in Equation (16) is continuous, owing to the
continuity of functions ¥1 and ¥; on [a1, by ] x R2. Next, we show that the operator K is com-
plete continuous. We define B, = {(0,7) € X x Y : ||(c, T)|| < ¢}. Then, for all (¢, 7) € B,
there exist Dy, D, > 0 such that |¥1(z,0(z),7(z))| < Dy and [¥2(z,0(2),7t(2))] < Dy.
Therefore, for all (¢, T) € B, we have

K (0, 7)(2)]
@.(00) = Pola)) (@ (o) — ()"
8T (o1 +1) [LI82 T (1)
((@.(1) = B (@) = (&) = P (a1) 2+
{|Az|(2|xz| Tt 2) D,

@, (C) — 9. (@) (@, (br) =P, (a))r "
+Z| 9l ﬁf’ir(p +1) P2t o' (o1 +2) Dl)
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(i L) Z B - (F.6) )]
+HB1+ Gl (L I T2 :
ll)*( )—IIJ*({II )) ! 7* b _7* a P2l

+2| 1 o 1) D+ (z;ﬁlr(;pzilz))) Dz)}

_ <¢*<bl> G CAUN R 1Y) Gy W CAC e AT
T (01 +1) IL|97 T (1) T (o1 +2)
Bl (. () = . (00))P 41 = (§,(6) — §..(an) 1+
+|By + 1|i:21|¢i| (o1 1+ 2)

2o (@.(z) — 9, (a))
+];|l9j| l9§]11“(p1+1) )}Dl

{ o) = Fulayn g, o (@0 =9 (a0) = (3(8) — o))

(142l Y I

L6771 (71) = 0T (02 +2)
(¥.(Zj) — P, (a1))r (P, (b1) — P, (ag))2H!
+Z| 1 92T (py + 1) N0 (0, +2) ) D,
= Ql]D)l + Qo>y,

which implies that
1Ky (o, T)[| < QiDy + QoI

Similarly, we can obtain
1Kz (e, 7)|| < Q3Dy + Q4o

Consequently, we have

IK(e, D)l < (Q1 +Q3)D1 + (Q2 + Q4) D2

Thus, we deduce that the operator K is uniformly bounded.
Now, we establish that the operator K is equicontinuous. Let z1,z, € [a1,b1] with
z1 < zp. Then, we have

K1 (e, 7)(22) = Ka (e, 7)(21)]

1 b — _ — — 1]~
< | Lo (@) =6 = @) Bl L 5 (), )
+l95:111"(m tz@*(zz) — ()11, (5)¥1(5,0(s), T(s))ds
+(¢*(Zz) P, (a1))"" (IP*(Zl) P, (ar))n!
|L|l9% I'(71)
x{|A2| il [T s, 000, (o) las

= Y1 102G 0@ T + [ TR 6,000, vl )
j=1

- i B,
B+ il (L ][O (5, 0(6), 7(0) s
i=1 f
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IN

il 0P, 00,
LB 1z 0 (), 7))+ / Ol |‘1’2(S/0(S),T(S))|d5)}
]:

e 1 2 22) B0 1)~ o) — () o)) |

(¥, (z2) =9, (1) = (P, (z1) — P, (aq))1 !
IL[87 ' T ()

(@ (1) =B a) P2 = (&) = P ()2

+

x{|Az|(z|xi| P2 D
SRR @) =)
R e ey ™)

[ (e) =P la)Prtt = (,(6) = o))
%' (o1 +2)

(¢, (z) — P, (@)1 (. (b1) — 9, (a1))P>""
+Z| 1 9T (o1 +1) Dyt 07T (p2 +2) DZ)}’

+HE+ Gl (L o Dy

which implies that |K; (¢, 7)(z2) — Ky (0, 7)(21)| — 0asz; — zp independent of (¢, T) € Be.
Thus, the operator K; : X — X is completely continuous under the Arzeld-Ascoli theorem.
Similarly, it can be shown that

Kz (0, 7)(22) = Ka(e, 7)(21)[ = O,

as z; — z independent of (¢, T) € Be. Hence, the operator K is completely continuous.
Lastly, we verify that the set E = {(0,7) € X x X : (0,7) = AK(0,7),0 < A < 1}is
bounded. Let (¢, ) € E. Then, (¢, T) = AK(c, 7). Hence, for all z € [aq, b1], we have

o(z) = AKy (0, 7)(2), 1(2) = AKy (o, T)(2).
Under assumption (G;), we have

ol < (rmo + i ||o|| + m2|| 7)) Q1 + (@0 + @1]|c|| + @2 T||)Q2,
Tl < (70 + ||| + 2| 7)) ) Q3 + (@ + @1 ||| + @2||T]|)Qa,

which imply that
loll+ el < (@1 +Qa)mo + (Q2 4+ Qu)do + | Q1+ Qa)m + (@2 + Qua |l
+ {(Ql +Q3)m2 + (Q2 + Q4)@2} I]l-
Consequently, we have

(Q1 +Q3) 7o + (Q2 + Q4)@p

o)l < = ,

(24)

where D* = min{1 — [(Q; + Q3)7m1 + (Q2 + Q4)@1],1 — [(Q1 + Q3) 712 + (Q2 + Q4)@2]}-
Hence, the set E is bounded. Under the Leray-Schauder alternative, the operator K has at
least one fixed point. Therefore, the nonlocal integro-multi-strip and multi-point ¢, Hilfer
generalized proportional fractional system (1) has at least one solution on [aq,b1]. O

Our second existence result is based on Krasnosel’skii’s fixed-point theorem [27]:
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Theorem 3. Let ¥1, Vs : [a1,b1] x RZ2 — R be continuous functions satisfying condition (G ).
In addition, the following assumption holds:
(G3) There exist non-negative functions ®1, P, € C([ay, by, R™) such that

|h1(z,7,8)] < P1(z), |ha(z,1,5)| < Pa(z) forall (z,1,5) € [a,b1] x R x R.

Then, the nonlocal integro-multi-strip and multi-point ¥, Hilfer generalized proportional
fractional system (1) has at least one solution on [aq, by], provided that

(§.(b1) =9, (a1)) )@*(bl) — 9. (a1))

+ (v +v
9T (pr +1) (v 422 92T (py + 1)

(11 + p2) <1 (25)

Proof. In order to verify the hypothesis of Krasnosel’skii’s fixed-point theorem [27], we
decompose the operator K as follows:

Kiq(0,7)(z) = Hgif*@wl(z,a(z)m(z)), z €[y, byl, (26)
oot (.(2) %(al))@*(z) — P, ()11
Lo7 7 'T (1)

{Az ZKI /m 7 ]Iﬁlzf* Py 2(s,0(s),7(s))ds

Kl,Z (J/ T) (Z) =

b
Z@ﬁﬁ%%g,@>@m—ﬂlﬂumf%w<<>mmﬁ) @)

rE ) (Lo [ RO ol T(e)ds

by

mef%%a,@>@m—/ wuﬁ%ﬂvwﬂ><»wﬁ 2 [, by,

Koq1(o,7)(z) = Hgff“”ﬂfz(z,a(z),T(z)), z € [ag, bu], (28)

e 19* (4’*( @*(”1))(¢*(z) _ﬁ*(ul))lylil
LO7 T (71)

{%Z@/im (P15, 0(6), 7(5))ds

Kzg (0’, T) (Z) =

by
me%%wl olz), Tz — [P a5, 0(5),7(5))ds) 9)

m

H&+Q);mgﬁﬂaﬁ%T@d)(D%
+Z%W?“%@f@)@mA?%Uﬁf%T@d)(w%”,zﬂ%hl

Letusset K (0, 7)(2) = K1, (0, 7)(2) + K 2(0,7)(2) and Koo, 7) (2) = Ko (0, 7) (2) +
K2 (0, 7)(z) and introduce the set By = {(0, 7) € X x X; ||(o, 7)|| < 0}, with

0 > (Q1 + Q3)[|P1]| + (Q2 + Qa) [ P2]-
As in the proof of Theorem 2, we can obtain that

K1,1(0, 7)(2) + Ka2(0, 1) (2)] < Qu[ @] + Q2| P2|,
[K21(, 7)(2) + Kao(o, 1) (2)] < Q3[[P1 ]| + Qa[ P2
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As a consequence, it follows that

1K1 (0, 7) + Ko (o, D) < (Q1 + Q3) D1 ]| + (Q2 + Qu)[|D2]| < 6.

Hence, K; (0, 7) + Ky (0, T) € By.
Now, it will be proven that the operator (K; 1, K1) is a contraction mapping. For
(0’7_, Tz), (0’1, Tl) € Bg, and for any z € [611, bl], we have

IKy,1 (02, 2)(2) — Ky,1(01, 11)(2)|

ke [¥1(z,02(2), 72(2)) — ¥1(z,01(2), 11 (2)|

(P, (b1) — 9, (a1))”
T (p1+1)

IA

IN

(H1lloz — 1| + pall2 — 7ll),

and hence

(E* (bl) B @* (al))Pl
T (p1 +1)

1K11(02, 2) = Kyp(o1, 1)l < (Hlloz — a1 + pall2 — 7ll)-

Similarly, we can obtain

(. (b1) =9, (a1))

Kyq1(om, ) —Koq(og, )| <
K21 (02, 12) — Ka,1 (01, 7)) | T (py + 1)

(el + 2l zlD)-

Consequently, we obtain

(K11, K21) (02, 12) — (Ky,1, Ko1) (01, 71)) ||

(. (b1) — ¢, (ar))
< |on+m) T (p1 + 1)

(i, (b1) — ¥, (a1))
87T (p2 + 1)

+ (11 + 1) | (loz = ol + Il = =),

which, according to Equation (25), implies that (K; 1, K ) is a contraction.
It remains to be verified that the operator (K2, K5 ) is completely continuous. Under
the continuity of functions ¥; and ¥, we deduce that the operator (K ,KK;>) is contin-

uous. For all (0, T) € By, following the arguments employed in the proof of Theorem 2,
we find

%1200, 7)1 < (@ - LGP o 4 a0l

Similarly, we have that

@.(01) = P (1))
[Ko2(e, D) < Qal|@al] + (@ = =5 B ) 1))

Consequently, we have

(K12, Ko2)(o, T)|| < (Q1 - (lp*fs»bplli’@ipi(jl)))pl +@3>||q>1\|

(%, (b1) — 9, (a1))"
(@t Q- Il

Thus, set (K12, Ky 2)Bg is uniformly bounded.

Lastly, we show that set (K 5, K; ) By is equicontinuous. Let z1,zp € [a1,b;] such that
z1 < zp. For all (0, T) € By, due to the equicontinuous property of operators K; and K,
we can show that |[K; (o, T)(z2) — Ki(0, T)(z1)] — 0, |Ka(0, 7)(2z2) —Ka(o, 7)(21)] = O
as z1 — zp independent of (0, T) € By. Consequently, set (KK; , K 2)By is equicontinuous.
Now, under the Arzeld—Ascoli theorem, the compactness property of operator (K, Kp»)
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on By is established. Hence, under the conclusion of Krasnosel’skii’s fixed-point theo-
rem, the nonlocal integro-multi-strip and multi-point ¢, Hilfer generalized proportional
fractional system (1) has at least one solution on [ay, b1]. [

4. Illustrative Examples

Example 1. Let us consider a coupled system of nonlinear proportional fractional differential
equations of the Hilfer type:

TEEE 120
D% o(z) =Y¥1(z,0(2),7(2)), z€ {7, 7},
65 2 z+2 1 20 (30)
DY P 1(z) = Yo(z,0(2),7(2)), z€ |=, =,
7 7" 7
supplemented with multi-point and integro-multi-strip boundary conditions of the form
7 3 ( + 11 s+3 13 /s (
i /7 4 + S5 ﬁ
17 19 7 3
0 1 (31)

1\ 7 T(s) 7 5 O'(S) 8 7 o(s)
T(7>—O, /l (S+3)2ds—24/; 5+3)2 ds+ 7y 5oy ds

7

+2 ’ () ds—i—EU(l)—}— i E +BU B
29 J17 (s +3)? 31 347 37 '

Here, p1 = 4/3, 02 = 6/5, 91 = 3/4, 92 =5/6, 0. =2/5, ¢, = (z+2)/(z+3),
ap =1/7,by =20/7,n =3, m = 3,11 = 1/11, xp = 2/13, k3 = 3/17, 11 = 3/7,
1 =9/7,n13 =15/7,81 =2/7,8 =8/7,83 =2,00 =4/19,0, = 5/21, 63 = 6/23,
(1=4/7,00=10/7,03=16/7, 1 =7/24, ¢ = 8/27, 3 =9/29,€1 = 6/7,€2 = 12/7,
e3=18/7,61 =5/7,6, =11/7,63 =17/7,9; =10/31, 9, = 11/34, 93 = 12/37,z1 =1,
zp = 13/7 and z3 = 19/7. Using these values, we find that y; = 11/6, 72 = 28/15,
Ay ~ 0.03230568122, B; ~ 0.0006815253467, C; ~ 0.1733066601, A, ~ 0.03033569188,
B, ~ 0.001631277305, C, ~ 0.2898589804, |L| ~ 0.04973584581, Q; ~ 0.4615448602,
Q2 ~ 0.06076238415, Q3 ~ 0.6458576234 and Q4 ~ 0.5776922344.

(i) For illustrating Theorem 1, let us take the Lipschitzian functions ¥; and ¥, on
[1/7,20/7] defined by

1 [(o?+|o]
¥ i 3,
1z0,7) = 7z+5(1+|(7|> 14z 2SN THVEE 32)
Y, (z,0,7) = ! o] + ! tan ' T4+ 2% + <.
(7z+1)2\1+ |0 28z +1 2
Notice that

1 1
Yi(z,01,11) = ¥i(z, 02, 12)| < §|(71 — o)+ Z|Tl — 1|

and 1 1
|¥2(z,01,11) — ¥a(z, 02, 12)| < 1|01 — o+ §|T1 -1,

forallo;, 7; € R,i=1,2and z € [1/7,20/7]. By setting the Lipschitz constants to u; = 1/3,
up =1/4,v1 =1/4and v, = 1/5, we obtain

(Q1 4+ Q3)(p1 + p2) + (Q2 + Q) (v + 12) &~ 09332893607 < 1.
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Clearly, all the assumptions of Theorem 1 are fulfilled, and hence its conclusion implies
that the system (30) with multi-point and integro-multi-strip boundary conditions (31) and
the functions ¥; and ¥, given in Equation (32) has a unique solution on [1/7,20/7].

(ii) We demonstrate the application of Theorem 2 by considering the following nonlin-
ear non-Lipschitzian functions:

3072022 4e=0%|T|2023 2
¥, (z,0,7) = 3
1(z,0,7) 7z 1 4)(1 + %) + (72 + 6) (1 + T2022) e (33)
20.2 Sin2 TZ 3T COS2 0-4 1

‘If pu— .
2507 = G A ey T 1445 i

Note that ¥ and ¥, are bounded as

2 3 4
b 4 <Z 4= =
[¥1(z 0,7 < 3+ zlol + 5|7

and 1.2, .3

< -1 = et

¥2(z,0,7)| < 7 +5lol + 57,
forallz € [1/7,20/7] and o, T € R. By fixing 1o = 2/3, 11 = 3/5, mp = 4/7, @y = 1/4,
@ = 2/5and @; = 3/7, we obtain (Q + Q3) 71 + (Q2 + Qu)1 & 0.9198233378 < 1 and
(Q1 4+ Q3)mo + (@2 + Qq) @y ~ 09064248274 < 1. Therefore, it follows with the conclusion
of Theorem 2 that there exists at least one solution (¢, T) on the interval [1/7,20/7] of the
system (30) with multi-point and integro-multi-strip boundary conditions (31) and two
nonlinear functions ¥; and ¥, given in Equation (33).
(iii) Let us use the following functions for explaining the application of Theorem 3:

Yi(z,0,7) = sino + 8] 4—224—1
" 14z +5 (7z4+2)2(1+|1|) 4’ (34)
Yy(z,0,T) = 7le] + 4 tantr 4zt 4
" (7z+1)3(1+10|) 5(7z+1) 5’
which are obviously bounded as
6 8 , 1
Y < — =
and 7 9 1
s
¥ < fo =0
Y2(z0 0 s G Y oga ) 7 5T %20

forallz € [1/7,20/7] and o, T € R. Moreover, these functions are Lipschitz functions since

6 8
Yi(z,00,11) —¥1(z, 02, 12)| < 7|(71 — o)+ §|T1 — 1|

and ; 9
|‘IJ2(Z/0'1/ Tl) - lIIZ(‘ZIO'ZI T2)| < §|0'1 - 0'2| + E|Tl - T2|.
By setting y1 = 6/7, up = 8/9,v1 =7/8 and v, = 9/10, we obtain
P - 01 M —v P2
(11 + ) Wu(b1) — P @) | (v1 +12) . (1) = 9. (0))* ) 6740050020 < 1.

VT (o1 + 1) 0T (02 + 1)

Therefore, the hypothesis of Theorem 3 holds true, and consequently, the coupled
system of nonlinear proportional fractional differential equations of the Hilfer type (30)
with multi-point and integro-multi-strip boundary conditions (31) and ¥; and ¥, given in
Equation (34) has least one solution (¢, T) on the interval [1/7,20/7].
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Remark 2. We cannot use Theorem 3 in case (i) as the function ¥q is unbounded. On the
other hand, in (iii), we have (Qq + Q3)((6/7) + (8/9)) + (Q2 + Q4)((7/8) + (9/10)) ~
3.066816841 > 1, which contradicts the condition in Equation (20) in the statement of Theorem 1.

5. Conclusions

In this paper, we presented the criteria for ensuring the existence and uniqueness of
solutions for a coupled system of ¢, Hilfer fractional proportional differential equations
complemented with nonlocal integro-multi-strip and multi-point boundary conditions. We
relied on the standard fixed-point theorems to establish the desired results, which were
illustrated well by constructing numerical examples. Our results are novel and contribute
to the existing literature on nonlocal boundary value problems for systems of nonlinear ¢,
Hilfer fractional proportional differential equations. It is worthwhile to point out that the
results presented in this paper are wider in scope and produced a variety of new results as
special cases. For instance, fixing the parameters in the nonlocal integro-multi-strip and
multi-point i, Hilfer generalized proportional fractional system (1), we obtained some
new results as special cases associated with the following:

e Integral multi-strip nonlocal ¥, Hilfer fractional proportional systems of an order
within (1,2]if0; =0, 8; =0,/ =1,2,...,m;

e Integral multi-point nonlocal ¥, Hilfer fractional proportional systems of an order
within (1,2]ifx; =0, ¢; =0,i =1,2,...,n;

e  Integral multi-strip nonlocal Hilfer fractional proportional systems of an order within

(L2, () = z
e Nonlocal integro-multi-strip and multi-point ¢, Hilfer fractional systems of an order

within (1,2] if ¢, = 1.

Furthermore, some more new results can be recorded as special cases for different
combinations of the parameters 6]-, 19]-, j=12,...,mandx;, ¢;i=1,2,...,ninvolved in
the system (1). For example, by taking all values wherex; =0, i = 1,2,...,n, we obtain
the results for a coupled system of nonlinear ¥, Hilfer fractional proportional differential
equations supplemented by the following nonlocal boundary conditions:

by "
olar) =0, [ TP = 0T,
1 j=

b, €y z
wan) =0, [T = Vs [T+ ) 600
=

a i=1 i

In a nutshell, the work established in this paper was of a more general nature and
yielded several new results as special cases.
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