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Abstract: This article establishes a comparison principle for the nabla fractional difference operator
∇ν

ρ(a), 1 < ν < 2. For this purpose, we consider a two-point nabla fractional boundary value problem
with separated boundary conditions and derive the corresponding Green’s function. I prove that this
Green’s function satisfies a positivity property. Then, I deduce a relatively general comparison result
for the considered boundary value problem.
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1. Introduction

The theory of fractional differential equations is a growing area of research that has
widespread applications in science and engineering. Indeed, it has been realized that
fractional differential equations describe many nonlinear phenomena in different fields
such as physics, chemistry, biology, viscoelasticity, control hypothesis, speculation, fluid
dynamics, hydrodynamics, aerodynamics, information processing, system networking, and
picture processing. Besides, fractional differential equations provide marvellous tools for
depicting the memory and inherited properties of many materials and processes. For this
purpose, we refer to [1–9] and the references cited therein.

Nabla fractional calculus is an integrated theory of arbitrary order sums and differ-
ences in the backward sense. The concept of nabla fractional difference has been intensively
studied in the last two decades. For a detailed introduction to the evolution of nabla
fractional calculus, we refer to a recent monograph [10] and the references therein.

During the past decade, there has been an increasing interest in analyzing nabla
fractional boundary value problems. Gholami et al. [11,12] initiated the study of two-point
nabla fractional boundary value problems. Their analysis relied on the nonlinear alternative
of Leray–Shauder and the Krasnosel’skii–Zabreiko fixed point theorem. In [13–15], the
authors established sufficient conditions on the existence and uniqueness of solutions
for different classes of two-point Riemann–Liouville nabla fractional boundary value
problems associated with various types of boundary conditions. Ikram [16] established
the uniqueness of solutions to boundary value problems involving the nabla Caputo
fractional difference under two-point boundary conditions and explicitly expressed Green’s
functions for these problems. Ahrendt et al. [17] considered a discrete self-adjoint fractional
operator involving the nabla Caputo fractional difference, which can be thought of as an
analogue to the self-adjoint differential operator, and showed that solutions to difference
equations involving this operator had expected properties, such as the form of solutions to
homogeneous and nonhomogeneous equations. Chen et al. [18] obtained some existence
and uniqueness theorems for solutions of discrete fractional Caputo equations using the
Banach fixed point theorem. Atici et al. [19] proved the existence of solutions for an
eigenvalue problem in fractional h-discrete calculus.
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One of the exciting aspects of fractional calculus (continuous and discrete) is based
on the specific classical results and their statements in the fractional case, which are the
same as or different from their statements in the integer-order case. In some instances,
well-known and crucially essential properties in the integer-order case fail in specific
fractional problems [20,21]. On the other hand, even if a given property remains true, it
may have to be formulated differently. This formulation may yield insight into a fractional
problem that would only be possible with the given property. With these thoughts in mind,
Goodrich [22] obtained a relatively general comparison principle for the delta fractional
difference operator.

In this article, we are concerned with establishing whether or not the nabla fractional
difference operator satisfies a kind of comparison principle. The comparison principle that
I prove here is well-known in the integer-order case but, so far as the author knows, it has
yet to be established in the nabla fractional case.

To produce a suitable scheme to deduce this comparison result, we consider a very
general nabla fractional boundary problem of the type

−
(
∇ν

ρ(a)u
)
(t) = f (t, u(t)), t ∈ Nb

a+2,

αu(a)− β
(
∇u
)
(a + 1) = 0,

γu(b) + δ
(
∇u
)
(b) = 0,

(1)

where a, b ∈ R such that b − a ∈ N3 = {3, 4, 5, · · · }; Nb
a+2 = {a + 2, a + 3, · · · , b}; f :

Nb
a+2×R→ R; α, β, γ, δ ∈ R with α2 + β2 > 0, γ2 + δ2 > 0; 1 < ν < 2; and∇ν

ρ(a)u denotes

the νth-order Riemann–Liouville nabla fractional difference of u based at ρ(a) = a − 1.
The Green’s function changes its sign on its domain for the Caputo version of (1). So, we
consider the Riemann–Liouville case only. We point out that (1) is a nabla fractional version
of Hill’s equation, which has many applications in astronomy, cyclotrons, electrical circuits,
and the electric conductivity of metals. We also note that the boundary conditions cover
the Dirichlet, the Neumann, and the mixed ones.

In particular, the results of this work provide the following generalizations and contributions.

1. It is shown that the Green’s function associated with (1) is nonnegative. As mentioned
above, this generalizes some of the results in [13–15]. Further, the nonnegativity
property of the Green’s function is an important tool to establish sufficient conditions
under which (1) will have at least one positive solution. While that analysis is not
carried out in this work, the positivity of the Green’s function provides an initial step in
that direction. Of course, such an analysis is well-known in the integer-order case.

2. A comparison-type theorem for the operator ∇ν
ρ(a), 1 < ν < 2 is deduced, which is an

obvious generalization of the well-known result in the case of ν = 2.
3. Some consequences of the comparison principle are provided. In particular, I explain

how it implies a concavity-type interpretation for the nabla fractional difference.

The present article is organized as follows. Section 2 contains some preliminaries
on nabla fractional calculus. In Section 3, I construct an associated Green’s function for
the boundary value problem (1) and show that this Green’s function satisfies a positivity
property. I also obtain a few essential properties of the Green’s function. In Section 4, I
deduce a comparison-type theorem for the operator∇ν

ρ(a) with 1 < ν < 2, and also observe
that this result is an obvious generalization of the well-known result in the case of ν = 2.
I give some consequences of the comparison principle in Section 5. In Section 6, I outline
the future scope of the current work.

2. Preliminaries

In this paper, I use the fundamentals of discrete calculus [23] and discrete fractional
calculus [10]. Denote by Nc = {c, c + 1, c + 2, . . .} and Nd

c = {c, c + 1, c + 2, . . . , d} for any
real numbers c, d such that d− c ∈ N1.
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Definition 1 ([23]). The backward jump operator ρ : Nc+1 → Nc is defined by

ρ(t) = t− 1, t ∈ Nc+1.

Definition 2 ([10]). The µth-order nabla fractional Taylor monomial is defined by

Hµ(t, a) =
1

Γ(µ + 1)

[
(t− a)µ

]
=

1
Γ(µ + 1)

[
Γ(t− a + µ)

Γ(t− a)

]
, µ ∈ R \ {. . . ,−2,−1},

provided that the right-hand side exists. Here, Γ(·) denotes the Euler gamma function.

Definition 3 ([23]). Let u : Na → R and N ∈ N1. The first-order nabla difference of u is defined by(
∇u
)
(t) = u(t)− u(t− 1), t ∈ Na+1,

and the Nth-order nabla difference of u is defined recursively by(
∇Nu

)
(t) =

(
∇
(
∇N−1u

))
(t), t ∈ Na+N .

Definition 4 ([10]). Let u : Na+1 → R and ν > 0. The νth-order nabla fractional sum of u based
at a is given by (

∇−ν
a u

)
(t) =

t

∑
s=a+1

Hν−1(t, ρ(s))u(s), t ∈ Na,

where by convention
(
∇−ν

a u
)
(a) = 0.

Definition 5 ([10]). Let u : Na+1 → R, ν > 0 and choose N ∈ N1 such that N − 1 < ν ≤ N.
The νth-order Riemann–Liouville nabla fractional difference of u based at a is given by(

∇ν
au
)
(t) =

(
∇N(∇−(N−ν)

a u
))

(t), t ∈ Na+N .

Theorem 1 ([17]). Let u : Na → R, ν > 0 and choose N ∈ N1 such that N − 1 < ν < N.
The νth-order Riemann–Liouville nabla fractional difference of u based at a is given by

(
∇ν

au
)
(t) =

t

∑
s=a+1

H−ν−1(t, ρ(s))u(s), t ∈ Na+1.

In the subsequent lemmas, I present some properties of nabla fractional Taylor mono-
mials, which will be used in the main results.

Lemma 1 ([10]). The following properties hold, provided that the expressions are well-defined:

1. ∇Hµ(t, a) = Hµ−1(t, a);
2. Hµ(t, a)− Hµ−1(t, a) = Hµ(t, a + 1);

3.
t

∑
s=a+1

Hµ(s, a) = Hµ+1(t, a);

4.
t

∑
s=a+1

Hµ(t, ρ(s)) = Hµ+1(t, a).

Lemma 2 ([16]). Let s ∈ Na and µ > −1. Then, the following properties hold:

(a) Hµ(t, ρ(s)) ≥ 0 for t ∈ Nρ(s);
(b) Hµ(t, ρ(s)) > 0 for t ∈ Ns;
(c) Hµ(t, ρ(s)) is a decreasing function of s for t ∈ Nρ(s) and µ > 0;
(d) Hµ(t, ρ(s)) is an increasing function of s for t ∈ Ns and −1 < µ < 0;
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(e) Hµ(t, ρ(s)) is a nondecreasing function of t for t ∈ Nρ(s) and µ ≥ 0;
(f) Hµ(t, ρ(s)) is an increasing function of t for t ∈ Ns and µ > 0;
(g) Hµ(t, ρ(s)) is a decreasing function of t for t ∈ Ns+1 and −1 < µ < 0.

Lemma 3 ([13]). Let µ > −1, s ∈ Na and t ∈ Ns. Denote by

hµ(t, s) =
Hµ(t, ρ(s))
Hµ(t, ρ(a))

.

Then, the following properties hold:

(i) 0 < hµ(t, s);
(ii) hµ(t, s) ≤ 1 for µ > 0, and hµ(t, s) ≥ 1 for −1 < µ < 0. In particular, h0(t, s) = 1;
(iii) hµ(t, s) is a nondecreasing function of t for µ > 0;
(iv) hµ(t, s) is a nonincreasing function of t for −1 < µ < 0.

I use the following composition rule of the nabla fractional sum in the next section.

Lemma 4 ([10]). Let u : Na+1 → R, k ∈ N0, µ > 0 and choose N ∈ N1 such that N − 1 < µ ≤ N.
Then, (

∇k(∇−µ
a u

))
(t) =

(
∇k−µ

a u
)
(t), t ∈ Na+k.

3. Construction of Green’s Function

In this section, I construct the Green’s function for the linear boundary value problem
−
(
∇ν

ρ(a)u
)
(t) = h(t), t ∈ Nb

a+2,

αu(a)− β
(
∇u
)
(a + 1) = 0,

γu(b) + δ
(
∇u
)
(b) = 0,

(2)

associated with (1). Here α2 + β2 > 0, γ2 + δ2 > 0, 1 < ν < 2 and h : Nb
a+2 → R. Introduce

the notations:

A1 = α + β(1− ν),

A2 = α + β(2− ν) = A1 + β,

φ(r) = γHν−1(b, ρ(r)) + δHν−2(b, ρ(r)), r ∈ Nb
a,

ω(r) = A2Hν−1(r, ρ(a))− A1Hν−2(r, ρ(a)), r ∈ Nb
a,

Ω = γHν−2(b, ρ(a)) + δHν−3(b, ρ(a)),

Λ = A2φ(a)− A1Ω.

Theorem 2 ([14]). Assume that 1 < ν < 2 and h : Na+2 → R. The general solution of the
nonhomogeneous nabla fractional difference equation

−
(
∇ν

ρ(a)u
)
(t) = h(t), t ∈ Na+2

is given by

u(t) = C1Hν−1(t, ρ(a)) + C2Hν−2(t, ρ(a))−
t

∑
s=a+2

Hν−1(t, ρ(s))h(s)

for t ∈ Na. Here, C1 and C2 are arbitrary constants.
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Theorem 3. Assume that Λ 6= 0. The linear boundary value problem (2) has a unique solution
given in the form

u(t) =
b

∑
s=a+2

G(t, s)h(s), t ∈ Nb
a, (3)

where

G(t, s) =

{
G1(t, s), t ∈ Nρ(s)

a ,
G2(t, s), t ∈ Nb

s ,

with

G1(t, s) =
ω(t)

Λ
φ(s),

and
G2(t, s) = G1(t, s)− Hν−1(t, ρ(s)).

Proof. From Theorem 2, the general solution of the nonhomogeneous nabla fractional
difference equation in (2) is given by

u(t) = C1Hν−1(t, ρ(a)) + C2Hν−2(t, ρ(a))−
(
∇−ν

a+1h
)
(t), t ∈ Nb

a, (4)

where C1 and C2 are arbitrary constants. Now, upon applying∇ to both sides of equality (4),
apply Lemma 1 (1) and Lemma 4 and obtain(

∇u
)
(t) = C1Hν−2(t, ρ(a)) + C2Hν−3(t, ρ(a))−

(
∇1−ν

a+1h
)
(t), t ∈ Nb

a+1. (5)

From the first boundary condition αu(a)− β
(
∇u
)
(a + 1) = 0 in (4)–(5), we obtain

A1C1 + A2C2 = 0. (6)

From the second boundary condition γu(b) + δ
(
∇u
)
(b) = 0 in (4)–(5), we obtain

C1φ(a) + C2Ω =
b

∑
s=a+2

φ(s)h(s), (7)

From (6) and (7), we have

C1 =
A2

Λ

b

∑
s=a+2

φ(s)h(s) (8)

and

C2 = −A1

Λ

b

∑
s=a+2

φ(s)h(s). (9)

Substitute the equalities (8) and (9) in (4), and obtain (3).

Example 1. Consider the linear boundary value problem{
−
(
∇ν

ρ(a)u
)
(t) = h(t), t ∈ Nb

a+2,

u(a) = 0, u(b) = 0.
(10)

Here, 1 < ν < 2 and h : Nb
a+2 → R. Clearly, Λ 6= 0. The linear boundary value problem (10)

has a unique solution given in the form

u(t) =
b

∑
s=a+2

GD(t, s)h(s), t ∈ Nb
a, (11)
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where

GD(t, s) =

{
G1D(t, s), t ∈ Nρ(s)

a ,
G2D(t, s), t ∈ Nb

s ,

with

G1D(t, s) =
Hν−1(t, a)
Hν−1(b, a)

Hν−1(b, ρ(s)),

and
G2D(t, s) = G1D(t, s)− Hν−1(t, ρ(s)).

Example 2. Consider the linear boundary value problem{
−
(
∇ν

ρ(a)u
)
(t) = h(t), t ∈ Nb

a+2,

u(a) = 0,
(
∇u
)
(b) = 0.

(12)

Here, 1 < ν < 2 and h : Nb
a+2 → R. Clearly, Λ 6= 0. The linear boundary value problem (12)

has a unique solution given in the form

u(t) =
b

∑
s=a+2

GR(t, s)h(s), t ∈ Nb
a, (13)

where

GR(t, s) =

{
G1R(t, s), t ∈ Nρ(s)

a ,
G2R(t, s), t ∈ Nb

s ,

with

G1R(t, s) =
Hν−1(t, a)
Hν−2(b, a)

Hν−2(b, ρ(s)),

and
G2R(t, s) = G1R(t, s)− Hν−1(t, ρ(s)).

4. Positivity & Other Properties of the Green’s Function

In this section, I prove that the Green’s function derived in Section 3 is positive on
its domain. This important result will allow us in Section 5 to deduce a relatively general
comparison theorem. I also obtain a few important properties of the Green’s function.
I begin with the following lemma.

Lemma 5. Let α, β, γ, and δ be nonnegative real numbers such that α ≥ β. Then, the following
properties hold:

(I) A1 > 0, A2 > 0 and φ(r) > 0 for r ∈ Nb
a;

(II) φ(a)−Ω > 0;
(III) Λ > 0;
(IV) ω(r) ≥ 0 for r ∈ Nb

a.
(V)

(
∇ω

)
(r) > 0 for r ∈ Nb

a+1.

Proof. The proof of (I) follows from Lemma 2 (b). To prove (II), consider

φ(a)−Ω = γ[Hν−1(b, ρ(a))− Hν−2(b, ρ(a))]
+ δ[Hν−2(b, ρ(a))− Hν−3(b, ρ(a))]

= γHν−1(b, a) + δHν−2(b, a) (By Lemma 1 (2))

> 0. (By Hypothesis and Lemma 2 (b))
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To prove (III), consider

Λ = A2φ(a)− A1Ω = (A1 + β)φ(a)− A1Ω

= A1[φ(a)−Ω] + βφ(a)

> 0. (By I and II)

To prove (IV), for r ∈ Nb
a, we consider

ω(r) = A2Hν−1(r, ρ(a))− A1Hν−2(r, ρ(a))

= (A1 + β)Hν−1(r, ρ(a))− A1Hν−2(r, ρ(a))

= A1[Hν−1(r, ρ(a))− Hν−2(r, ρ(a))] + βHν−1(r, ρ(a))

= A1Hν−1(r, a) + βHν−1(r, ρ(a)) (By Lemma 1 (2))

≥ 0. (By I and Lemma 2 (a, b))

To prove (V), for r ∈ Nb
a+1, we consider(

∇ω
)
(r) = ∇[A2Hν−1(r, ρ(a))− A1Hν−2(r, ρ(a))]

= A2Hν−2(r, ρ(a))− A1Hν−3(r, ρ(a)) (By Lemma 1 (1))

= (A1 + β)Hν−2(r, ρ(a))− A1Hν−3(r, ρ(a))

= A1[Hν−2(r, ρ(a))− Hν−3(r, ρ(a))] + βHν−2(r, ρ(a))

= A1Hν−2(r, a) + βHν−2(r, ρ(a)) (By Lemma 1 (2))

> 0. (By Hypothesis, I and Lemma 2 (b))

The proof is complete.

Lemma 6. Assume that α, β, γ, and δ are nonnegative real numbers such that α ≥ β. Then, the
Green’s function G(t, s), defined by (4), is nonnegative for (t, s) ∈ Nb

a ×Nb
a+2.

Proof. For t ∈ Nρ(s)
a and s ∈ Nb

a+2, we define G1(t, s) = ω(t)
Λ φ(s). From Lemma 5, it follows

that ω(t) ≥ 0, φ(s) > 0, Λ > 0 and, thus,

G1(t, s) ≥ 0 for t ∈ Nρ(s)
a and s ∈ Nb

a+2. (14)

For t ∈ Nb
s and s ∈ Nb

a+2, we consider

G2(t, s) = G1(t, s)− Hν−1(t, ρ(s))

=
ω(t)

Λ
φ(s)− Hν−1(t, ρ(s))

=
1
Λ
[ω(t)φ(s)−ΛHν−1(t, ρ(s))]

=
1
Λ
[A1γE1 + A1δE2 + βγE3 + βδE4], (15)

where

E1 = Hν−1(b, ρ(s))Hν−1(t, a)− Hν−1(t, ρ(s))Hν−1(b, a),

E2 = Hν−2(b, ρ(s))Hν−1(t, a)− Hν−1(t, ρ(s))Hν−2(b, a),

E3 = Hν−1(b, ρ(s))Hν−1(t, ρ(a))− Hν−1(t, ρ(s))Hν−1(b, ρ(a)),

E4 = Hν−2(b, ρ(s))Hν−1(t, ρ(a))− Hν−1(t, ρ(s))Hν−2(b, ρ(a)).
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Therefore,

E1 = Hν−1(b, ρ(s))Hν−1(t, a)− Hν−1(t, ρ(s))Hν−1(b, a)

= Hν−1(t, ρ(s))Hν−1(b, a)
[

Hν−1(b, ρ(s))
Hν−1(b, a)

Hν−1(t, a)
Hν−1(t, ρ(s))

− 1
]

= Hν−1(t, ρ(s))Hν−1(b, a)
[

hν−1(b, s)
hν−1(t, s)

− 1
]

.

From Lemma 2 (b), it follows that Hν−1(t, ρ(s)) > 0 and Hν−1(b, a) > 0. Furthermore,
from Lemma 3, we have hν−1(t, s) ≤ hν−1(b, s), thus implying that

E1 ≥ 0. (16)

From Lemma 2 (c, d), we have Hν−1(t, ρ(s)) < Hν−1(t, a), Hν−2(b, a) < Hν−2(b, ρ(s)),
and, thus,

E2 = Hν−2(b, ρ(s))Hν−1(t, a)− Hν−1(t, ρ(s))Hν−2(b, a)

> Hν−2(b, a)Hν−1(t, ρ(s))− Hν−1(t, ρ(s))Hν−2(b, a)

= 0. (17)

From the definition of E3, Lemma 2 (b) and Lemma 3, we obtain

E3 = Hν−1(b, ρ(s))Hν−1(t, ρ(a))− Hν−1(t, ρ(s))Hν−1(b, ρ(a))

= Hν−1(t, ρ(s))Hν−1(b, ρ(a))
[

Hν−1(b, ρ(s))
Hν−1(b, ρ(a))

Hν−1(t, ρ(a))
Hν−1(t, ρ(s))

− 1
]

= Hν−1(t, ρ(s))Hν−1(b, ρ(a))
[

hν−1(b, s)
hν−1(t, s)

− 1
]

,

or
E3 ≥ 0. (18)

FromLemma2(c,d),wehave Hν−1(t, ρ(s)) < Hν−1(t, ρ(a)), Hν−2(b, ρ(a)) < Hν−2(b, ρ(s)),
and, thus,

E4 = Hν−2(b, ρ(s))Hν−1(t, ρ(a))− Hν−1(t, ρ(s))Hν−2(b, ρ(a))

> Hν−2(b, ρ(a))Hν−1(t, ρ(s))− Hν−1(t, ρ(s))Hν−2(b, ρ(a))

= 0. (19)

From definition (15) of G2(t, s), as well as inequalities Λ > 0, A1 > 0, β ≥ 0, γ ≥
0, δ ≥ 0, and (16)–(19), it follows that that

G2(t, s) > 0 for t ∈ Nb
s and s ∈ Nb

a+2. (20)

Thus, from (14) and (20), we obtain that G(t, s) ≥ 0 for (t, s) ∈ Nb
a ×Nb

a+2. The proof
is complete.

Lemma 7. Assume that α, β, γ, and δ are nonnegative real numbers such that α ≥ β. The Green’s
function G(t, s) defined in (4) satisfies the following property:

max
t∈Nb

a

G(t, s) = G(s− 1, s), s ∈ Nb
a+2.
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Proof. Note that the operator ∇ denotes the first order nabla difference operator with
respect to t. For t ∈ Nρ(s)

a+1 and s ∈ Nb
a+2, we consider the function G1(t, s) defined by (4) and

∇G1(t, s) = ∇
[

ω(t)
Λ

φ(s)
]
=

(
∇ω

)
(t)

Λ
φ(s).

From Lemma 5, it follows that
(
∇ω

)
(t) > 0, φ(s) > 0 and Λ > 0, thus implying that

∇G1(t, s) > 0 for t ∈ Nρ(s)
a+1 and s ∈ Nb

a+2. That is, G1(t, s) is an increasing function of t for

t ∈ Nρ(s)
a and s ∈ Nb

a+2. For t ∈ Nb
s and s ∈ Nb

a+2, consider the function G2(t, s) defined by
(4), and, thus,

∇G2(t, s) = ∇[G1(t, s)− Hν−1(t, ρ(s))]

=

(
∇ω

)
(t)

Λ
φ(s)− Hν−2(t, ρ(s)) (By Lemma 1 (1))

=
1
Λ
[(
∇ω

)
(t)φ(s)−ΛHν−2(t, ρ(s))

]
=

1
Λ
[A1γF1 + A1δF2 + βγF3 + βδF4], (21)

where

F1 = Hν−1(b, ρ(s))Hν−2(t, a)− Hν−2(t, ρ(s))Hν−1(b, a),

F2 = Hν−2(b, ρ(s))Hν−2(t, a)− Hν−2(t, ρ(s))Hν−2(b, a),

F3 = Hν−1(b, ρ(s))Hν−2(t, ρ(a))− Hν−2(t, ρ(s))Hν−1(b, ρ(a)),

F4 = Hν−2(b, ρ(s))Hν−2(t, ρ(a))− Hν−2(t, ρ(s))Hν−2(b, ρ(a)).

From Lemma 2 (c, d), we have Hν−1(b, ρ(s)) < Hν−1(b, a) and Hν−2(t, a) < Hν−2(t, ρ(s)),
thus implying that

F1 = Hν−1(b, ρ(s))Hν−2(t, a)− Hν−2(t, ρ(s))Hν−1(b, a)

< Hν−1(b, a)Hν−2(t, ρ(s))− Hν−2(t, ρ(s))Hν−1(b, a) = 0, (22)

and

F3 = Hν−1(b, ρ(s))Hν−2(t, ρ(a))− Hν−2(t, ρ(s))Hν−1(b, ρ(a))

< Hν−1(b, ρ(a))Hν−2(t, ρ(s))− Hν−1(b, ρ(a))Hν−2(t, ρ(s)) = 0.

Consider,

F2 = Hν−2(b, ρ(s))Hν−2(t, a)− Hν−2(t, ρ(s))Hν−2(b, a)

= Hν−2(t, ρ(s))Hν−2(b, a)
[

Hν−2(b, ρ(s))
Hν−2(b, a)

Hν−2(t, a)
Hν−2(t, ρ(s))

− 1
]

= Hν−2(t, ρ(s))Hν−2(b, a)
[

hν−2(b, s)
hν−2(t, s)

− 1
]

,

and

F4 = Hν−2(b, ρ(s))Hν−2(t, ρ(a))− Hν−2(t, ρ(s))Hν−2(b, ρ(a))

= Hν−2(t, ρ(s))Hν−2(b, ρ(a))
[

Hν−2(b, ρ(s))
Hν−2(b, ρ(a))

Hν−2(t, ρ(a))
Hν−2(t, ρ(s))

− 1
]

= Hν−2(t, ρ(s))Hν−2(b, ρ(a))
[

hν−2(b, s)
hν−2(t, s)

− 1
]

.
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It follows from Lemma 2 (b) that Hν−2(t, ρ(s)) > 0 and Hν−2(b, a) > 0. Furthermore,
from Lemma 3, we have hν−2(t, s) ≥ hν−2(b, s), thus implying that

F2 ≤ 0, (23)

and
F4 ≤ 0. (24)

Since Λ > 0, A1 > 0, β ≥ 0, γ ≥ 0, δ ≥ 0, it follows from (21) that ∇G2(t, s) < 0 for
t ∈ Nb

s and s ∈ Nb
a+2. That is, G2(t, s) is a decreasing function of t for t ∈ Nb

s and s ∈ Nb
a+2. Thus,

max
t∈Nb

a

G(t, s) = max{G1(s− 1, s),G2(s, s)}, s ∈ Nb
a+2. (25)

We have

G1(s− 1, s) =
ω(s− 1)

Λ
φ(s), s ∈ Nb

a+2, (26)

and

G2(s, s) =
ω(s)

Λ
φ(s)− Hν−1(s, ρ(s)), s ∈ Nb

a+2. (27)

Now, consider

G2(s, s)− G1(s− 1, s) =
ω(s)

Λ
φ(s)− Hν−1(s, ρ(s))− ω(s− 1)

Λ
φ(s)

=
1
Λ

φ(s)[ω(s)−ω(s− 1)]− Hν−1(s, ρ(s))

=

(
∇ω

)
(s)

Λ
φ(s)− Hν−2(s, ρ(s))

= ∇G2(s, s) < 0,

thus implying that
max
t∈Nb

a

G(t, s) = G1(s− 1, s), s ∈ Nb
a+2.

The proof is complete.

Lemma 8. Assume that α, β, γ, and δ are nonnegative real numbers such that α ≥ β. The Green’s
function G(t, s) defined in (4) satisfies the following property:

min
t∈Nb

a

G(t, s) ≥ ΘG(s− 1, s), s ∈ Nb
a+2,

where

Θ =
1

ω(b− 1)
min

ω(a), ω(b)−Λ

 1

γ + δ
(

ν−1
b−a+ν−3

)
.

Proof. From Lemma 7, we have

G1(a, s) ≤ G1(t, s) ≤ G1(s− 1, s), t ∈ Nρ(s)
a , s ∈ Nb

a+2, (28)

and
G2(b, s) ≤ G2(t, s) ≤ G2(s, s), t ∈ Nb

s , s ∈ Nb
a+2. (29)

Consider

G(t, s)
G(s− 1, s)

=


G1(t,s)
G1(s−1,s) , t ∈ Nρ(s)

a ,
G2(t,s)
G1(s−1,s) , t ∈ Nb

s ,
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≥


G1(a,s)
G1(s−1,s) , t ∈ Nρ(s)

a , (By (28))
G2(b,s)
G1(s−1,s) , t ∈ Nb

s , (By (29))

=


ω(a)

ω(s−1) , t ∈ Nρ(s)
a ,

ω(b)
ω(s−1) −

ΛHν−1(b,ρ(s))
ω(s−1)φ(s) , t ∈ Nb

s ,

=
1

ω(s− 1)

ω(a), t ∈ Nρ(s)
a ,

ω(b)−Λ
[

Hν−1(b,ρ(s))
φ(s)

]
, t ∈ Nb

s .
(30)

Now, consider

Hν−1(b, ρ(s))
φ(s)

=
Hν−1(b, ρ(s))

γHν−1(b, ρ(s)) + δHν−2(b, ρ(s))

=
1

γ + δ
[

Hν−2(b,ρ(s))
Hν−1(b,ρ(s))

]
=

1

γ + δ
(

ν−1
b−s+ν−1

) ≤ 1

γ + δ
(

ν−1
b−a+ν−3

) (31)

for s ∈ Nb
a+2. Using (31) in (30), we obtain

G(t, s)
G(s− 1, s)

≥ 1
ω(s− 1)


ω(a), t ∈ Nρ(s)

a ,

ω(b)−Λ
[

1
γ+δ( ν−1

b−a+ν−3 )

]
, t ∈ Nb

s .
(32)

It follows from Lemma 5 (V) that ω(r) is an increasing function of r for each r ∈ Nb
a.

Then, we have
ω(a + 1) ≤ ω(s− 1) ≤ ω(b− 1), s ∈ Nb

a+2. (33)

Using (33) in (32), we obtain

G(t, s)
G(s− 1, s)

≥ 1
ω(b− 1)


ω(a), t ∈ Nρ(s)

a ,

ω(b)−Λ
[

1
γ+δ( ν−1

b−a+ν−3 )

]
, t ∈ Nb

s .
(34)

The proof is complete.

5. A General Comparison Result

I prove a general comparison result for the boundary value problem (1). For this
purpose, we consider the following nabla fractional boundary value problem with nonho-
mogeneous boundary conditions corresponding to (2):

−
(
∇ν

ρ(a)u
)
(t) = h(t), t ∈ Nb

a+2,

αu(a)− β
(
∇u
)
(a + 1) = A,

γu(b) + δ
(
∇u
)
(b) = B,

(35)

where A, B ∈ R.

Lemma 9. The unique solution of the boundary value problem
−
(
∇ν

ρ(a)w
)
(t) = 0, t ∈ Nb

a+2,

αw(a)− β
(
∇w

)
(a + 1) = A,

γw(b) + δ
(
∇w

)
(b) = B

(36)
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is given by
w(t) = C1Hν−1(t, ρ(a)) + C2Hν−2(t, ρ(a)), t ∈ Nb

a, (37)

where
C1 =

1
Λ
[A2B− AΩ], (38)

and
C2 =

1
Λ
[Aφ(a)− A1B]. (39)

Proof. Apply the operator ∇−ν
a+1 to both sides of the nabla fractional difference equation

in (36) and obtain

w(t) = C1Hν−1(t, ρ(a)) + C2Hν−2(t, ρ(a)), t ∈ Na, (40)

where C1 and C2 are arbitrary constants.
Upon applying the operator ∇ to both sides of (40), apply Lemma 1 (1) and obtain(

∇w
)
(t) = C1Hν−2(t, ρ(a)) + C2Hν−3(t, ρ(a)), t ∈ Na+1. (41)

From the first boundary condition αw(a)− β
(
∇w

)
(a + 1) = A in (40)–(41), we obtain

A1C1 + A2C2 = A. (42)

From the second boundary condition γw(b) + δ
(
∇w

)
(b) = B in (40)–(41) we have

C1φ(a) + C2Ω = B. (43)

From equalities (42) and (43), we obtain (38) and (39).

Now, we will obtain the explicit unique solution of the boundary value problem (35).

Theorem 4. Assume that α, β, γ, and δ are nonnegative real numbers such that α ≥ β. The unique
solution of the boundary value problem (35) is given by

u(t) = w(t) +
b

∑
s=a+2

G(t, s)h(s), t ∈ Nb
a, (44)

where the Green’s function G(t, s) is defined by (4), and w is given by (37).

Now, let us take L = ∇ν
ρ(a). We use Lemma 9 together with Lemma 6 to prove a com-

parison theorem regarding the nabla fractional difference operator L. In order to accomplish
this, we make certain assumptions regarding the numbers A and B appearing in the bound-
ary value problem (36). These assumptions yield a few diverse situations under which our
comparison theorem will hold. In light of this, we have the following lemmas.

Lemma 10. Assume that α, β, and γ are nonnegative real numbers such that α ≥ β. If A = 0,
B ≥ 0, and δ = 0, it follows that

w(t) ≥ 0, t ∈ Nb
a.

Proof. By taking A = 0, it is clear from (37), (38), and (39) that

w(t) =
1
Λ
[A2BHν−1(t, ρ(a))− A1BHν−2(t, ρ(a))] =

B
Λ

ω(t), t ∈ Nb
a.

Consider

Λ = A2φ(a)− A1Ω
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= (A1 + β)γHν−1(b, ρ(a))− A1γHν−2(b, ρ(a))

= γ[A1(Hν−1(b, ρ(a))− Hν−2(b, ρ(a))) + βHν−1(b, ρ(a))]
= γ[A1Hν−1(b, a) + βHν−1(b, ρ(a))] (By Lemma 1 (2))

≥ 0. (By Hypothesis and Lemma 2 (b))

It follows from Lemma 5 that ω(t) ≥ 0 for t ∈ Nb
a, thus implying that w(t) ≥ 0 for

t ∈ Nb
a.

Lemma 11. Assume that α and δ are nonnegative real numbers. If A, B ≥ 0 and β = γ = 0, it
follows that

w(t) ≥ 0, t ∈ Nb
a.

Proof. From (37), (38), and (39), we have

w(t) =
1
Λ
[(A2B− AΩ)Hν−1(t, ρ(a)) + (Aφ(a)− A1B)Hν−2(t, ρ(a))]

=
B
Λ

ω(t)− A
Λ
[ΩHν−1(t, ρ(a))− φ(a)Hν−2(t, ρ(a))], t ∈ Nb

a. (45)

Take β = γ = 0 in (3)–(3). Then, by applying Lemma 1 (2), we obtain that

A1 = α,

A2 = A1,

φ(r) = δHν−2(b, ρ(r)), r ∈ Nb
a,

ω(r) = α[Hν−1(r, ρ(a))− Hν−2(r, ρ(a))] = αHν−1(r, a), r ∈ Nb
a,

Ω = δHν−3(b, ρ(a)),

Λ = αδ[Hν−2(b, ρ(a))− Hν−3(b, ρ(a))] = αδHν−2(b, a).

Consequently, from (45), we have

w(t) =
B

αδHν−2(b, a)
[αHν−1(t, a)]− A

αδHν−2(b, a)
× [δHν−3(b, ρ(a))Hν−1(t, ρ(a))− δHν−2(b, ρ(a))Hν−2(t, ρ(a))]

=
BHν−1(t, a)
δHν−2(b, a)

− A
αHν−2(b, a)

w1(t), t ∈ Nb
a, (46)

where

w1(t) = Hν−3(b, ρ(a))Hν−1(t, ρ(a))− Hν−2(b, ρ(a))Hν−2(t, ρ(a)), t ∈ Nb
a.

Consider

w1(t) = Hν−3(b, ρ(a))Hν−1(t, ρ(a))− Hν−2(b, ρ(a))Hν−2(t, ρ(a))

=
Γ(b− a + ν− 2)

Γ(b− a + 1)Γ(ν− 2)
Γ(t− a + ν)

Γ(t− a + 1)Γ(ν)

− Γ(b− a + ν− 1)
Γ(b− a + 1)Γ(ν− 1)

Γ(t− a + ν− 1)
Γ(t− a + 1)Γ(ν− 1)

=
Γ(b− a + ν− 2)

Γ(b− a + 1)Γ(ν− 2)
Γ(t− a + ν− 1)

Γ(t− a + 1)Γ(ν− 1)

×
[

t− a + ν− 1
ν− 1

− b− a + ν− 2
ν− 2

]
= − Γ(b− a + ν− 2)

Γ(b− a + 1)Γ(ν− 1)
Γ(t− a + ν− 1)
Γ(t− a + 1)Γ(ν)
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× [(t− a) + (b− t)(ν− 1)].

We know that Γ(b− a+ ν− 2) > 0, Γ(b− a+ 1) > 0, Γ(ν− 1) > 0, Γ(t− a+ ν− 1) > 0,
Γ(t− a+ 1) > 0, Γ(ν) > 0, (t− a) ≥ 0, (b− t) ≥ 0, and (ν− 1) > 0 for t ∈ Nb

a, thus implying
that

w1(t) ≤ 0, t ∈ Nb
a.

Consequently, it follows from (46) and Lemma 2 (a, b) that w(t) ≥ 0 for t ∈ Nb
a.

Lemma 12. Assume that α and γ are nonnegative real numbers. If A, B ≥ 0 and β = δ = 0, it
follows that

w(t) ≥ 0, t ∈ Nb
a.

Proof. Take β = δ = 0 in (3)–(3). Then, by applying Lemma 1 (2), we obtain that

A1 = α,

A2 = A1,

φ(r) = γHν−1(b, ρ(r)), r ∈ Nb
a,

ω(r) = α[Hν−1(r, ρ(a))− Hν−2(r, ρ(a))] = αHν−1(r, a), r ∈ Nb
a,

Ω = γHν−2(b, ρ(a)),

Λ = αγ[Hν−1(b, ρ(a))− Hν−2(b, ρ(a))] = αγHν−1(b, a).

Consequently, from (45), we have

w(t) =
B

αγHν−1(b, a)
[αHν−1(t, a)]− A

αγHν−1(b, a)
× [γHν−2(b, ρ(a))Hν−1(t, ρ(a))− γHν−1(b, ρ(a))Hν−2(t, ρ(a))]

=
BHν−1(t, a)
γHν−1(b, a)

− A
αHν−1(b, a)

w2(t), t ∈ Nb
a, (47)

where

w2(t) = Hν−2(b, ρ(a))Hν−1(t, ρ(a))− Hν−1(b, ρ(a))Hν−2(t, ρ(a)), t ∈ Nb
a.

From Lemma 2 (c, d) we have Hν−1(t, ρ(a)) < Hν−1(b, ρ(a)) and Hν−2(b, ρ(a)) <
Hν−2(t, ρ(a)), implying that

w2(t) = Hν−2(b, ρ(a))Hν−1(t, ρ(a))− Hν−1(b, ρ(a))Hν−2(t, ρ(a))

< Hν−2(t, ρ(a))Hν−1(b, ρ(a))− Hν−1(b, ρ(a))Hν−2(t, ρ(a))

= 0.

Consequently, it follows from (47) and Lemma 2 (a, b) that w(t) ≥ 0 for t ∈ Nb
a.

Remark 1. Observe that the boundary conditions implied by Lemma 11 are right focal boundary
conditions, whereas the boundary conditions implied by Lemma 12 are Dirichlet boundary conditions.

I now prove a comparison result for the operator L = ∇ν
ρ(a). For convenience, let

us take L1u = αu(a) − β
(
∇u
)
(a + 1) and L2u = γu(b) + δ

(
∇u
)
(b). Let us also call

hypothesis (H1) the hypothesis of Lemma 10, hypothesis (H2) the hypotheses of Lemma 11,
and hypothesis (H3) the hypothesis of Lemma 12. We then obtain the following comparison-
type theorem.
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Theorem 5. Assume that α, β, γ, and δ are nonnegative real numbers such that α ≥ β. Suppose
that u and v satisfy Lu ≤ Lv, L1u ≥ L1v, and L2u ≥ L2v. In addition, suppose that one of the
conditions (H1), (H2), or (H3) holds. Then,

u(t) ≥ v(t), t ∈ Nb
a.

Proof. Put z = u− v. Then, it follows from Theorem 4 that z is the solution of the problem
Lz = h(t), t ∈ Nb

a+2,
L1z = A,
L2z = B,

(48)

where A = L1z = L1u − L1v ≥ 0, B = L2z = L2u − L2v ≥ 0, and, for t ∈ Nb
a+2,

h(t) = Lz = Lu − Lv ≤ 0. In particular, from Theorem 4, we know that z has the
form

z(t) = w(t)−
b

∑
s=a+2

G(t, s)h(s), t ∈ Nb
a. (49)

Indeed, from (36) and (49), the definitions of L and G, we find that

Lz = Lw− L∇−ν
ρ(a)h = 0− [−h(t)] = h(t), t ∈ Nb

a+2. (50)

However, as one of the conditions (H1), (H2) or (H3) holds, we have from Lemmas 10–12
that

w(t) ≥ 0, t ∈ Nb
a.

Moreover, Lemma 6 shows that

G(t, s) ≥ 0, (t, s) ∈ Nb
a ×Nb

a+2.

So, given that
h(t) ≤ 0, t ∈ Nb

a,

it follows that
z(t) ≥ 0, t ∈ Nb

a,

whence
u(t) ≥ v(t), t ∈ Nb

a.

Remark 2. Observe that using Theorem 5 together with condition (H3) implies that the operator
L, together with the Dirichlet boundary conditions, satisfy the usual comparison theorem as is
well-known in the classical theory of differential Equations [24] and as is also well-known in the
more general time scales case [23].

Remark 3. In case α = γ = 1 and β = δ = 0, the result of Theorem 5 implies that the ν-th order
nabla fractional difference operator satisfies a kind of classical concavity property. In particular,
given 1 < ν < 2, the result of Theorem 5 can be recast by asserting that, if(

∇ν
ρ(a)u

)
(t) ≤

(
∇ν

ρ(a)v
)
(t), t ∈ Nb

a+2,

and, if both u(a) ≥ v(a) and u(b) ≥ v(b), then

u(t) ≥ v(t), t ∈ Nb
a.

Of course, when ν = 2, this is a well-known result with a clear geometric interpretation. When
ν 6= 2, this result implies that the ν-th order nabla fractional sum operator satisfies an abstract
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concavity property, which is mathematically interesting. This is made particularly clear by taking
v ≡ 0; similarly, a convexity result is implied if we take u ≡ 0.

Remark 4. As stated in the above remark, we established that the ν-th order nabla fractional
difference operator satisfies a kind of concavity result. It should be noted that this fact might not
automatically be expected. Indeed, as is well known from the existing literature on fractional
boundary value problems (particularly in the continuous case), certain very important properties
that hold in the integer-order case fail to hold in the fractional case. So, it seems useful to know that
this particular property does remain true in the fractional case.

I will provide two examples illustrating the comparison result of Theorem 5 and
Remarks 3 and 4.

Example 3. Let z : Nb
a → R be a function satisfying(

∇ν
ρ(a)z

)
(t) ≤ 0, t ∈ Nb

a+2, (51)

together with the boundary conditions
z(a) ≥ 0, (52)

and
z(b) ≥ 0. (53)

Then, by Theorem 5 with v ≡ 0, from (51)–(53), we deduce that

z(t) ≥ 0, t ∈ Nb
a. (54)

In the case of ν = 2, the inequality (54) is just a standard concavity result. However, in the
fractional case, by applying Theorem 1 for t ∈ Na, we have

(
∇ν

ρ(a)z
)
(t) =

t

∑
s=a

H−ν−1(t, ρ(s))z(s)

=
t−2

∑
s=a

H−ν−1(t, ρ(s))z(s)

+ H−ν−1(t, ρ(t− 1))z(t− 1) + H−ν−1(t, ρ(t))z(t)

=
t−2

∑
s=a

H−ν−1(t, ρ(s))z(s)− νz(t− 1) + z(t). (55)

Given (51)–(53), it does not follow immediately from (55) that the function z is nonnegative
for each admissible t. In the case of ν 6= 2 by applying Theorem 5, the property (54) holds.

Example 4. Let z : Nb
a → R be a function satisfying(

∇ν
ρ(a)z

)
(t) ≥ 0, t ∈ Nb

a+2, (56)

together with the boundary conditions
z(a) ≤ 0, (57)

and
z(b) ≤ 0. (58)

Then, by applying Theorem 5 with u ≡ 0 from (56)–(58), we deduce that

z(t) ≤ 0, t ∈ Nb
a. (59)



Foundations 2023, 3 197

In the case of ν = 2 the above inequality is just a standard convexity result. However, in the
fractional case of applying Theorem 1 for t ∈ Na, we have (55). Given (56)–(58), it does not follow
immediately from (55) that the function z is nonpositive for each admissible t. In the case of ν 6= 2
by applying Theorem 5, the property (59) holds.

6. Conclusions

In this article, I proved a general comparison result in Theorem 5 for the two-point
nabla fractional boundary value problem (1). I also obtained a few essential properties of
the Green’s function associated with the boundary value problem (1) in Section 4.

The results of Section 4 provide an important step in the direction of a full analysis
of the boundary value problem (1). Using an appropriate cone fixed point theorem on
a suitable cone, and under relevant conditions on the nonlinear part of the difference
equation, one can establish sufficient conditions for the existence of multiple positive
solutions to the boundary value problem (1). One can also discuss the existence of a unique
bounded solution to the problem (1) by using the Banach fixed point theorem.
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