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Abstract: This paper examines the controllability of a class of heterogeneous networked systems
where the nodes are linear time-invariant systems (LTI), and the network topology is triangularizable.
The literature contains necessary and sufficient conditions for the controllability of such systems
where the control input matrices are identical in each node. Here, we extend this result to a class of
heterogeneous systems where the control input matrices are distinct in each node. Additionally, we
discuss the controllability of a more general system with triangular network topology and obtain
necessary and sufficient conditions for controllability. Theoretical results are supplemented with
numerical examples.
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1. Introduction

The controllability of networked dynamical systems remains one of the most chal-
lenging problems in the field of control theory. The prevalence of networks of dynamical
systems in numerous engineering and technology fields supports the rising emphasis
placed on the controllability of networked systems [1–3]. In System and Control literature,
there are different notions of controllability, including state controllability, structural con-
trollability, etc. The classical idea of controllability, introduced by R. E. Kalman [4] in the
1960s, deals with the ability of a single high-dimensional system to steer itself from an
arbitrary initial state to a desired final state, whereas, structural controllability, introduced
by Lin [5] in 1974, attempts to obtain some numerical values for the parameters in system
matrices describing the system’s dynamics so that it is controllable in the sense of Kalman.
Using rank conditions, spectral features, graph-theoretic properties, etc., many authors
have explored controllability criteria for such systems over the past few decades [6–13].
The traditional theory of control paved the way for an advanced approach applicable to
complex networks with more than one interconnected dynamical system. With time, it was
evident that modelling complicated real-life systems required large-scale networks, and
the controllability of such systems became unavoidable [14–17].

Over the years, several approaches have been employed to study the controllabil-
ity of a dynamical system. Zhou [18] studied the controllability and observability of
networked systems having different dynamics in each subsystem. Based on the Popov–
Belevitch–Hautus(PBH) test, he obtained some necessary and sufficient conditions for
controllability which depended upon the dynamics of the subsystems and the network
topology. Wang et al. [19] proposed a set of necessary conditions for the controllability
of a homogeneous LTI networked system that required solving matrix equations. Ad-
ditionally, conditions were derived that can be used to analyze the controllability of the
networked system based on network topology, node dynamics, external control inputs,
and inner interactions. In Wang L. et al. [19], the interactions between connected nodes
are performed through high-dimensional inputs and outputs of the node dynamics. Later,
Wang L. et al. [20] studied the controllability of homogeneous networked LTI systems hav-
ing one-dimensional communication. They obtained a necessary and sufficient condition
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for the controllability of such systems along with some controllability results over specific
network topologies, such as a chain, tree, star, etc. A relatively simple, less computa-
tional method for the controllability of homogeneous networked LTI systems was given
by Hao et al. [21] in 2018 using spectral properties. Compared with Wang L. et al. [19], the
conditions are easy to verify as they do not involve solving matrix equations. All these
works discussed the controllability of a networked system with nodes having identical
dynamics. However, in real-life situations, the individual nodes may not always have the
same dynamics. Controllability of networked systems with heterogeneous dynamics poses
a fascinating challenge as the intrinsic dynamics of individual nodes add to the complexity
contributed by the network topology. Wang P. et al. [22] tried to extend the results obtained
by Wang L. et al. [19] that were for homogeneous systems to heterogeneous systems. Some
necessary conditions for controllability were obtained based on the network topology
and the subsystem dynamics. Based on this work, Xiang et al. [23] derived necessary and
sufficient conditions for controllability of a particular class of heterogeneous systems. Based
on the results of Xiang et al. [23], Ajayakumar et al. [24] derived some necessary conditions
for the controllability of heterogeneous systems. Using the idea of the determinant factor and
the Smith normal form, a necessary and sufficient condition for controllability was derived
by Kong et al. [25] for a general heterogeneous networked system. However, the result is
difficult to verify as it involves significant computation. Ajayakumar et al. [26] extended
the result of Hao et al. [21] that was for the controllability of homogeneous systems to a
particular class of heterogeneous systems with identical control input matrices.

In this work, we extend the result in [26] to a class of heterogeneous networked
systems, where the control input matrix is non-identical in each node. We also examine the
controllability of a more general heterogeneous networked system over some specific net-
work topologies. Necessary and sufficient conditions for the controllability of such systems
are obtained. The rest of the paper is arranged as follows. Some preliminary information
is given in Section 2. The controllability problem is formulated in Section 3. Section 4
presents the necessary and sufficient conditions for the controllability of the heterogeneous
networked system formulated in Section 3. It also provides some controllability results
over some specific topologies. Examples are provided to substantiate the derived results.
Section 5 concludes the study and outlines the future scope of the research.

2. Preliminaries

In this paper, we use the following notations. I denotes the identity matrix and
{e1, e2, . . . , en} represents the canonical basis for Rn. Let diag{a1, a2, . . . , an} denote diag-
onal matrix of order n with diagonal entries a1, a2, . . . , an, and uppertriang{a1, a2, . . . , an}
denotes an upper triangular matrix of the form




a1 ∗ ∗ . . . ∗
0 a2 ∗ . . . ∗
0 0 a3 . . . ∗
...

...
...

. . .
...

0 0 0 . . . an




Let σ(A) denotes the eigen spectrum of a matrix A. The following lemmas will be
used in the subsequent sections of this paper.

Lemma 1 ([27]). Let A and B be similar matrices, that is, there exists a non-singular matrix P,
such that PBP−1 = A. If ν is a left eigenvector of A with respect to the eigenvalue λ, then νP is an
eigenvector of B with respect to the eigenvalue λ.

Lemma 2 ([28]). Let A⊗ B denotes the Kronecker product of two matrices A and B. We use the
following properties of Kronecker product in this paper.

(i) (A⊗ B)(C⊗ D) = (AC⊗ BD).
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(ii) (A⊗ B)−1 = A−1 ⊗ B−1 if A and B are invertible.
(iii) (A + B)⊗ C = A⊗ C + B⊗ C.
(iv) A⊗ (B + C) = A⊗ B + A⊗ C.
(v) A⊗ B = 0 if and only if A = 0 or B = 0.

Lemma 3 ([29]). A linear time-invariant control system characterized by the pair of matrices
(A, B) is controllable if, and only if, left eigenvectors of A are not orthogonal to columns of B, i.e.,
νA = λν implies that νB 6= 0.

3. Model Formulation

Consider a heterogeneous networked linear time-invariant system with N nodes,
where the ith node is described by the following differential equation:

ẋi(t) = Aixi(t) +
N

∑
j=1

cijHxj(t) + diBiui(t), i = 1, 2, . . . , N (1)

where, xi(t) ∈ Rn is the state vector and ui(t) ∈ Rm is the external control vector. Ai is an
n× n matrix and Bi is an n× m matrix called the state matrix and the control matrix of
node i, respectively.

di =

{
1, i f node i is under control
0, otherwise

The connection strength between the nodes i and j is given by cij ∈ R. If there is a
communication from node j to node i, cij 6= 0 and otherwise, cij = 0, i, j = 1, 2, . . . , N. The
n× n matrix H denotes the inner coupling matrix describing the interconnections among
the states xj, j = 1, 2, . . . , N of the nodes.

The network topology and external input channels of the networked system (1), are
given by the N × N matrices

C =
[
cij
]

and D = diag{d1, d2, . . . , dN} (2)

respectively. If we denote the state matrix and the total external control input of the
networked system (1) by X =

[
xT

1 , . . . , xT
N
]T and U =

[
uT

1 , . . . , uT
N
]T , respectively, using

the Kronecker product notation, (1) can be reduced into the following compact form:

Ẋ(t) = FX(t) + GU(t) (3)

with,
F = A + C⊗ H, G = (D⊗ I)B (4)

where A = blockdiag{A1, A2, . . . , AN} and B = blockdiag{B1, B2, . . . , BN}. If the inner
coupling matrix is also different in each node, i.e., if the dynamics of the ith node is given by

ẋi(t) = Aixi(t) +
N

∑
j=1

cijHixj(t) + diBiui(t), i = 1, 2, . . . , N (5)

the networked system can be reduced to the compact form (3), where

F =




A1 + c11H1 c12H1 . . . c1N H1
c21H2 A2 + c22H2 . . . c2N H2

...
...

. . .
...

cN1HN cN2HN . . . AN + cNN HN




and G = (D⊗ I)B.
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4. Controllability Results in a General Network Topology

Ajayakumar et al. [26] studied the controllability of (3) when the network topology is
triangularizable, and the system parameter matrices satisfy certain conditions. There the
control input matrices were identical in each node. Here, we will extend this result to a
system where each node has different control input matrices.

We find that there exists a non-singular matrix T, such that TCT−1 = J, where
J = uppertriang{λ1, λ2, . . . , λN} is the Jordan Canonical Form of C. Let σ(Ai + λi H) =
{µ1

i , . . . , µ
qi
i } denotes the set of eigenvalues of Ai +λi H, i = 1, 2, . . . , N and ξk

ij, k = 1, . . . , γij

be the left eigenvectors of Ai + λi H corresponding to µ
j
i , j = 1, . . . , qi, i = 1, . . . , N, where

γij ≥ 1 is the geometric multiplicity of the eigenvalue µ
j
i . We will make use of the

following theorem.

Theorem 1 ([26]). Let T be the triangularizing matrix for the network topology matrix C and
suppose T ⊗ I commutes with A. Let (µj

i , ξk
ij) denotes the left eigenpair of Ai + λi H. Then the

following statements hold true.

(i) The eigenspectrum of F is the union of eigenspectrum of Ai + λi H, where, i = 1, 2, . . . , N.
That is,

σ(F) = ∪N
i=1σ(Ai + λi H) = {µ1

1, . . . , µ
q1
1 , . . . , µ1

N , . . . , µ
qN
N }

(ii) If J is a diagonal matrix, then eiT ⊗ ξk
ij, k = 1, . . . , γij are the left eigenvectors of F corre-

sponding to the eigenvalue µ
j
i , j = 1, . . . , qi, i = 1, . . . , N.

(iii) If J contains a Jordan block of order l ≥ 2 for some eigenvalue λi0 of C with ξk
ijH = 0 for all i =

i0, i0 + 1, . . . , i0 + l − 1, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij, then eiT ⊗ ξk
ij, k = 1, . . . , γij are

the left eigenvectors of F corresponding to the eigenvalue µ
j
i , i = 1, 2, . . . , N, j = 1, 2, . . . , qi.

With the aid of the above result, we can prove the following necessary and sufficient
conditions for controllability of the networked system (3).

Theorem 2. Let T be a non-singular matrix triangularizing matrix C such that T ⊗ I commutes
with A. If J contains a Jordan block of order l ≥ 2 corresponding to the eigenvalue λi0 of C,
then assume that ξk

ijH = 0 for all i = i0, i0 + 1, . . . , i0 + l − 1, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij,

where ξk
ij, i = 1, 2, . . . , N, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij are the left eigenvectors of Ai +

λi H corresponding to the eigenvalues µ
j
i , i = 1, 2, . . . , N, j = 1, 2, . . . , qi. Then, the networked

system (3) is controllable if, and only if,

(i) eiTD 6= 0 for all i = 1, . . . , N
(ii) For a fixed i, each left eigenvector ξ of Ai + λi H, ξBj 6= 0 for some j ∈ {1, 2, · · · , N} with

[eiTD]j 6= 0,
(iii) If matrices Ai1 + λi1 H, Ai2 + λi2 H, . . . , Aip + λip H(λik ∈ σ(C), k = 1, . . . , p, where p >

1) have a common eigenvalue σ, then (ei1 TD⊗ ξ1
i1
)B, · · · , (ei1 TD⊗ ξ

γi1
i1

)B, . . . , (eip TD⊗
ξ1

ip
)B, . . . , (eip TD⊗ ξ

γip
ip

)B are linearly independent vectors, where γik ≥ 1 is the geometric

multiplicity of σ for Aik +λik H and ξ l
ik
(l = 1, . . . , γik ) are the left eigenvectors of Aik +λik H

corresponding to σ, k = 1, . . . , p.

Proof. (Necessary part) Fix i. Let ξ be an arbitrary left eigenvector of Ai + λi H. From
Theorem 1, we find that eiT ⊗ ξ is a left eigenvector of F. By Lemma 3, for the networked
system (3) to be controllable, we must have

(eiT ⊗ ξ)(D⊗ I)B = (eiTD⊗ ξ)B 6= 0

This implies that eiTD 6= 0 and ξBj 6= 0 for some j ∈ {1, 2, . . . , N} with [eiTD]j 6= 0.
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Now, suppose that the matrices Ai1 + λi1 H, · · · , Aip + λip H(λik ∈ σ(C), k = 1, . . . , p,
where p > 1) have a common eigenvalue σ. Then the left eigenvectors of F corresponding
to σ can be expressed as a linear combination in the form ∑

p
k=1 ∑

γik
l=1 αkl(eik T ⊗ ξ l

ik
), where

αkl ∈ R(k = 1, . . . , p, l = 1, . . . , γik ) are scalars, not all are zero and ξ1
ik

, . . . , ξ
γik
ik

, are the
eigenvectors of Aik + λik H corresponding to the eigenvalue σ, where k = 1, . . . , p. If the
networked system is controllable, then

[
p

∑
k=1

γik

∑
l=1

αkl(eik T ⊗ ξ l
ik )

]
(D⊗ I)B 6= 0

Consequently, we have
p

∑
k=1

γik

∑
l=1

αkl

[(
eik TD⊗ ξ l

ik

)
B
]
6= 0

for any scalars αkl ∈ R(k = 1, . . . , p, l = 1, . . . , γik), not all of them are zero. This
implies that the vectors

[
ei1TD⊗ ξ1

i1
)

B, . . . ,
(
ei1TD⊗ ξ

γi1
i1
)

B, . . . ,
(
(eipTD)⊗ (ξ1

ip)
)

B, . . . ,
(

eipTD⊗ ξ
γip
ip

)
B are linearly independent in RNn.

(Sufficiency part) To prove the converse part, we will show that if the networked
system is uncontrollable, at least one condition in Theorem 1 does not hold. Suppose that
the networked system (3) is not controllable. Then by Lemma 3, there exists a left eigenpair
(µ̃, ṽ) of F, such that ṽG = 0.

If µ̃ ∈ σ(Ai0 + λi0 H) and µ̃ /∈ σ(A1 + λ1H) ∪ . . . ∪ σ(Ai0−1 + λi0−1H) ∪ σ(Ai0+1 +
λi0+1H) ∪ . . . ∪ σ(AiN + λiN H). Again ṽ can be written as a linear combination, ṽ =

∑
γi0 j0
l=1 αl

0(ei0 T⊗ ξ l
i0 j0

), where ξ1
i0 j0

, . . . , ξ
γi0 j0
i0 j0

of left eigenvectors of Ai0 + λi0 H corresponding

to µ̃, where,
[

α1
0, . . . , α

γi0 j0
0

]
is some non-zero vector. Now ṽG = 0 implies

γi0 j0

∑
l=1

αl
0(ei0 T ⊗ ξ l

i0 j0
)(D⊗ I)B =


(ei0 TD)⊗




γi0 j0

∑
l=1

αl
0ξ l

i0 j0




B = 0

This implies that either ei0 TD = 0 or
(

∑
γi0 j0
l=1 αl

0ξ l
i0 j0

)
Bj = 0 for all j ∈ {1, 2, · · · , N} with

[eiTD]j 6= 0. Keep in mind that ∑
γi0 j0
l=1 αl

0ξ l
i0 j0

is a left eigenvector of Ai0 + λi0 H. Thus, if the

networked system is uncontrollable, then either condition (i) or condition (ii) does not
hold true.

Let µ̃ be the common eigenvalue of the matrices Ai1 +λi1 H, . . . , Aip +λip H(λik ∈ σ(C),
for k = 1, . . . , p, p > 1). Additionally, let the eigenvectors of Aik + λik H correspond-

ing to µ̃ are ξ1
ik

, . . . , ξ
γik
ik

, where k = 1, . . . , p. Since ṽ can be expressed in the form

∑
p
k=1 ∑

γik
l=1 αkl

0

(
eik

T ⊗ ξ l
ik

)
, where αkl

0 (l = 1, . . . , γik , k = 1, . . . , p) are some scalars, which are
not all zero. Then, ṽG = 0 implies that there exists a non-zero vector[

α11
0 , . . . , α

1γi1
0 , . . . , α

p1
0 , . . . , α

pγip
0

]
, such that

[
p

∑
k=1

γik

∑
l=1

αkl
0

(
eik

T ⊗ ξ l
ik

)]
(D⊗ I)B =

p

∑
k=1

γik

∑
l=1

αkl
0

{[
(eik

TD)⊗ (ξ l
ik
)
]

B
}
= 0

This implies that (ei1 TD⊗ ξ1
i1
)B, . . . , (ei1 TD⊗ ξ

γi1
i1

)B, . . . , (eip TD⊗ ξ1
ip
)B, . . . , (eip TD⊗ ξ

γip

ip
)B are lin-

early dependent. Thus, at least one condition in Theorem 2 does not hold true, when the networked
system is uncontrollable.
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The following examples illustrate the result obtained in Theorem 2.

Example 1. Consider a heterogeneous networked system with three nodes with the following
dynamics; the state matrices and control matrices of each nodes are given by,

A1 =




1 1 1
0 1 1
0 0 1


, A2 = A3 =




1 2 1
0 1 1
1 1 2


, B1 =




1
0
1


, B2 =




1
−1
−1


, B3 =




1
1
1


 (6)

The network topology matrix, inner-coupling matrix, and the external control input matrix
are, respectively,

C =




0 0 1
0 1 1
0 0 0


, H =




1 1 0
1 1 1
0 0 0


, D =




1 0 0
0 0 0
0 0 1


 (7)

Nodes {v1, v2, v3} and {u1, u2} in Figure 1 represents the state nodes and the control nodes re-

spectively. There exists a non-singular matrix T =




1 0 0
0 0 1
0 1 1


, such that TCT−1 =




0 1 0
0 0 0
0 0 1


.

We have, λ1 = 1, λ2 = 1 and λ3 = −1. Clearly, J contains a Jordan block of order 2 corresponding
to 0. ξ1

11 =
[
0 0 1

]
is the only left eigenvector of the matrix A1 + λ1H = A1 and ξ1

11H = 0.
Additionally, T ⊗ I commutes with A. Then

(i) as TD =




1 0 0
0 0 1
0 0 1


, eiTD 6= 0 for all i = 1, 2, 3.

(ii) for A1 + λ1H = A1 =




1 1 1
0 1 1
0 0 1


, the only left eigenvector is ξ1

11 =
[
0 0 1

]
. We have

[e1TD]1 6= 0 and ξ1
11B1 6= 0.

For the matrix A2 + λ2H = A2 =




1 2 1
0 1 1
1 1 2


 the left eigenvectors are, respectively,

ξ1
21 = [0.44062 0.828911 1], ξ1

22 = [−0.72031− 0.784805i − 0.914456 + 1.47641i 1],
and ξ1

23 =
[
−0.72031 + 0.784805i −0.914456− 1.47641i 1

]
. We have [e2TD]3 6= 0

and ξ1
21B3, ξ1

22B3, ξ1
23B3 6= 0.

For the matrix A3 + λ3H = A3 + H =




2 3 1
1 2 2
1 1 2


, the left eigenvectors are, respectively,

ξ1
31 =

[
0.720551 1.09001 1

]
, ξ1

32 =
[
−0.0875483− 0.34424i −0.681369 + 0.450503i 1

]
,

and ξ1
33 =

[
−0.0875483 + 0.34424i −0.681369− 0.450503i 1

]
. We have [e3TD]3 6= 0

and ξ1
31B3, ξ1

32B3, ξ1
33B3 6= 0.

(iii) as the matrices A1, A2 and A3 + H do not have any common eigenvalues, third condition of
Theorem 2 is satisfied.

Thus, all the conditions of Theorem 2 are satisfied and hence the system is controllable.
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


1 2 1
0 1 1
1 1 2
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1
0
1


, B2 =
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1
−1
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

1
1
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v1u1

u3

v2

v3

Figure 1. Controllable heterogeneous networked system with triangularizable network topology C
and node dynamics as in (6)-(7).
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For the matrix A2 + λ2H = A2 =




1 2 1
0 1 1
1 1 2


 the left eigenvectors are respectively ξ1

21 = 174

[
0.44062 0.828911 1

]
, ξ1

22 =
[
−0.72031 − 0.784805i −0.914456 + 1.47641i 1

]
, and 175

ξ1
23 =

[
−0.72031 + 0.784805i −0.914456 − 1.47641i 1

]
. We have [e2TD]3 ̸= 0 and 176

ξ1
21B3, ξ1

22B3, ξ1
23B3 ̸= 0. 177

For the matrix A3 + λ3H = A3 + H =




2 3 1
1 2 2
1 1 2


, the left eigenvectors are respectively 178

ξ1
31 =

[
0.720551 1.09001 1

]
, ξ1

32 =
[
−0.0875483 − 0.34424i −0.681369 + 0.450503i 1

]
,179

and ξ1
33 =

[
−0.0875483 + 0.34424i −0.681369 − 0.450503i 1

]
. We have [e3TD]3 ̸= 0 180

and ξ1
31B3, ξ1

32B3, ξ1
33B3 ̸= 0. 181

(iii) as the matrices A1, A2 and A3 + H do not have any common eigenvalues, third condition of 182

Theorem 2 is satisfied. 183

Figure 1. Controllable heterogeneous networked system with triangularizable network topology C
and node dynamics as in (6) and (7).

The following illustration demonstrates how Theorem 2 can be used to make an
uncontrollable system controllable.

Example 2. Consider a heterogeneous networked system with three nodes with the following
dynamics; the state matrices and control matrices of each nodes are given by,

A1 =




0 0 0
0 1 −2
0 0 −1


, A2 = A3 =




0 1 1
2 1 −1
0 2 −1


, B1 =




0
1
1


, B2 =




0
1
0


, B3 =




0
1
1


 (8)

The network topology matrix, inner-coupling matrix, and the external control input matrix
are, respectively,

C =




1 1 1
0 0 1
0 1 0


, H =




1 1 0
0 1 1
0 1 1


, D =




1 0 0
0 0 0
0 0 0


 (9)

There exists T =




1 0 0
0 1 1
0 1

2 − 1
2


, such that TCT−1 =




1 1 0
0 1 0
0 0 −1


. The eigenvalues of C

are, λ1 = 1, λ2 = 1 and λ3 = −1. Clearly, J contains a Jordan block of order 2. Observe that
ξ1

11 =
[
0 1 −1

]
is the only left eigenvector corresponding to the matrix A1 + H and ξ1

11H = 0.

Additionally, T ⊗ I commutes with A. Here, as TD =




1 0 0
0 0 0
0 0 0


, we have e2TD = e3TD = 0.

Then, by Theorem 2, the networked system is not controllable. From Figure 2, we can see that only
node v1 have an external control input. It is easy to observe, if either node v2 or v3 is supplied with a
control input, eiTD 6= 0 for all i = 1, 2, 3. Suppose that node v2 is supplied with an external control

input as shown in Figure 3. That is, D =




1 0 0
0 1 0
0 0 0


. Even then the networked system is not

controllable as [e1TD]1 is the only non-zero entry in e1TD and ξ1
11B1 = 0. If we could change the

control input matrix B1 so that ξ1
11B1 6= 0, we can make this uncontrollable system to a controllable

system. For example, consider B1 =




1
1
0


. Then,

(i) as TD =




1 0 0
0 1 0
0 1

2 0


, eiTD 6= 0 for all i = 1, 2, 3.
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(ii) for A1 + H =




1 1 0
0 2 −1
0 1 0


, the only left eigenvector is ξ1

11 =
[
0 −1 1

]
. We have

[e1TD]1 6= 0 and ξ1
11B1 6= 0.

For A2 + H =




1 2 1
2 2 0
0 3 0


, the left eigenvectors are ξ1

21 =
[
3.90547 5.67363 1

]
,

ξ1
22 =

[
−0.452737 + 1.15383i −0.336813− 1.0993i 1

]
, and

ξ1
23 =

[
−0.452737− 1.15383i −0.336813 + 1.0993i 1

]
. We have [e2TD]2 6= 0 and

ξ1
21B2, ξ1

22B2, ξ1
23B2 6= 0.

and for the matrix A3 − H =



−1 0 1
2 0 −2
0 1 −2


, the left eigenvectors are ξ1

31 =
[
2 1 0

]
,

ξ1
32 =

[
−0.25 + 0.661438i −0.375− 0.330719i 1

]
, and

ξ1
33 =

[
−0.25− 0.661438i −0.375 + 0.330719i 1

]
. We have [e3TD]2 6= 0 and

ξ1
31B2, ξ1

32B2, ξ1
33B2 6= 0.

(iii) as the matrices A1 + H, A2 + H and A3 − H do not have any common eigenvalues, third
condition of Theorem 2 is satisfied.

Thus, all the conditions of Theorem 2 are satisfied and, hence, the system is controllable.
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Thus all the conditions of Theorem 2 are satisfied and hence the system is controllable. 184

The following illustration demonstrates how Theorem 2 can be used to make an 185

uncontrollable system controllable. 186

Example 2. Consider a heterogeneous networked system with 3 nodes with the following dynamics; 187

The state matrices and control matrices of each nodes are given by, 188

A1 =




0 0 0
0 1 −2
0 0 −1


, A2 = A3 =




0 1 1
2 1 −1
0 2 −1


, B1 =




0
1
1


, B2 =




0
1
0


, B3 =




0
1
1


 (8)

The network topology matrix, inner-coupling matrix and the external control input matrix are 189

respectively, 190

C =




1 1 1
0 0 1
0 1 0


, H =




1 1 0
0 1 1
0 1 1


, D =




1 0 0
0 0 0
0 0 0


 (9)

v1u1 v2

v3

Figure 2. Uncontrollable heterogeneous networked system with triangularizable network topology C
and node dynamics as in (8)-(9).

191

There exists T =




1 0 0
0 1 1
0 1

2 − 1
2


 such that TCT−1 =




1 1 0
0 1 0
0 0 −1


. The eigenvalues of C are, 192

λ1 = 1, λ2 = 1 and λ3 = −1. Clearly, J contains a Jordan block of order 2. Observe that 193

ξ1
11 =

[
0 1 −1

]
is the only left eigenvector corresponding to the matrix A1 + H and ξ1

11H = 0. 194

Also T ⊗ I commutes with A. Here, as TD =




1 0 0
0 0 0
0 0 0


, we have e2TD = e3TD = 0. Then, 195

by Theorem 2, the networked system is not controllable. It is easy to observe that, either node v2 196

or v3 must be supplied with a control input, so that eiTD ̸= 0 for all i = 1, 2, 3. Suppose that 197

node v2 is supplied with an eternal control input matrix. That is, D =




1 0 0
0 1 0
0 0 0


. Even then the 198

networked system is not controllable as [e1TD]1 is the only non-zero entry in e1TD and ξ1
11B1 = 0. 199

If we could change the control input matrix B1 so that ξ1
11B1 ̸= 0, we can make this uncontrollable 200

system to a controllable system. For example, consider B1 =




1
1
0


. Then, 201

(i) as TD =




1 0 0
0 1 0
0 1

2 0


, eiTD ̸= 0 for all i = 1, 2, 3. 202

(ii) for A1 + H =




1 1 0
0 2 −1
0 1 0


, the only left eigenvector is ξ1

11 =
[
0 −1 1

]
. We have 203

[e1TD]1 ̸= 0 and ξ1
11B1 ̸= 0. 204

Figure 2. Uncontrollable heterogeneous networked system with triangularizable network topology
C and node dynamics, as in (8) and (9).
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For A2 + H =




1 2 1
2 2 0
0 3 0


, the left eigenvectors are ξ1

21 =
[
3.90547 5.67363 1

]
, ξ1

22 = 205

[
−0.452737 + 1.15383i −0.336813 − 1.0993i 1

]
, and ξ1

23 =
[
−0.452737 − 1.15383i −0.336813 + 1.0993i 1

]
.206

We have [e2TD]2 ̸= 0 and ξ1
21B2, ξ1

22B2, ξ1
23B2 ̸= 0. 207

and for the matrix A3 − H =



−1 0 1
2 0 −2
0 1 −2


, the left eigenvectors are ξ1

31 =
[
2 1 0

]
, 208

ξ1
32 =

[
−0.25 + 0.661438i −0.375 − 0.330719i 1

]
, and ξ1

33 =
[
−0.25 − 0.661438i −0.375 + 0.330719i 1

]
.209

We have [e3TD]2 ̸= 0 and ξ1
31B2, ξ1

32B2, ξ1
33B2 ̸= 0. 210

(iii) as the matrices A1 + H, A2 + H and A3 − H do not have any common eigenvalues, third 211

condition of Theorem 2 is satisfied. 212

Thus all the conditions of Theorem 2 are satisfied and hence the system is controllable.

v1u1 u2v2

v3

Figure 3. Controllable heterogeneous networked system with triangularizable network topology C
and node dynamics as in (8)-(9).

213

214

Thus, with the help of conditions in Theorem 2 we can modify the system components 215

in order to make an uncontrollable system controllable. Now, suppose that (Ai + λi H, Bj) 216

is controllable for some j ∈ {1, 2, · · · , N} with [eiTD]j ̸= 0. Then by Lemma 3, for each left 217

eigenvector ξ of Ai + λi H, ξBj ̸= 0. From this idea, we can derive the following result as a 218

corollary of Theorem 2, which gives a sufficient condition for controllability. 219

Corollary 1. Let T be a non-singular matrix triagularizing matrix C such that T ⊗ I commutes 220

with A. If J contains a Jordan block of order l ≥ 2 corresponding to the eigenvalue λi0 of C, 221

then assume that ξk
ijH = 0 for all i = i0, i0 + 1, . . . , i0 + l − 1, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij, 222

where ξk
ij, i = 1, 2, . . . , N, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij are the left eigenvectors of Ai + λi H 223

corresponding to the eigenvalues µ
j
i , i = 1, 2, . . . , N, j = 1, 2, . . . , qi. Then the networked system 224

(3) is controllable if the following conditions are satisfied. 225

(i) eiTD ̸= 0 for all i = 1, . . . , N 226

(ii) For a fixed i, (Ai + λi H, Bj) is controllable for some j ∈ {1, 2, · · · , N} with [eiTD]j ̸= 0 ; 227

and 228

(iii) If matrices Ai1 + λi1 H, Ai2 + λi2 H, . . . , Aip + λip H(λik ∈ σ(C), k = 1, . . . , p, where p > 229

1) have a common eigenvalue σ, then (ei1 TD ⊗ ξ1
i1
)B, · · · , (ei1 TD ⊗ ξ

γi1
i1

)B, . . . , (eip TD ⊗ 230

ξ1
ip
)B, . . . , (eip TD ⊗ ξ

γip
ip

)B are linearly independent vectors, where γik ≥ 1 is the geometric 231

multiplicity of σ for Aik +λik H and ξ l
ik
(l = 1, . . . , γik ) are the left eigenvectors of Aik +λik H 232

corresponding to σ, k = 1, . . . , p. 233

Example 3. Consider a networked system with 3 nodes, where the dynamics of the system is given 234

as follows; 235

A1 = A2 = A3 =




1 1 0
2 1 2
0 2 1


, B1 =




1
1
0


, B2 =




1
0
0


, B3 =




1
0
1


, H =




0 1 0
1 0 1
0 1 1


 (10)

Figure 3. Controllable heterogeneous networked system with triangularizable network topology C
and node dynamics, as in (8) and (9).

Thus, with the help of conditions in Theorem 2 we can modify the system components
in order to make an uncontrollable system controllable. Now, suppose that (Ai + λi H, Bj)
is controllable for some j ∈ {1, 2, · · · , N} with [eiTD]j 6= 0. Then, by Lemma 3, for each left
eigenvector ξ of Ai + λi H, ξBj 6= 0. From this idea, we can derive the following result as a
corollary of Theorem 2, which gives a sufficient condition for controllability.
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Corollary 1. Let T be a non-singular matrix triagularizing matrix C, such that T ⊗ I commutes
with A. If J contains a Jordan block of order l ≥ 2 corresponding to the eigenvalue λi0 of C,
then assume that ξk

ijH = 0 for all i = i0, i0 + 1, . . . , i0 + l − 1, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij,

where ξk
ij, i = 1, 2, . . . , N, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij are the left eigenvectors of Ai + λi H

corresponding to the eigenvalues µ
j
i , i = 1, 2, . . . , N, j = 1, 2, . . . , qi. Then, the networked system

(3) is controllable if the following conditions are satisfied.

(i) eiTD 6= 0 for all i = 1, . . . , N;
(ii) For a fixed i, (Ai + λi H, Bj) is controllable for some j ∈ {1, 2, · · · , N} with [eiTD]j 6= 0;
(iii) If matrices Ai1 +λi1 H, Ai2 +λi2 H, . . . , Aip +λip H(λik ∈ σ(C), k = 1, . . . , p, where p > 1)

have a common eigenvalue σ, then (ei1 TD ⊗ ξ1
i1
)B, · · · , (ei1 TD ⊗ ξ

γi1
i1

)B, . . . , (eip TD ⊗
ξ1

ip
)B, . . . , (eip TD⊗ ξ

γip
ip

)B are linearly independent vectors, where γik ≥ 1 is the geometric

multiplicity of σ for Aik +λik H and ξ l
ik
(l = 1, . . . , γik ) are the left eigenvectors of Aik +λik H

corresponding to σ, k = 1, . . . , p.

Example 3. Consider a networked system with three nodes, where the dynamics of the system is
given as follows:

A1 = A2 = A3 =




1 1 0
2 1 2
0 2 1


, B1 =




1
1
0


, B2 =




1
0
0


, B3 =




1
0
1


, H =




0 1 0
1 0 1
0 1 1


 (10)

The network topology matrix and the eternal input matrix are given by

C =




0 0 1
1 0 0
1 0 0


, D =




1 0 0
0 1 0
0 0 0


 (11)

C is diagonalizable with T =




0 1 −1√
3

2 0
√

3
2

−
√

3
2 0

√
3

2


, such that TCT−1 =




0 0 0
0 1 0
0 0 −1


 = J. We have

λ1 = 0, λ2 = 1 and λ1 = −1. Clearly, J does not contain any Jordan blocks and T⊗ I commutes
with A. Then

(i) as TD =




0 1 0√
3

2 0 0
−
√

3
2 0 0


, eiTD 6= 0 for all i = 1, 2, 3.

(ii) We have [e1TD]2, [e2TD]1, [e3TD]1 6= 0. Here (A1, B2), (A2 + H, B1) and (A1 − H, B2)
are controllable.

(iii) Here, A1 and A3 − H has a common eigenvalue, σ = 1. The corresponding left eigenvectors
are, respectively, ξ =

[
−2 0 1

]
and ν =

[
1 0 0

]
. Clearly, (e1TD ⊗ ξ)B 6= 0 and

(e3TD⊗ ν)B 6= 0.

Thus, all the conditions of Corollary 1 are satisfied and hence the given system is controllable.

If Bi = B for all i = 1, 2, . . . , N, then the following result by Ajayakumar et al. [26] can
be obtained as a consequence of Corollary 1.

Theorem 3 ([26]). Let T be a non-singular matrix triangularizing matrix C, such that T ⊗ I
commutes with A. If J contains a Jordan block of order l ≥ 2 corresponding to the eigenvalue λi0 of
C, then assume that ξk

ijH = 0 for all i = i0, i0 + 1, . . . , i0 + l− 1, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij,

where ξk
ij, i = 1, 2, . . . , N, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij are the left eigenvectors of Ai + λi H

corresponding to the eigenvalues µ
j
i , i = 1, 2, . . . , N, j = 1, 2, . . . , qi. Then, the networked system (3)

is controllable if, and only if,
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(i) eiTD 6= 0 for all i = 1, . . . , N;
(ii) (Ai + λi H, B) is controllable, for i = 1, 2, · · · , N;
(iii) If matrices Ai1 +λi1 H, Ai2 +λi2 H, . . . , Aip +λip H(λik ∈ σ(C), k = 1, . . . , p, where p > 1)

have a common eigenvalue σ, then (ei1 TD) ⊗ (ξ1
i1

B), · · · , (ei1 TD) ⊗ (ξ
γi1
i1

B), . . . , (eip TD) ⊗
(ξ1

ip
B), . . . , (eip TD)⊗ (ξ

γip

ip
B) are linearly independent vectors, where γik ≥ 1 is the geometric

multiplicity of σ for Aik +λik H and ξ l
ik
(l = 1, . . . , γik ) are the left eigenvectors of Aik +λik H

corresponding to σ, k = 1, . . . , p.

Controllability Results in a Special Network Topology

Now we will discuss the controllability of system (5), when the network topology is
given by an upper/lower triangular matrix and the state matrices have certain properties.
Here, also, we will characterize the eigenvalues and eigenvectors of the state matrix F.

Theorem 4. Assume that C is an upper triangular matrix. Let σ(Ai + cii Hi) = {µ1
i , µ2

i , . . . , µ
qi
i }

be the set of eigenvalues of Ai + cii Hi, i = 1, 2, . . . , N. Then, the set of all eigenvalues of F is
given by σ(F) = {µ1

1, µ2
1, . . . , µ

q1
1 , . . . , µ1

N , µ2
N , . . . , µ

qN
N }. Let ξk

ij, k = 1, 2, . . . , γij be the left

eigenvectors of Ai + cii Hi associated with the eigenvalue µ
j
i , where γij is the geometric multiplicity

of µ
j
i for Ai + cii Hi. If ξk

ijHi = 0, for i = 1, 2, . . . , N − 1, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij, then

ei ⊗ ξ1
ij, ei ⊗ ξ1

ij, . . . ei ⊗ ξ
γij
ij , are the left eigenvectors of F associated with the eigenvalues µ

j
i .

Proof. Suppose that C is an upper triangular matrix, say C =




c11 c12 . . . c1N
0 c22 . . . c2N
...

...
. . .

...
0 0 . . . cNN


.

Then

F =




A1 0 . . . 0
0 A2 . . . 0
...

...
. . . 0

0 0 . . . AN


+




c11H1 c12H1 . . . c1N H1
0 c22H2 . . . c2N H2
...

...
. . .

...
0 0 . . . cNN HN




=




A1 + c11H1 c12H1 . . . c1nH1
0 A2 + c22H2 . . . c2nH2
...

...
. . .

...
0 0 . . . AN + cNN HN




is a block upper triangular matrix. Therefore, the eigenvalues of F are precisely the eigen-
values of the matrices Ai + cii Hi, i = 1, 2, . . . , N. That is, if σ(Ai + cii Hi) =

{
µ1

i , µ2
i , . . . , µ

qi
i

}

are the eigenvalues of Ai + cii Hi, i = 1, 2, . . . , N , then

σ(F) = ∪N
i=1σ(Ai + cii Hi) =

{
µ1

1, µ2
1, . . . , µ

q1
1 , . . . , µ1

N , µ2
N , . . . , µ

qN
N

}

are the eigenvalues of F. Now, if ξk
ij, k = 1, 2, . . . , γij represents the left eigenvectors of

Ai + cii H associated with the eigenvalue µ
j
i , then clearly eN ⊗ ξ1

Nj, eN ⊗ ξ2
Nj, . . . , eN ⊗ ξ

γNj
Nj

are left eigenvectors of F corresponding to the eigenvalue µ
j
N . If ξk

ijHi = 0,

k = 1, 2, . . . , γij, i = 1, 2, . . . , N − 1, j = 1, 2, . . . , qi, then ei ⊗ ξ1
ij, ei ⊗ ξ2

ij, . . . ei ⊗ ξ
γij
ij are

left eigenvectors of F associated with the eigenvalue µ
j
i . Now, we will prove that the

the only linearly independent left eigenvectors of F are of the form ei ⊗ ξ, where ξ is a
left eigenvector of Ai + cii Hi for some i. For example, take ξ1, ξ2, . . . , ξN ∈ Rn, such that
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ξ =
[
ξ1 ξ2 . . . ξN

]
∈ RNn is a left eigenvector of F. Then ξF = µξ for some eigenvalue µ

of F implies that



ξ1(A1 + c11H1)
ξ1H + ξ2(A2 + c22H2)

...
∑N−1

i=1 ξi H + ξN(AN + cNN HN)




T

= µ




ξ1
ξ2
...

ξN




Then, clearly µ is an eigenvalue of A1 + c11H1 with left eigenvector ξ1. Then, by our
hypothesis, ξ1H1 = 0. Thus,

ξ1H1 + ξ2(A2 + c22H2) = ξ2(A2 + c22H2) = µξ2

implies that µ is an eigenvalue of A2 + c22H2 with left eigenvector ξ2. Proceeding like
this, we determine that µ is an eigenvalue of Ai + cii Hi for all i = 1, 2, . . . , N with ξi as
left eigenvector. Then, ξ can be expressed as ξ = ∑N

i=1 ei ⊗ ξi, and we have already seen
that ei ⊗ ξi are left eigenvectors of F for any left eigenvector ξi of Ai + cii Hi. Thus, if
Ai + cii Hi, i = 1, 2, . . . , N does not have any common eigenvalue, the only left eigenvectors
of F are ei ⊗ ξk

ij, i = 1, 2, . . . , N, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij, where ξk
ij, k = 1, 2, . . . , γij are

the linearly independent left eigenvectors of Ai + cii H corresponding to the eigenvalue µ
j
i .

Now, suppose that Ai1 + ci1i1 H, Ai2 + ci2i2 H, . . . , Air + cir ir H have a common eigenvalue µ
with left eigenvectors ξi1 , ξi2 , . . . , ξir , respectively, where i0, i1, . . . , ir ∈ {1, 2, . . . , N}. Then,
∑r

α=1 eiα ⊗ ξiα is a left eigenvector of F corresponding to the eigenvalue µ.

Theorem 5. Let C be an upper\lower triangular matrix. Suppose the eigenvectors of Ai + cii Hi
satisfy the conditions given in Theorem 4, then the networked system (3) is controllable if, and only
if,

(i) Every node have external control input.
(ii) (Ai + cii Hi, Bi) is controllable for all i = 1, 2, . . . N.

Proof. Suppose that the networked system (3) is controllable and suppose that di = 0 for
some i, say i0, i.e., di0 = 0. Then the control matrix for the networked system (3) is given by

G =




d1B1 0 . . . 0 . . . 0
0 d2B2 . . . 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . di0 Bi0 . . . 0
...

...
...

...
. . .

...
0 0 . . . 0 . . . dN BN




=




d1B1 0 . . . 0 . . . 0
0 d2B2 . . . 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . 0 . . . 0
...

...
...

...
. . .

...
0 0 . . . 0 . . . dN BN




We have proved that ei0 ⊗ ξk
i0 j, k = 1, 2, . . . , γi0 j are left eigenvectors of F correspond-

ing to the eigenvalue µ
j
i0

, where j = 1, 2, . . . , qi0 . Observe that for any j = 1, 2, . . . , qi0 ,

k = 1, 2, . . . , γi0 j,
(

ei0 ⊗ ξk
i0 j

)
G = 0. Then, by Lemma 3, the given system is not control-

lable, which is a contradiction. Now, suppose that (Ai + cii Hi, Bi) is not controllable for
some i, say i1. Again by Lemma 3, for some eigenvalue µ

j1
i1

(where j1 ∈ {1, 2, . . . , qi1}) of

Ai1 + ci1i1 Hi1 there exists a left eigenvector ξk1
i1 j1

(where k1 ∈ {1, 2, . . . , γi1 j1}), such that

ξk1
i1 j1

Bi1 = 0. Then clearly
(

ei1 ⊗ ξk1
i1 j1

)
G = 0, which is a contradiction.

Conversely, suppose that both (i) and (ii) are satisfied. We have the left eigenvectors of
F are ei ⊗ ξk

ij, where i = 1, 2, . . . , N, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij or their linear combina-

tions. Now
(

ei ⊗ ξk
ij

)
G = 0 if, and only if, either di = 0, ξk

ijBi = 0 or both for some i. Both of
these situations contradict our hypothesis. Then by Lemma 3, system (3) is controllable.
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Example 4. Consider a heterogeneous networked system with three nodes, where the state matrices
and control matrices are given by

A1 =




1 2 1
1 1 −1
0 1 2


, A2 =




1 0 0
−1 1 0
0 −1 1


, A3 =




1 1 −1
0 1 0
0 −1 1


, B1 =




1
0
−1


, B2 =




1
1
−1


, B3 =




0
1
1




The inner-coupling matrices are given by,

H1 =




1 1 −1
0 0 0
1 1 −1


, H2 =




0 0 0
1 2 0
−1 0 1


, H3 =




1 0 2
0 0 0
2 −1 1




The left eigenvectors of A1 are ξ1
11 =

[
−1 −1 1

]
, ξ1

12 =
[
−1 1 1

]
and the only left

eigenvector of A2 is ξ1
21 =

[
1 0 0

]
. We have ξ1

11H1 = ξ1
12H1 = ξ1

21H2 = 0.

(i) From Figure 4, it is clear that all the nodes have external control input.
(ii) (A1, B1), (A2, B2) and (A3 + H3, B3) are controllable.

Thus, all the conditions of Theorem 5 are satisfied. Therefore, the given networked system is
controllable.
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

=




d1B1 0 . . . 0 . . . 0
0 d2B2 . . . 0 . . . 0
...

...
. . .

...
...

...
0 0 . . . 0 . . . 0
...

...
...

...
. . .

...
0 0 . . . 0 . . . dN BN




We have proved that ei0 ⊗ ξk
i0 j, k = 1, 2, . . . , γi0 j are left eigenvectors of F corresponding 288

to the eigenvalue µ
j
i0

, where j = 1, 2, . . . , qi0 . Observe that for any j = 1, 2, . . . , qi0 , k = 289

1, 2, . . . , γi0 j,
(

ei0 ⊗ ξk
i0 j

)
G = 0. Then by Lemma 3, the given system is not controllable, 290

which is a contradiction. Now suppose that (Ai + cii Hi, Bi) is not controllable for some i, say 291

i1. Again by Lemma 3, for some eigenvalue µ
j1
i1

(where j1 ∈ {1, 2, . . . , qi1}) of Ai1 + ci1i1 Hi1 292

there exists a left eigenvector ξk1
i1 j1

(where k1 ∈ {1, 2, . . . , γi1 j1}) such that ξk1
i1 j1

Bi1 = 0. Then 293

clearly
(

ei1 ⊗ ξk1
i1 j1

)
G = 0, which is a contradiction. 294

Conversely, suppose that both (i) and (ii) are satisfied. We have the left eigenvectors of F 295

are ei ⊗ ξk
ij, where i = 1, 2, . . . , N, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij or their linear combinations. 296

Now
(

ei ⊗ ξk
ij

)
G = 0 if and only if either di = 0, ξk

ijBi = 0 or both for some i. Both these 297

situations contradicts our hypothesis. Then by Lemma 3, system (3) is controllable. 298

Example 4. Consider a heterogeneous networked system with 3 nodes, where the state matrices
and control matrices are given by;

A1 =




1 2 1
1 1 −1
0 1 2


, A2 =




1 0 0
−1 1 0
0 −1 1


, A3 =




1 1 −1
0 1 0
0 −1 1


, B1 =




1
0
−1


, B2 =




1
1
−1


, B3 =




0
1
1




The inner-coupling matrices are given by,

H1 =




1 1 −1
0 0 0
1 1 −1


, H2 =




0 0 0
1 2 0
−1 0 1


, H3 =




1 0 2
0 0 0
2 −1 1




v1u1

u3

v2

v3

u2

Figure 4. Take c12 = c13 = c23 = c33 = 1, otherwise cij = 0 and d1 = d2 = d3 = 1.Figure 4. Take c12 = c13 = c23 = c33 = 1, otherwise cij = 0 and d1 = d2 = d3 = 1.

5. Conclusions and Future Scope of Work

This paper provides a necessary and sufficient condition for the controllability of a
heterogeneous networked system. Ajayakumar et al. [26] analyzed heterogeneous net-
worked systems having identical control matrices in each node and obtained a necessary
and sufficient conditions for controllability. Based on this work, it is possible to identify
the nodes that required external control inputs in order to make the uncontrollable system
controllable. In the present work, control matrices are considered to be distinct in each
node and in addition to identifying the nodes that will receive control inputs, it is also
possible to identify the control input matrices that needed to be employed. The existing
results tell us less than ours about how subsystem dynamics, network topology, etc., affect
the controllability of a networked system, and our results are easy to validate. In addition,
controllability results for a more general class of heterogeneous networked systems over
a particular network topology are obtained. We plan to look into the controllability of
networked systems over more general network topologies in the future. The ability to con-
trol networked systems with delays and impulses could be another study area. However,
research is performed in this direction for homogeneous networked systems with one-way
communication and control delays, and this kind of study still needs to be performed on
heterogeneous networked systems.
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