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Abstract: In this study, we present a convergence analysis of a Newton-like midpoint method for
solving nonlinear equations in a Banach space setting. The semilocal convergence is analyzed in two
different ways. The first one is shown by replacing the existing conditions with weaker and tighter
continuity conditions, thereby enhancing its applicability. The second one uses more general ω-
continuity conditions and the majorizing principle. This approach includes only the first order Fréchet
derivative and is applicable for problems that were otherwise hard to solve by using approaches
seen in the literature. Moreover, the local convergence is established along with the existence and
uniqueness region of the solution. The method is useful for solving Engineering and Applied Science
problems. The paper ends with numerical examples that show the applicability of our convergence
theorems in cases not covered in earlier studies.

Keywords: nonlinear equations; Newton’s method; local and semilocal convergence; Banach space;
Fréchet derivative; majorizing sequences
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1. Introduction

One of the most challenging problems in Engineering and Applied Sciences is to
determine a locally unique solution x∗ of a nonlinear equation

F(x) = 0, (1)

where the operator F is defined on the Banach space B1 with values in a Banach space B2.
As an example, engineering problems reduce to solving differential or integral equations,
which in turn are set up as (1). A solution x∗ of the Equation (1) is difficult to find in
closed form. That forces researchers to develop iterative methods, which generate iterations
convergent to x∗, provided that certain initial conditions hold.

A popular iterative method is defined for each m = 0, 1, 2, . . . by

x0 ∈ Ω ⊆ B1, xm+1 = xm − F′(xm)
−1F(xm). (2)

This is the so-called Newton’s method (NM), which is only quadratically convergent [1–4].
In order to increase the order of convergence as well as the efficiency, a plethora of iterative
methods have been developed (see, e.g., [5–9] and references therein). Among those, special
attention has been given to the Newton-like midpoint method (NLMM) defined by
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x0 ∈ Ω, y0 = x0 − F′(x0)
−1F(x0)

xm+1 =xm − F′
(

xm + ym

2

)−1
F(xm), m = 0, 1, 2, . . . (3)

ym =xm − F′
(

xm−1 + ym−1

2

)−1
F(xm), m = 1, 2, 3, . . . .

NLMM requires per iteration one operator evaluation and one of the inverse of F′.
The efficiency index according to Ostrowski is shown to be approximately 1.5537 . . . [10].
This index is higher than NM (1.4142 . . . ), as well as the one given in [11] (1.3160 . . . ). The
construction of this method was essentially given in [12] when B1 = B2 but with no formal
proof of convergence. That is why the semilocal convergence is developed in [10] under
Kantorovich’s hypotheses. Moreover, favorable comparisons are given to methods using
similar information.

Motivation for writing this study: The following concerns arise with the applicability of
this method in general.

(1) The convergence region in [10] is not large.
(2) The upper bounds on the distances ‖xn − x∗‖ and ‖xn+1 − xn‖ are not tight enough.
(3) The uniqueness region of the solution x∗ is not large.
(4) A Lipschitz condition on the second derivative is assumed (see the condition (H3)

in Section 3). However, the second derivative does not appear on the method and
may not exist (see the numerical example in Section 4). Additionally, the method
may converge.

(5) The local convergence analysis is not studied in [10].

Novelty: Due to the importance of this method, the items (1)–(5) are positively addressed.
The current study includes two procedures for analyzing the semilocal convergence of
NLMM. The first analysis replaces the conditions used in [10] with weaker and tighter con-
ditions, thereby enlarging the uniqueness region. In the second semilocal convergence, the
convergence conditions used in the earlier section have been replaced by more generalized
ω-continuity conditions using majorizing sequences [1,4,5,11–17]. The main advantage of
this approach is that it uses only the first derivative, which actually appears in NLMM,
for proving the convergence result instead of the second derivative used in [10], thereby
enhancing its applicability. Thus, our work improves the results derived in [10] under more
stringent conditions and generates finer majorizing sequences. The innovation of the study
lies in the fact that extensions are achieved under weaker conditions (see also Remarks
throughout the paper). The local convergence of NLMM is also established, along with
the existence and uniqueness region of the solution. Moreover, the new error analysis is
finer, requiring fewer iterates to achieve a predetermined error tolerance. Furthermore,
more precise information is provided on the uniqueness domain of the solution. Finally,
the technique can be used on other methods utilizing the inverse of an operator.

The rest of the paper is structured as follows: Section 2 includes mathematical back-
ground. In Section 3, we develop the first kind of semilocal convergence theorem based
on weaker conditions. The generalized ω-continuity conditions are applied to prove the
second type of semilocal convergence theorem in Section 4. The local convergence, along
with the uniqueness results of NLMM, is studied in Section 5. In Section 6, numerical
examples are given to illustrate the theoretical results. Concluding remarks are reported in
Section 7.
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2. Mathematical Background

The study of the behavior of a certain cubic polynomial and the corresponding scalar
Newton function play a role in the semilocal convergence of NLMM. Let L > 0, M ≥ 0 and
d ≥ 0 be given parameters. Define the cubic polynomial

q(L, M, d)(t) = q(t) =
L
6

t3 +
M
2

t2 − t + d, (4)

the Newton iteration function

Nq(t) = t− q′(t)−1q(t) (5)

and the scalar sequences {um}, {vm} for

u0 = 0, v0 = u0 − q′(u0)
−1q(u0),

vm =um − q′
(

um−1 + vm−1

2

)−1
q(um)

and

um+1 =um − q′
(

um + vm

2

)−1
q(um). (6)

The proof of the following auxiliary result containing some properties of q, Nq, {vm},
and {um} can be found in [10].

Lemma 1. Suppose:

6dM3 + 9d2L2 + 18dML− 3M2 − 8L ≤ 0 (7)

or

d ≤ 4L + M2 −M
√

M2 + 2L
3L(M +

√
M2 + 2L)

= λ(L, M). (8)

Then, the following assertions hold:

(i) The polynomial q given by the Formula (4) has two zeros u∗, u∗∗ with 0 < u∗ ≤ u∗∗.

(ii) q is decreasing in the interval [0, u∗].

(iii) q′ is increasing and q is convex in [0, u∗].

(iv) q′′ is increasing in [0, u∗].

(v) Nq is increasing in [0, u∗], Nq(u∗) = u∗ and N′q(u∗) = 0.

(vi) The function

hq(t) =
q(t)q′′(t)

q′(t)2 (9)

is positive in [0, u∗) and hq(u∗) = 0.

(vii) 0 ≤ um ≤ vm ≤ um+1 < u∗ and limm→∞ um = u∗.

3. Semilocal Convergence I

The following conditions relating the parameters L, M, d to NLMM have been used in
the semilocal convergence.

Suppose:

(H1) There exist an initial guess x0 ∈ D and a parameter d ≥ 0 such that
F′(x0)

−1 ∈ L(B2, B1) and ‖F′(x0)
−1F(x0)‖ ≤ d.
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(H2) ‖F′(x0)
−1F′′(x0)‖ ≤ M.

(H3) ‖F′(x0)
−1(F′′(y) − F′′(x))‖ ≤ K1‖x − y‖ for some parameter K1 > 0 and each

x, y ∈ D.
(H4) d ≤ λ(K1, M).

and
(H5) U[x0, u∗] ⊂ D.

The following semilocal convergence result was shown in [2,10].

Theorem 1. Suppose that the conditions (H1)–(H5) and

(H6) U[x0, u∗] ⊂ Ω

for L = K1 hold. Then, the following assertions hold:

(1) ‖F′(x0)
−1F(x0)‖ ≤ −q′(0)−1q(0).

(2) ‖F′(x0)
−1F′′(x)‖ ≤ q′′(u) for each x ∈ Ω such that ‖x− x0‖ ≤ u ≤ u∗.

(3) ‖F′(x0)
−1(F′′(y) − F′′(x))‖ ≤ |q′′(v) − q′′(u)| for each u, v ∈ [0, u∗] such that

‖y− x‖ ≤ |v− u|.
(4) ‖F′(x0)

−1F(xm)‖ ≤ q(um).
(5) ‖F′(xm)−1F′(x0)‖ ≤ q′(tm)−1.
(6) ‖ym − xm‖ ≤ vm − um.

(7) ‖F′
(

xm+ym
2

)−1
F′(x0)‖ ≤ −q′

( um+sm
2
)−1.

(8) ‖xm+1 − xm‖ ≤ vm+1 − vm.
(9) ‖xm+1 − ym‖ ≤ vm+1 − um.
(10) The sequence {xm} generated by NLMM is well defined in the ball U[x0, u∗], remains in

U[x0, u∗] and converges to the only solution x∗ of the equation F(x) = 0 in U[x0, u∗].
(11) Moreover, the following error estimates hold:

‖x∗ − xm‖ ≤ u∗ − um

and

lim
m→+∞

‖xm+1 − x∗‖
‖xm − x∗‖1+

√
2
=

∥∥∥∥1
2

F′(x∗)−1F′′(x∗)
∥∥∥∥

2(1+
√

2)
2+
√

2
.

Next, the preceding results are extended without additional conditions. Suppose:

(H′3) ‖F′(x0)
−1(F′′(x)− F′′(x0))‖ ≤ K0‖x− x0‖ for some K0 > 0 and each x ∈ D.

Define the parameter

r =
2

M +
√

M2 + 2K0
(10)

and the region

D0 = U(x0, r) ∩ D. (11)

(H′′3 )‖F′(x0)
−1(F′′(y)− F′′(x))‖ ≤ K‖y− x‖ for some parameter K > 0 and each x, y ∈ D0.

Clearly, we have

K0 ≤ K1 (12)

and

K ≤ K1, (13)
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since
D0 ⊆ D. (14)

It is assumed without loss of generality

K0 ≤ K. (15)

Otherwise, the results that follow hold with K0 replacing K. Notice also that the
computation of the parameter K1 requires the computation of K0, K and K1 = K1(D),
K0 = K0(D), but K = K(D0, D). Hence, no additional conditions are required to develop
the results that follow.

Let us consider the cubic polynomials

q0(t) = q(K0, L, d) =
K0

6
t3 +

M
2

t2 − t + d (16)

and
q1(t) = q(K, L, d) =

K
6

t3 − M
2

t2 − t + d. (17)

It follows by (4), (12), (13), (16) and (17) that

q0(t) ≤ q(t), (18)

q′0(t) ≤ q′(t), (19)

q1(t) ≤ q(t), (20)

q′1(t) ≤ q′(t), (21)

q0(t) ≤ q1(t), (22)

and
q′0(t) ≤ q′1(t) (23)

for each t ≥ 0.
Suppose that

(H′4) d ≤ λ(K, M).

The following auxiliary result is needed.

Lemma 2. Suppose that the condition (H′4) holds. Then, the conclusions of Lemma 1 with K, q1
replace L and q, respectively.

Proof. Simply replace L, q, u∗, u∗∗ by K, q1, u∗, u∗∗, respectively, in the proof of Lemma 1.

Remark 1. It follows by (i) of Lemma 1 and (H′4) that the polynomial q1 has two zeros u∗, u∗∗

with 0 < u∗ ≤ u∗∗. Moreover, if (H4) holds, then by (13) and (20),

u∗ ≤ u∗ (24)

and
u∗∗ ≤ u∗∗, (25)

since q1(u∗) ≤ q(u∗) = 0, q1(0) = d > 0, and q1(u∗∗) ≤ q(u∗∗) = 0.

Notice also that:

(a) The parameter r is the unique positive zero of the equation

q′0(t)− 1 = 0 (26)



Foundations 2023, 3 87

and

q′0(t) = q′1(t) for each t ∈ [0, r]. (27)

(b)
(H4)⇒ (H′4), (28)

but not necessarily vice versa unless if K1 = K.
Hence, we arrived at the following extension of the Theorem 1.

Theorem 2. Suppose that the conditions (H1), (H2), (H′3), (H′′3 ), (H′4) and

(H′5) U[x0, u∗] ⊂ D

hold. Then, the assertions (1)–(11) of Theorem 1 hold with K, q1, u∗, {um}, {vm} replacing K1, q,
u∗, {um}, {vm}, respectively, where

u0 = 0, v0 =u0 − q′1(u0)
−1q1(u0),

vm =um − q′1

(
um−1 + vm−1

2

)−1
q(um)

and

um+1 = um − q′1

(
um + vm

2

)−1
q1(um).

Proof. The assertions (1)–(6) follow with the above changes. Concerning the assertion (7),
set z0 = x0+y0

2 , µ0 = u0+v0
2 and F1(x) = F′(x0)

−1F(x) for each x ∈ D. Then, we have in
turn that

F′1(z0) = F′1(x0) +
∫ 1

0
F′′1 (x0 + θ(z0 − x0))(z0 − x0, ·)dθ,

leading to

‖F′1(z0)− I‖ ≤
∥∥∥∥∫ 1

0
F′′1 (x0 + θ(z0 − x0))(z0 − x0, ·)dθ

∥∥∥∥
≤
∥∥∥∥F′′1 (x0)(z0 − x0) +

∫ 1

0
[F′′1 (x0 + θ(z0 − x0))− F′′1 (x0)](z0 − x0, ·)dθ

∥∥∥∥ (29)

≤ ‖F′′1 (x0)‖‖z0 − x0‖+
∫ 1

0
Kθ(µ0 − u0)‖z0 − x0‖dθ.

Notice that the last inequality in (29) follows from (H′′3 ), F′′1 (x) = F′(x0)
−1F′′(x) and

q′′(t) = Kt + M.
Then, from (H2) and the definition of y0 and u0

‖F′1(z0)− I‖ ≤ q′0(u0)(µ0 − u0) +
K
2
(µ0 − u0)

2

≤ q′0(µ0)− q′0(u0)

= 1 + q′0(µ0) < 1. (30)

The condition (H′5) in Theorem 2 can be replaced by

(H′5) U[x0, r] ⊂ D,

where r is given by (10).
Moreover, the uniqueness ball can be enlarged from U(x0, u∗) given in Theorem 1

to U(x0, r). This can be seen using the weaker condition (H′3) instead of (H3) used in
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Theorem 1 in [10] or Theorem 2 used by us. Indeed, in Theorem 1, the estimate was
obtained for y∗ ∈ U(x0, u∗),∥∥∥∥∫ 1

0
F′(x0)

−1F′(y∗ + θ(x∗ − y∗))dθ − I
∥∥∥∥ ≤ ∫ 1

0
(q′(‖y∗ + θ(x∗ − y∗)− x0‖)− q′(0))dθ < 1,

since q′(t) < 0 for all t ∈ [0, 1], leading to

0 = F(y∗)− F(x∗) =
∫ y∗

x∗
F(v)dv =

∫ 1

0
F′(y∗ + t(x∗ − y∗))dt(y∗ − x∗),

and consequently, y∗ = x∗. However, the same estimate is obtained using the tighter
condition (H′3) with q1, u∗ replacing q, u∗, respectively.
(c) The Lipschitz constant K can be replaced by an at least as small.

It follows by the Banach lemma on linear operators with inverses [3,5] and (30) that

‖F′(z0)
−1F′(x0)‖ ≤

1
1− ‖F′(z0)− I‖

≤ − 1
q′0(µ0)

≤ − 1
q′1(µ0)

, (31)

showing the assertion (7). Notice that in Theorem 1, the less tight estimate than (31) is
shown under the stronger and not actually needed condition (H3), which is

‖F′(z0)
−1F′(x0)‖ ≤ −

1
q′(µ0)

. (32)

In view of the estimate (31), the rest of the proof follows as in [10].

Remark 2. (a) In view of (24) and (28), Theorem 2 extends Theorem 1 with advantages already stated.

Define the ball U(y0, r− d) for d < r. Notice that U(y0, r− d) ⊂ U(x0, r). Then, suppose

(H′′′3 )‖F′(x0)
−1(F′′(y) − F′′(x))‖ ≤ K2‖y − x‖ for some K2 > 0 and each

y, x ∈ D1 = U(y0, r− d) ∩ D.

It follows that (H′′′3 ), K2 can replace (H′′3 ), K, respectively, in our results and

K2 ≤ K.

The iterates {xm} ⊂ U(y0, r− d).

4. Semilocal Convergence II

The convergence conditions of the previous section may not hold, even if the method (3)
converges. As a motivational example, consider the function f defined on the interval
D2 = [−0.5, 1.5] by

f (t) =

{
t2 log t + t4 − t3, t 6= 0
0, t = 0.

Then, clearly the function f ′′ is unbounded on D2. Hence, the results of the previous
section cannot guarantee the convergence of method (3) to the solution x∗ = 1 ∈ D2.
That is why we drop the conditions (H2)-(H5), (H′3), (H′′3 ), (H′4) and (H′5) and utilize the
more general ω-continuity conditions, the first derivative that actually only appears on
the method (3) and majorizing sequences to present another semilocal convergence result
under weaker conditions.

Let h0 : [0,+∞) → R be a continuous and nondecreasing function. Suppose that
the equation

h0(t)− 1 = 0
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has a smallest positive solution s. Moreover, suppose that there exists a function h : [0, s)→ R,
which is continuous and nondecreasing. Let also parameters t0, s0, t1 be such that t0 = 0,
s0 > 0 and s0 < t1. Define the sequences {tm}, {sm} by

pm = h0

(
tm + sm

2

)
,

tm+1 = sm +
h
(

sm−sm−1+tm−tm−1
2

)
1− pm

(sm − tm), (33)

αm+1 =
∫ 1

0
h
(

sm − tm

2
+ θ(tm+1 − tm)

)
dθ(tm+1 − tm)

sm+1 = tm+1 +
αm+1

1− pm
.

This sequence shall be shown to be majorizing for the method (3). However, a conver-
gence result is developed first.

Lemma 3. Suppose that for each m = 0, 1, 2, . . . and some β > 0

pm < 1 and tm ≤ β (34)

Then, the following items hold:

0 ≤ tm ≤ sm ≤ tm+1 ≤ β (35)

and

lim
m→∞

tm = α ≤ β. (36)

Proof. It follows from the definition of the sequence {tm} given by Formula (33) and the
condition (34) that items (35) and (36) hold, the limm→∞ tm exists, satisfying (36), where α is
the unique least upper bound of this sequence.

Remark 3. A possible choice for β is any number in the interval (0, s].

The conditions connecting the “h ”functions to the operators F and F′ are:

(A1) There exists an initial guess x0 ∈ D, s0 ≥ 0, t1 ≥ s0 such that F′(x0)
−1 ∈ L(B2, B1),

‖F′(x0)
−1F(x0)‖ ≤ s0, and for y0 = x0 − F′(x0)

−1F(x0), F′
(

x0+y0
2

)−1
∈ L(B2, B1)

with ∥∥∥∥∥F′
(

x0 + y0

2

)−1
F(x0)− F′(x0)

−1F(x0)

∥∥∥∥∥ ≤ t1 − s0.

(A2) ‖F′(x0)
−1(F′(x)− F′(x0))‖ ≤ h0(‖x− x0‖) for each x ∈ D.

Set

D3 = U(x0, s) ∩ D.

(A3) ‖F′(x0)
−1(F′(y)− F′(x))‖ ≤ h(‖y− x‖) for each x, y ∈ D3.

(A4) The condition (34) holds
and

(A5) U[x0, α] ⊂ D.

An Ostrowski-like representation [17] is needed for the iterates {xm} and {ym}.
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Lemma 4. Suppose that the iterates {xm}, {ym} exist for each m = 1, 2, . . . . Then, the following
items hold

xm+1 − ym = F′
(

xm + ym

2

)−1(
F′
(

xm−1 + ym−1

2

)
− F′

(
xm + ym

2

))
(ym − xm) (37)

and

F(xm+1) =

[∫ 1

0
F′(xm + θ(xm+1 − xm))dθ − F′

(
xm + ym

2

)]
(xm+1 − xm). (38)

Proof. By subtracting the first substep of the method from the second substep, we obtain
in turn that

xm+1 − ym =

[
F′
(

xm−1 + ym−1

2

)−1
− F′

(
xm + ym

2

)−1
]

F(xm)

=−
[

F′
(

xm + ym

2

)−1
− F′

(
xm−1 + ym−1

2

)−1
]

F(xm)

=− F′
(

xm + ym

2

)−1[
F′
(

xm−1 + ym−1

2

)
− F′

(
xm + ym

2

)]
F′
(

xm−1 + ym−1

2

)−1
F(xm)

=F′
(

xm + ym

2

)−1[
F′
(

xm−1 + ym−1

2

)
− F′

(
xm + ym

2

)]
(ym − xm)

showing the estimate (34). The estimate (38) follows from the identity

F(xm+1) = F(xm+1)− F(xm)− F′
(

xm + ym

2

)
(xm+1 − xm),

which is obtained by the first substep of NLMM.

Next, the semilocal convergence is developed for the method (3).

Theorem 3. Suppose that the conditions (A1)–(A5) hold. Then, the sequence {xm} converges to
a solution x∗ ∈ U[x0, α] such that

‖xm − x∗‖ ≤ α− tm.

Proof. Mathematical induction is applied to show

‖ym − xm‖ ≤ sm − tm < α (39)

and
‖xm+1 − ym‖ ≤ tm+1 − sm. (40)

The condition (A1) and the Formula (4) (for m = 0) imply that the estimate (39) holds
for m = 0. Then, we also have the iterate y0 ∈ U(x0, α). Moreover,∥∥∥∥ x0 + y0

2
− x0

∥∥∥∥ =
1
2
‖y0 − x0‖ < α, so

x0 + y0

2
∈ U(x0, α). Let v ∈ U(x0, α) be an ar-

bitrary point. Then, the condition (A2) gives

‖F′(x0)
−1(F′(v)− F′(x0))‖ ≤ h0(‖v− x0‖) ≤ h0(α) < 1.

That is, F′(v)−1 ∈ L(B2, B1) and

‖F′(v)−1F′(x0)‖ ≤
1

1− h0(‖v− x0‖)
. (41)
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In particular, if v =
x0 + y0

2
, then the iterate y1 and x1 are well defined by the

method (3). Moreover, the last condition in (A1) and (33) give

‖x1 − y0‖ =
∥∥∥∥∥F′
(

x0 + y0

2

)−1
F(x0)− F′(x0)

−1F(x0)

∥∥∥∥∥ ≤ t1 − s0.

Thus, the assertion (40) holds for m = 0. Suppose that the assertions (39) and (40) held
for all integers smaller than n− 1. Then, we obtain from

‖F′(x0)
−1
(

F′
(

xm + ym

2

)
− F′(x0)

)
‖ ≤ h0

(∥∥∥∥ xm + ym

2
− x0

∥∥∥∥)
≤ h0

(
‖xm − x0‖+ ‖ym − x0‖

2

)
≤ pm < 1,

thus, ∥∥∥∥∥F′
(

xm + ym

2

)−1
F′(x0)

∥∥∥∥∥ ≤ 1
1− pm

. (42)

Then, by (37), we obtain in turn that

xm+1 − ym =

[
F′
(

xm−1 + ym−1

2

)−1
− F′

(
xm + ym

2

)−1
]

F(xm)

= −F′
(

xm + ym

2

)−1[
F′
(

xm−1 + ym−1

2

)
− F′

(
xm + ym

2

)]
F′
(

xm−1 + ym−1

2

)−1
F(xm) (43)

= F′
(

xm + ym

2

)−1[
F′
(

xm−1 + ym−1

2

)
− F′

(
xm + ym

2

)]
(ym − xm).

It follows from (33), (A3), (42), (43) and the induction hypotheses that

‖xm+1 − ym‖ ≤
h
(
‖ym−ym−1‖+‖xm−xm−1‖

2

)
‖ym − xm‖

1− pm

≤
h
(

sm−sm−1+tm−tm−1
2

)
(sm − tm)

1− pm
= tm+1 − sm (44)

and

‖xm+1 − x0‖ ≤ ‖xm+1 − ym‖+ ‖ym − x0‖ ≤ tm+1 − sm + sm − t0 = tm+1 < α.

Hence, (40) holds, and the iterate xm+1 ∈ U(x0, α). Furthermore, by (38) and the
second substep of the method (3), we have in turn that

‖ym+1 − xm+1‖ ≤ ‖F′(xm+1)
−1F′(x0)‖‖F′(x0)

−1F(xm+1)‖

≤

∫ 1
0 h
(
‖xm + θ(xm+1 − xm)− xm+ym

2 ‖
)

dθ‖xm+1 − xm‖
1− pm

(45)

≤

∫ 1
0 h
(

sm−tm
2 + θ(tm+1 − tm)

)
dθ(tm+1 − tm)

1− pm

= sm+1 − tm+1

and

‖ym+1 − x0‖ ≤ ‖ym+1 − xm+1‖+ ‖xm+1 − x0‖ ≤ sm+1 − tm+1 + tm+1 − t0 = sm+1 < α.
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Thus, the induction for the estimates (39) and (40) is terminated.
However, the sequence {tm} is Cauchy as convergent by Lemma 3. Therefore, the

sequence {xm} is also Cauchy in a Banach space B1, and as such, it converges to some
x∗ ∈ U[x0, α], since this set is closed. Furthermore, by using the continuity of F and letting
n→ +∞ in the calculation,

‖F′(x0)
−1F(xm+1)‖ ≤ αm+1, (46)

we conclude that F(x∗) = 0.

Concerning the uniqueness of the solution in a neighborhood about the point x0,
we have:

Proposition 1. Suppose:

(a) There exists a solution z∗ ∈ U(x0, ϑ) of the equation F(x) = 0 for some ϑ > 0.
(b) The condition (A2) holds on the ball U(x0, ϑ)

and

(c) There exists ϑ ≥ ϑ such that

∫ 1

0
h0(θϑ)dθ < 1. (47)

Set D4 = U[x0, ϑ] ∩ D. Then, the equation F(x) = 0 is uniquely solvable by z∗ in the
region D4.

Proof. Let v∗ ∈ D4 with F(v∗) = 0. Define the linear operator T =
∫ 1

0 F′(z∗ + θ(v∗ − z∗))dθ.
Then, it follows by condition (A2) and (47) that

‖F′(x0)
−1(T − F′(x0))‖ ≤

∫ 1

0
h0(‖z∗ − x0 + θ(z∗ − v∗)‖dθ∫ 1

0
h0((1− θ)ϑ + θϑ)dθ < 1, (48)

which implies v∗ = z∗.

Remark 4. (1) If all the conditions of Theorem 3 hold, then we can set ϑ = α.
(2) The condition (A5) can be replaced by

(A′5) U[x0, α] ⊂ D.

(3) Suppose that d < s. Define the set D5 = U(y0, s− d) ∩ D. Notice that D5 ⊂ U(x0, s).
Then, a tighter function h is obtained if D5 replaces D3 in the condition (A2).

5. Local Convergence

We shall introduce some scalar functions and some parameters to show the local
convergence analysis of NLMM.

Suppose:

(i) There exists a function ψ1 : [0,+∞)→ R, which is nondecreasing and continuous and
a parameter M2 ≥ 0 such that the function ψ2(t)− 1 has a smallest zero ρ2 ∈ (0,+∞),
where ψ2 : [0,+∞)→ R is defined by

ψ2(t) =
(∫ 1

0
ψ1(θt)dθ + M2

)
t.

(ii) The function ψ3 : [0, ρ2)→ R is such that

ψ3(t)− 1
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has a smallest zero r3 ∈ (0, ρ2), where

ψ3(t) =

[∫ 1
0

∫ 1
0 ψ1(((1− τ) + θτ)t)

(
1
2 + | 12 − θ|

)
dτdθ + 1

2 M2

]
t

1− ψ2(t)

The parameter r3 shall be shown to be a radius of convergence for NLMM.
The convergence conditions are:

(l1) There exists a simple solution x∗ ∈ Ω of the equation F(x) = 0 and a parameter
M2 ≥ 0 such that ‖F′(x∗)−1F′′(x∗)‖ ≤ M2.

(l2) ‖F′(x∗)−1(F′′(x)− F′′(x∗))‖ ≤ ψ1(‖x− x∗‖) for each x ∈ Ω.
(l3) U[x∗, r3] ∈ Ω.

Next, the local convergence is given for NLMM.

Theorem 4. Suppose that the conditions (l1)− (l3) hold. Then, the sequence {xm} generated by
NLMM converges to x∗ provided that x0 ∈ U(x∗, r3).

Proof. Let z ∈ U(x∗, r3). It follows by the conditions (l1), (l2) and the definition of the
radius r3 in turn that

‖F′(x∗)−1(F′(z)− F′(x∗))‖

=

∥∥∥∥∫ 1

0
F′(x∗)−1F′′(x∗ + θ(z− x∗))dθ(z− x∗)

∥∥∥∥
≤
∥∥∥∥∫ 1

0
F′(x∗)−1(F′′(x∗ + θ(z− x∗)− F′′(x∗))dθ(z− x∗)

∥∥∥∥+ ‖F′(x∗)−1F′′(x∗)(z− x∗)‖

≤
∫ 1

0
ψ1(θ‖z− x∗‖)dθ‖z− x∗‖+ M2‖z− x∗‖ = ψ2(‖z− x∗‖) < 1;

thus, F′(z)−1 ∈ L(B2, B1) and

‖F′(z)−1F′(x∗)‖ ≤ 1
1− ψ2(‖z− x∗‖) . (49)

By hypothesis x0 ∈ U(x∗, r3) and (49) for z = x0, we have that F′(x0)
−1 ∈ L(B2, B1)

and the iterate y0 is well defined by the first substep of NLMM.
Moreover, we can write for yθ = x∗ + θ(x0 − x∗)

y0 − x∗ = −F′(x0)
−1
[∫ 1

0
F′(yθ)dθ − F′(x0)

]
(yθ − x∗)

= −F′(x0)
−1
∫ 1

0

∫ 1

0
F′′(x0 + τ(yθ − x0))dθdτ(yθ − x∗)

= −F′(x0)
−1
∫ 1

0

∫ 1

0

[
F′′(x0 + τ(yθ − x0))− F′′(x∗)

]
dθdτ(yθ − x∗) (50)

− F′(x0)
−1
∫ 1

0

∫ 1

0
F′′(x∗)dθdτ(yθ − x∗).

By applying the condition (l2) and (49) (for z = x0) on (50), we obtain in turn that

‖y0 − x∗‖ ≤

∫ 1
0

∫ 1
0 ψ1(((1− τ) + θτ)‖x0 − x∗‖)θdθdτ‖x0 − x∗‖+ 1

2
M2‖x0 − x∗‖

1− ψ2(‖x0 − x∗‖) (51)

≤ ψ3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r3,
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where we used that

x0 − x∗ + τ(yθ − x0) = ((1− τ) + θτ)(x0 − x∗)

and θ ≤ 1
2 +

∣∣∣ 1
2 − θ

∣∣∣. Thus, the iterate y0 ∈ U(x∗, r3). Then, notice that∥∥∥∥ x0 + y0

2
− x∗

∥∥∥∥ ≤ 1
2
(‖x0 − x∗‖+ ‖y0 − x∗‖) < r3,

so the point z0 = x0+y0
2 ∈ U(x∗, r3).

Suppose that zm = xm+ym
2 ∈ U(x∗, r3). Then, we also have

‖zm − x∗‖ ≤ 1
2
(‖xm − x∗‖+ ‖ym − x∗‖) < r3,

so the iterates xm+1 and ym are well defined by NLMM. Then, we can write for
ym

θ = x∗ + θ(xm − x∗) and Sm = F′
(

xm+ym
2

)
xm+1 − x∗ = −S−1

m

[∫ 1

0
F′(yθ)dθ − Sm

]
(xm − x∗) (52)

However, the expression in the bracket can be written as∫ 1

0
F′(yθ)dθ − Sm =

∫ 1

0

∫ 1

0
F′′(zm + τ(ym

θ − zm))dθdτ(ym
θ − x∗)

=
∫ 1

0

∫ 1

0

[
F′′(zm + τ(ym

θ − zm))− F′′(x∗)
]
dθdτ(ym

θ − x∗) (53)

+
∫ 1

0

∫ 1

0
F′′(x∗)dθdτ(ym

θ − x∗).

In view of (49) (for z = zm), (52), (53), we obtain

‖xm+1 − x∗‖ ≤ qm‖xm − x∗‖2

1− ψ2(‖xm − x∗‖) (54)

≤ ψ3(‖xm − x∗‖)‖xm − x∗‖ ≤ ‖xm − x∗‖,

where, for the numerator, we obtain

∫ 1

0

∫ 1

0
ψ1(zm − x∗ + τ(ym

θ − zm))(ym
θ − zm)dθdτ‖xm − x∗‖+ M2

∫ 1

0
‖ym

θ − zm‖dθ‖xm − x∗‖

≤
∫ 1

0

∫ 1

0
ψ1

(
1
2
(1− τ)(‖xm − x∗‖+ ‖ym − x∗‖) + τθ‖xm − x∗‖

)
∗
(
‖ym − x∗‖

2
+

∣∣∣∣12 − θ

∣∣∣∣‖xm − x∗‖
)

dθdτ‖xm − x∗‖+ 1
2

M2

∫ 1

0

(
1
2
+

∣∣∣∣12 − θ

∣∣∣∣)dθ‖xm − x∗‖ (55)

≤
∫ 1

0

∫ 1

0
ψ1(((1− τ) + τθ)‖xm − x∗‖)

(
1
2
+

∣∣∣∣12 − θ

∣∣∣∣)dθdτ‖xm − x∗‖2

+
1
2

M2‖xm − x∗‖2 = qm‖xm − x∗‖2,

where we also used ‖ym − x∗‖ ≤ ‖xm − x∗‖.
Similarly, the estimate

ym − x∗ = −S−1
m−1

[∫ 1

0
F′(ym−1

θ )− Sm−1

]
(xm − x∗),
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we obtain as in (54)

‖ym − x∗‖ ≤ qm−1‖xm−1 − x∗‖‖xm − x∗‖
1− ψ2(‖xm−1 − x∗‖)

≤ ψ3(‖xm−1 − x∗‖)‖xm − x∗‖ ≤ ‖xm − x∗‖.

Hence, the iterates xm+1, ym ∈ U(x∗, r3) for each m = 0, 1, 2, . . . . Then, from the
estimates

‖xm+1 − x∗‖ ≤ ψ3(‖x0 − x∗‖)‖xm − x∗‖

and

‖ym − x∗‖ ≤ ψ3(‖x0 − x∗‖)‖xm − x∗‖,

we deduce that limm→∞ xm = limm→∞ ym = x∗ since ψ3(‖x0 − x∗‖) ∈ [0, 1).

The uniqueness of the solution ball is determined in the next result.

Proposition 2. Suppose:

(i) The condition (l1) holds.
(ii) There exists a solution z∗ ∈ U(x∗, ρ3) for some ρ3 > 0.
(iii) The condition (l3) holds on the ball U(x∗, ρ3).

and
(iv) There exists ρ4 ≥ ρ3 such that

∫ 1

0

∫ 1

0
ψ1(τθρ4)θρ4dθdρ +

1
2

M2ρ4 < 1. (56)

Set D6 = U[x∗, ρ4] ∩Ω. Then, the only solution of the equation F(x) = 0 in the region D6
is x∗.

Proof. Let z∗ ∈ D6 with F(z∗) = 0. Set z∗θ = x∗ + θ(z∗ − x∗) and T =
∫ 1

0 F′(z∗θ )dθ. Then,
we can write∫ 1

0
(F′(z∗θ )− F′(x∗))dθ =

∫ 1

0

∫ 1

0
F′′(x∗ + τ(z∗θ − x∗))(z∗θ − x∗)dθdτ

=
∫ 1

0

∫ 1

0
[F′′(x∗ + τ(z∗θ − x∗))− F′(x∗)]θ(z∗θ − x∗)dθdτ (57)

+
∫ 1

0

∫ 1

0
F′′(x∗)θ(z∗θ − x∗)dθdτ.

By composing (57) with F′(x∗)−1, using (l2) and (56), we obtain in turn that

‖F′(x∗)−1(T − F′(x∗)‖ ≤
∫ 1

0

∫ 1

0
ψ1(τθ‖z∗ − x∗‖)θ‖z∗ − x∗‖dθdτ +

1
2

M2‖z∗ − x∗‖

≤
∫ 1

0

∫ 1

0
ψ1(τθρ4)θρ4dθdρ +

1
2

M2ρ4 < 1;

thus, we conclude again that z∗ = x∗.

Remark 5. We can certainly choose ρ3 = r3.

6. Numerical Examples

In this section, some numerical examples are solved in order to corroborate the theo-
retical results obtained and the efficacy of our approach.
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Example 1. Let B1 = B2 and Ω = U(x0, 1− γ) for some parameter γ ∈ (0, 1). Define the
polynomial F on the interval Ω by

F(v) =
v4

4
+ ϕ− γv for some ϕ ∈ R. (58)

Choose x0 = 1. Then, if we substitute F on the “h ”conditions, we see that the conditions

h0(t) =
(γ2 − 5γ + 7)

1− γ
t and h(t) =

3(1 + s)2

1− γ
t

are verified provided that

d =
| 14 − γ + ϕ|

1− γ
, K0 =

3(3− γ)

1− γ
, K1 =

6(2− γ)

1− γ
, K =

6(1 + r)
1− γ

for

r =
2(1− γ)

3 +
√

9 + 6(3− γ)(1− γ)
, and M =

3
1− γ

.

Notice that K0 < K1 and K < K1. Moreover, λ(K, M) < λ(K1, M).
For ϕ = − 1

10 and γ ∈ (0.0175194 . . . , 0.0301594 . . . ) ∪ (0.230014 . . . , 0.233713 . . . ) ⊂
(0, 1),

d > λ(K1, M).

and
d < λ(K, M).

Thus, it is clear that our new condition (H′4) holds true, but the condition (H4) used in [10]
does not hold. By taking γ = 1

10 and ϕ = − 1
10 , we obtain the following

β = 0.138249 . . . , s0 = 0.055555 . . . , t1 = 0.061053 . . . , p0 = 0.200926 . . . ,

α1 = 0.015373 . . . , s1 = 0.080291 . . . , t2 = 0.087582 . . . , p1 = 0.511197 . . . ,

α2 = 0.002621 . . . , s2 = 0.092946 . . . , t3 = 0.094254 . . . , p2 = 0.652915 . . . ,

α3 = 0.000173 . . . , s3 = 0.094754 . . . , t4 = 0.094782 . . . , p3 = 0.683581 . . . ,

α4 = 1.17314e− 6, s4 = 0.094786 . . . , t5 = 0.094786 . . . , p4 = 0.685610 . . . ,

α5 = 5.97079e− 11, s5 = 0.094786 . . . , t6 = 0.094786 . . . , p5 = 0.685623 . . . ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

which shows that conditions (A1)-(A4) are satisfied. Hence, by Theorem 3, the sequence {xm}
converges to a unique solution x∗ ∈ U(x0, α) where, α = 0.094786 . . . . Thus, this example can be
solved using the weaker condition used in our study but not using the earlier one [10].

Example 2. Let B1 = B2 = R2. Define the mapping F : R2 → R2 by

F(v) = (2ϑ1 −
1
9

ϑ2
1 − ϑ2,−ϑ1 + 2ϑ2 −

1
9

ϑ2
2)

T ,

where v = (ϑ1, ϑ2)
T . We shall find a solution to the equation F(v) = 0. The first and second-order

Fréchet derivatives are calculated to be

F′(v) =
(

2− 2
9 ϑ1 −1
−1 2− 2

9 ϑ2

)
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and

F′′(v) =
( 2

9 0 0 0
0 0 0 − 2

9

)
.

Pick x0 = (11.4, 11.4)T . Then, it follows that d = 1.9826, M = 0.47618, and K ≥ 0 can be
arbitrary. By setting K = 10−3, we see that d < λ(K, M). Moreover, the solution x∗ = (9, 9)Tis
obtained after m = 3 iterations. Notice that it takes m = 5 iterations for NM but only three for
NLMM to reach x∗. Thus, this method requires fewer computations than that of Newton’s method.

Example 3. Let B1 = B2 = R and D = U[0, 1]. Define a function F on D by

F(v) = ev − 1.

Clearly, we have x∗ = 0. Then, the conditions (l1) and (l2) hold if M2 = 1 and

ψ1(t) = (e− 1)t. Then, ψ2(t) = t
(

1− t
2
+

et
2

)
and ψ3(t) = −

(9(e− 1)t + 8)t
8((e− 1)t2 + 2t− 2)

.

The parameter ρ2 = 0.64385 and radius of convergence r3 = 0.435659.

Example 4. Let B1 = B2 = R3 and D = U[0, 1]. Define a mapping F on D by

F(v) =

(
e− 1

6
ϑ3

1 + ϑ1, eϑ2 − 1,
ϑ3

3
6

+ ϑ3

)T

,

where v = (ϑ1, ϑ2, ϑ3)
T . Clearly, the solution is x∗ = (0, 0, 0)T . It follows by the definition of the

mapping F that the first two Fréchet derivatives are

F′(v) =


e−1

2 ϑ2
1 + 1 0 0
0 eϑ2 0

0 0 ϑ2
3

2 + 1


and

F′′(v) =

 (e− 1)ϑ2
1 0 0 0 0 0 0 0 0

0 0 0 0 eϑ2 0 0 0 0
0 0 0 0 0 0 0 0 ϑ3

.

Notice that F′(x∗) = F′(x∗)−1 = diag(1, 1, 1). Therefore, the conditions (l1) and (l2) are ver-

ified for M2 = 1 and ψ1(t) = (e − 1)t. Then, ψ2(t) = t
(

1− t
2
+

et
2

)
and

ψ3(t) = −
(9(e− 1)t + 8)t

8((e− 1)t2 + 2t− 2)
.

The parameter ρ2 = 0.64385 and radius of convergence r3 = 0.435659.

The numerical examples were simulated by using Mathematica 8 on Intel(R) Core(TM)
i5-8250U CPU @ 1.60 GHz 1.80 GHz, with 8 GB of RAM running on Windows 10 Pro
version 2017. This kind of local and semilocal convergence demonstrates that the guarantee
the existence and uniqueness of the solution are especially valuable in processes where it is
difficult to prove the existence of solutions.

7. Conclusions

The present study deals with new local and semilocal convergence results for the
Newton-like midpoint method under improved initial conditions. In the first type of
semilocal convergence, the previous results are extended without using any additional
postulates. The estimate obtained in [10] is less tight and uses stronger conditions in
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comparison to our results. The second semilocal convergence utilizes more general ω-
continuity conditions and can be applied to the problems where earlier conditions fail.
Notice also that the condition on F′′ is dropped (see also the Example 1). Both semilocal
convergence results are computationally verifiable and improve the previous study [10] in
several directions, which are of practical importance. The local convergence theorem not
given in [10] is established for the existence-uniqueness of the solution. We present varied
numerical examples to show the applicability of our results. The innovation demonstrated
that NLMM can also be used to extend the applicability of other methods requiring the
inversion of a linear operator in an analogous way since our technique is method-free. This
is the future area of research.
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