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Abstract: There exists the following paradigm: for interaction potentials U(r) that are negative and
go to zero as r goes to infinity, bound states may exist only for the negative total energy E. For
E > 0 and for E = 0, bound states are considered to be impossible, both in classical and quantum
mechanics. In the present paper we break this paradigm. Namely, we demonstrate the existence
of bound states of E = 0 in neutron–neutron systems and in neutron–muon systems, specifically
when the magnetic moments of the two particles in the pair are parallel to each other. As particular
examples, we calculate the root-mean-square size of the bound states of these systems for the values
of the lowest admissible values of the angular momentum, and show that it exceeds the neutron
radius by an order of magnitude. We also estimate the average kinetic energy and demonstrate that
it is nonrelativistic. The corresponding bound states of E = 0 may be called “neutronium” (for the
neutron–neutron systems) and “neutron–muonic atoms” (for the neutron–muon systems). We also
point out that this physical system possesses higher-than-geometric (i.e., algebraic) symmetry, leading
to the approximate conservation of the square of the angular momentum, despite the geometric
symmetry being axial. We use this fact for facilitating analytical and numerical calculations.
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1. Introduction

There exists the following paradigm: for interaction potentials U(r) that are negative
and go to zero as r goes to infinity, bound states may exist only for the negative total
energy E. For E > 0 and for E = 0, bound states are considered to be impossible, both
in classical and quantum mechanics. For example, in sect. 18 of the textbook [1], it was
stated that for potentials falling off at large r as −1/rs with s > 2 (which is the case for the
potential analyzed in the present paper), the highest discrete energy level has some nonzero
negative value Emax, so that states of E > Emax, including E = 0, cannot correspond to the
bound states.

In the present paper we break this paradigm. Namely, we demonstrate the existence of
bound states of E = 0 in neutron–muon systems and in neutron–neutron systems, specifically
when the magnetic moments of the two particles in the pair are parallel to each other. It
should be emphasized that we describe the bound states where the energy is exactly zero,
not the bound states of the infinitesimal negative energy.

The aligned magnetic moments define the preferred direction in space. So, the geomet-
rical symmetry of the system is axial, leading to the conservation of the angular momentum
projection on the axis. However, we point out that the system has a higher-than-geometrical
(i.e., algebraic) symmetry, leading to the (approximate) conservation of the square of the
angular momentum as well. We employ this fact for finding a zero-total-energy solution
for the wave function. The wave function turns out to correspond to the bound state of
E = 0. The corresponding bound state may be called “neutron–muonic atom” (for the
neutron–muon system) and “neutronium” (for the neutron–neutron systems).

We calculate the root-mean-square separation between the neutron and muon, as
well as between the neutron and neutron, and show that it significantly exceeds the
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neutron radius. We also estimate the average kinetic energy and demonstrate that it
is nonrelativistic.

2. Analysis

We start by consider a system of two-spin 1/2 particles (1 and 2), having parallel mag-
netic moments µ1 and µ2, respectively. Particle 1 is electrically neutral (e.g., the neutron).
Particle 2 is either charged (e.g., the muon) or electrically neutral (e.g., the neutron).

We focus on the situation where the orbital momentum projection Lz = 0, the z-axis
being chosen along the common direction of the magnetic moments µ1 and µ2. Then the
spin–orbit interaction, being proportional to the scalar product of the operators S and L
(where S is the total spin) vanishes.

For the zero-total-energy states, the kinetic energy K should be equal by magnitude
and opposite by the sign of the potential energy U. In the spherical polar coordinates, the
potential energy is (see textbook [2], sect. 44).

U(r, cos θ) = µ1µ2(1 − 3 cos2θ)/r3 = µ1µ2(1 − 3 cos2θ)/r3, (1)

where θ is the polar angle of the radius-vector r and µ1µ2 is the scalar product (also known
as the dot-product) of these two vectors.

Physical systems described by the potential from Equation (1) have the following re-
markable feature. They have the algebraic symmetry higher than the geometrical symmetry.
While the geometrical symmetry is axial (leading to the conservation of the Lz component
of the angular momentum), there is the (approximate) spherical symmetry, leading to the
(approximate) conservation of the square of the angular momentum. This property of
such potentials was noted and employed in celestial mechanics, e.g., while describing the
motion of a satellite about the oblate Earth ([3], sect. 1.7), the motion of a circumbinary
planet [4], and the motion of an interstellar interloper passing a circular binary star [5].
It was also noted and used in atomic physics while analyzing a hydrogen atom under a
high-frequency, linearly polarized laser field [6,7].

For the above reason, L can be considered as a good quantum number, so that the
angular part of the wave function can be described by the spherical harmonics. Thus, in
the Schrödinger equation for E = 0,

[K + U(r, cos θ)] ψ (r, θ) = 0, (2)

it is legitimate to represent:
ψ (r, θ) = R0L(r) YL0(θ). (3)

In Equation (3), YL0(θ) is the spherical harmonic (corresponding to Lz = 0) and R0L(r)
is the radial part of the wave function (its subscript 0 indicates that it corresponds to E = 0).

For simplifying the treatment of the problem to allow obtaining analytical results,
at least approximately, we average U(r, cos θ) from Equation (3) over the corresponding
spherical harmonic:

UL(r) = 4π
1∫

0

d(cos θ) [YL0(θ)]
2 U(r, cos θ). (4)

For example, for L = 2, L = 3, and L = 4, Equation (4) yields:

U2(r) = −(4/7) µ1µ20/r3, (5)

U3(r) = −(8/15) µ1µ20/r3. (6)

U4(r) = −(40/99) µ1µ20/r3, (7)
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It is seen that UL(r) is the attractive potential of the form.

UL(r) = −g(L) µ1µ2/r3, (8)

where g(2) = 4/7, g(3) = 8/15, and g(4) = 40/99.
Now, the Schrödinger equation for E = 0 can be represented in the form:

[p2/(2mred) − g(L) µ1µ2/r3]ψ = 0, (9)

where p is the operator of the linear momentum and mred is the reduced mass of the pair of
the particles.

mred = m1m2/(m1 + m2), (10)

m1 and m2 being the masses of particles 1 and 2, respectively.
Equation (9) can be rewritten as follows:

[h̄2/(2mredr2)] [−r2(d2R/dr2) − 2r(dR/dr) + L(L + 1)R] − [g(L) µ1µ2/r3] R = 0, (11)

or equivalently:

d2R/dr2 + (2/r) (dR/dr) − L(L + 1)R/r2 +2g(L)mredµ1µ2R/(h̄2r3) = 0. (12)

After the standard substitution:

R(r) = χ(r)/r, (13)

Equation (12) takes the form:

d2χ/dr2 − [L(L + 1)/r2]χ + B/r3 = 0, (14)

where
B = 2g(L)mredµ1µ2χ/(h̄2). (15)

Now we study the behavior of the solution χ(r) at small and large r. At a relatively
small r, Equation (14) can be simplified to

d2χ/dr2 ≈ −Bχ/r3. (16)

We seek the solution of Equation (14) in the form:

χ(r) = const cos(a/rb). (17)

On substituting Equation (17) in Equation (16), we get

−[ab(b + 1)/rb+2] sin(a/rb) − [a2b2/r2b+2]χ ≈ − (a2b2/r2b+2)χ ≈ −(B/r3)χ. (18)

In Equation (18), while proceeding from the utmost left part to the middle part, we
omitted the first term since at small r the second term dominates. From Equation (18) it
follows that

b = 1/2, a = 2B1/2, (19)

so that for a relatively small r, we have

χ(r) ≈ const cos(2B1/2/r1/2). (20)

At a relatively large r, Equation (14) can be simplified to

d2χ/dr2 ≈ [L(L + 1)/r2]χ. (21)
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We seek the solution of Equation (21) in the form:

χ(r) = const/rq. (22)

On substituting Equation (22) in Equation (21), we get

q(q + 1)/rq+2 ≈ [L(L + 1)/rq+2. (23)

From Equation (23) it follows that

q = L (24)

(the second possible value q = −L − 1 is physically inadmissible).
So, at a relatively large r, the solution of Equation (14) is

χ(r) ≈ const/rL. (25)

In view of the two asymptotics, given by Equations (20) and (25), it is easy to see that
the normalization integral

∞∫
0

dr [χ(r)]2 = 1 (26)

converges for any L ≥ 1 (though the average value of r and the root-mean-square value of
rrms exist only for L ≥ 2).

Thus, in some systems of the two particles, coupled only by the interaction of two
magnetic dipoles, there can exist bound states of the zero total energy. This result amounts
to breaking the paradigm that such bound states are impossible.

The availability of the analytical expressions for χ(r) at small r and at large r simplifies
obtaining numerical solutions of Equation (14) for various values of L. Below we provide
some examples.

The first example is a neutron–muon system in the state of L = 2 and where the
magnetic moments of the two particles are parallel (so that the spins are parallel). Our
calculation shows that there exists a bound state (of E = 0) having rrms = 8.3 × 10−13 cm,
which exceeds the neutron radius by an order of magnitude. We also estimate the average
kinetic energy <K>—to make sure that the values of <K> do not contradict the nonrela-
tivistic treatment of this physical system. (Here and below, the symbol < . . . > means the
“average value”). Specifically, we estimate K by using the uncertainty relation p ~ h̄/(2r),
so that

K ~ [h̄2/(8mred)] <1/r2>, (27)

where

< 1/r2 >=

∞∫
rn

dr [χ(r)]2/r2. (28)

At small r, we truncated the integration in Equation (28) at the neutron radius
rn = 0.87 × 10−13 cm for avoiding the divergence of the integral at small r. The estimated
average kinetic energy is <K>~8.6 Mev, so that the nonrelativistic treatment is justified
since the rest energy of the muon is about 106 Mev.

Below are the plots of the corresponding normalized wave function at a relatively
small r (Figure 1) and at a relatively large r (Figure 2).
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Figure 1. The normalized wave function of the bound E = 0 state of the neutron–muon system for
L = 2 at a relatively small r.

Figure 2. The normalized wave function of the bound E = 0 state of the neutron–muon system for
L = 2 at a relatively large r.

The second example is a neutron–neutron system. This system is invariant with respect
to the inversion of the reference frame, so that the states of the system have a definite parity
P = (−1)L (see the textbook [1]). Since the two particles are identical, in the state of the
parallel spins, and thus parallel magnetic moment (which is the state we are interested
in), the coordinate wave function must be antisymmetric (see the textbook [1]), so that the
parity P = −1. Therefore, only the states of odd values of L are admissible. Together with
the above restriction L ≥ 2, this means that the lowest admissible value of the angular
momentum for this system is L = 3.

So, with respect to the quantum number L, the situation for the neutron–neutron
systems is a little bit more restrictive than for the neutron–muon systems. However, in
terms of the projection Lz, the situation for the neutron–neutron systems is significantly less
restrictive than for the neutron–muon systems. Indeed, for the latter systems, we required
Lz = 0 to “kill” the spin–orbit interaction. For the neutron–neutron systems, there is no
such restriction because for these systems the spin–orbit interaction does not exist.

Our calculation shows that for L = 3, there exists a bound state (of E = 0) having
rrms = 7.2 × 10−13 cm, which exceeds the neutron radius by an order of magnitude. The
average kinetic energy in this state is estimated as <K>~1.6 MeV, so that the nonrelativistic
treatment is justified since the rest energy of the neutron is about 939 Mev.

Below are the plots of the corresponding normalized wave function at a relatively
small r (Figure 3) and at a relatively large r (Figure 4).
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Figure 3. The normalized wave function of the bound E = 0 state of the neutron–neutron system for
L = 3 at a relatively small r.

Figure 4. The normalized wave function of the bound E = 0 state of the neutron–neutron system for
L = 3 at a relatively large r.

3. Conclusions

We studied the systems of the two particles, coupled only by the interaction of two
magnetic dipoles. We demonstrated that in such systems there can exist bound states of the
zero total energy. Thus, we broke the paradigm that bound states of the zero total energy
are impossible. This general result, related to the foundations of quantum mechanics, is of
fundamental importance.

As particular examples, we studied the neutron–muon systems and the neutron–
neutron systems. We calculated the root-mean-square size of the bound states of these
systems for the lowest admissible values of the angular momentum: L = 2 for the neutron–
muon systems, and L = 3 for the neutron–neutron systems. We also provided estimates
of the corresponding average values of the kinetic energy and showed that the obtained
values do not contradict to the nonrelativistic treatment of the problem under consideration.
The corresponding bound states may be called “neutron–muonic atoms” and “neutronium”
for the second example.

Another fundamental importance of our findings seems to be in revealing a new
physical system possessing higher-than-geometric symmetry. The resulting approximate
conservation of the square of the angular momentum (despite the geometric symmetry
only being axial) is the common feature this physical system shares with a satellite around
an oblate planet, or a circumbinary planet, or an interstellar interloper passing a circular
binary star, or a hydrogen atom under the high-frequency, linearly polarized laser field.
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For completeness, we note that there are many studies of systems where there is
the interaction of an electric (rather than magnetic) dipole with a charged particle (see
papers [8–10] and references therein). However, the physics of these systems differs from
the one considered in the present paper.
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