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Abstract: This article is devoted to the solvability and the asymptotic stability of a coupled system of a
functional integral equation on the real half-axis. Our consideration is located in the space of bounded
continuous functions onR+ (BC(R+)). The main tool applied in this work is the technique associated
with measures of noncompactness in BC(R+) by a given modulus of continuity. Next, we formulate
and prove a sufficient condition for the solvability of that coupled system. We, additionally, provide
an example and some particular cases to demonstrate the effectiveness and value of our results.

Keywords: space of functions continuous and bounded on the half-axis; measure of noncompactness;
fixed-point theorem of Darbo type; coupled system of integral equations; asymptotic stability

1. Preliminaries and Introduction

Measures of noncompactness are frequently employed in fixed-point theory, and they
are especially useful in work on the concepts of differential equations, optimization theory,
functional integral equations, and integral equations (see [1–5]).

Nonlinear integral equations are useful for describing many real-world phenomena
and nonlinear analysis [4,5].

It is worthwhile mentioning that Darbo fixed-point theorem and the measures of
noncompactness create a powerful and convenient technique which is very applicable
in establishing theorems of existence for various types of operator equations (functional
integral, integral, differential). For solvability on bounded domain, see [6–8].

Investigation on the real half-axis of the integral equations on different spaces of
functions has received a great attention (see [9–14]).

In [11], measures of noncompactness in the space of functions which are defined,
continuous and bounded on the real half-axis, and taking values in an arbitrary Banach
space E, are constructed. One of the constructed measures of noncompactness is applied to
prove the existence of solutions of an infinite system of quadratic integral equations in the
space of functions defined, continuous and bounded on the real half-axis.

In addition, the solvability of an infinite system of integral equations of the Volterra–
Hammerstein type in the space of functions defined, continuous and bounded on the real
half-axis with values in the sequence space l1 is discussed [13]. Moreover, this result is
extended to a wider class of considered infinite systems [13].

Motivated by these results, in this article, we discuss a coupled system of a functional
integral equation, abbreviated by CSFIE
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x(t) = f1(t, y(t)) · g1

(
t,
∫ t

0
ν1(t, s, y(s)) ds

)
, t ≥ 0

(1)

y(t) = f2(t, x(t)) · g2

(
t,
∫ t

0
ν2(t, s, x(s)) ds

)
, t ≥ 0,

and establish the existence of the solution of that coupled system on R+ utilizing Darbo’s
fixed-point and the measure of noncompactness theorem. Furthermore, for the solution of
(1), we study the asymptotic stability.

The present paper creates an essential extension of the investigations of the integral
equation via the technique associated with measures of noncompactness on the real half line.
However, we start by applying the technique associated with measures of noncompactness
on a coupled system of integral equations in BC(R+).

The following notations will be needed in our work. Assume that BC(R+) is the class
of all continuous and bounded functions in R+. The norm of f ∈ BC(R+) is defined by

‖ f ‖ = sup
t∈R+

| f (t)|. (2)

x ∈ X ⊆ BC(R+) and ε ≥ 0 are indicated by wT(x, ε); T > 0 is the modulus of
continuity of the function x on the interval [0, T], i.e.,

wT(x, ε) = sup[|x(t)− x(s)| : t, s ∈ [0, T], |t− s| ≤ ε],

wT(X, ε) = sup[wT(x, ε) : x ∈ X]

and
wT

0 (X) = lim
ε→0

wT(X, ε), w0(X) = lim
T→∞

wT
0 (X).

In addition,

diamX(t) = sup{|x(t)− y(t)|, x, y ∈ X}, α(X) = lim
t→∞

sup diamX(t)

and the measure of noncompactness on BC(R+) is given by [4]

µ(X) = w0(X) + α(X) = w0(X) + lim
t→∞

sup diamX(t).

Next, we state the Darbo fixed-point theorem [15].

Theorem 1. Assume that F : Q → Q is a continuous operator, and Q is a nonempty closed
bounded convex subset of the space E with µ(FX) ≤ kµ(X) for any nonempty subset X of Q, where
the constant k ∈ [0, 1). Then, F has a fixed point in the set Q.

Now, let E = BC(R+)× BC(R+), X, Y ⊂ BC(R+) and

U = {u ∈ U : u = (x, y), x ∈ X, y ∈ Y} = X×Y.

Define the following modulus of continuity:

ω(x, ε) = sup { | x(t) − x(s) | : t, s ∈ J = [0, T], | t − s | ≤ ε },

ω(y, ε) = sup { | y(t) − y(s) | : t, s ∈ J = [0, T], | t − s | ≤ ε }

and
ω(u, ε) = max {ω(x, ε), ω(y, ε)}.
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Then,

ω(U, ε) = sup { ω(u, ε) : u ∈ U }, ω0(U) = lim
ε → 0

ω(U, ε).

In addition,
ω(U) = ω(X×Y) ≤ max{ω(X, ε), ω(Y, ε)},

diam(U) = diam(X×Y) ≤ max{diam(X), diam(Y)},

lim
t → ∞

sup diam(U) ≤ max{ lim
t→∞

sup diam(X), lim
t→∞

sup diam(Y)}.

and
µ(U) = ω0(U) + α(U) = ω0(U) + lim

t→∞
sup diam U(t).

2. Main Result

Consider the coupled system of functional integral Equation (1) with the following
assumptions:

(i) fi : R+ ×R→ R, i = 1, 2 are continuous and sup
t∈R+

| fi(t, 0)| = f ∗i .

(ii) There exists a continuous function m : R+ → R+ such that

| fi(t, x)− fi(t, y)| ≤ mi(t)|x− y|, ∀ x, y ∈ R, t ∈ R+, i = 1, 2,

and mi = sup
t∈R+

mi(t).

(iii) gi : R+ ×R→ R, i = 1, 2 are continuous and satisfy the Lipschitz condition

|gi(t, x)− gi(s, y)| ≤ li(|t− s|+ |x− y|), li > 0, ∀(t, x), (s, y) ∈ R+ ×R

g∗i = sup
t∈R+

|gi(t, 0)|.

(iv) νi : R+ ×R+ ×R→ R, i = 1, 2 are continuous and there exists a continuous function
ki(t, s) : R+ ×R+ → R+, such that |νi(t, s, x)| ≤ ki(t, s), ∀t, s ∈ R+ and

sup
t∈R+

∫ t

0
ki(t, s)ds = ki, and lim

t→∞

∫ t

0
ki(t, s)ds = 0.

(v) Without loss of generality, we can write m = max{m1, m2}, g∗ = max{g∗1 , g∗2},
k = max{k1, k2}, and l = max{l1, l2}. Now there exists a positive constant C, such
that C = mg∗ + mlk < 1.

Remark 1. From condition (ii) set y = 0, then

| fi(t, x(s))| − | fi(t, 0)| ≤ | fi(t, x(s))− fi(t, 0)|
≤ mi(t)|x|,

| fi(t, x(s))| ≤ mi(t)|x|+ | fi(t, 0)|
≤ mi(t)|x|+ f ∗i .

Similarly, we have
|gi(t, x(s))| ≤ li|x|+ g∗i .

Theorem 2. Assume that conditions (i)–(v) hold; then, the coupled system (1) has at least one
solution (x, y) ∈ U ⊂ BC(R+)× BC(R+).
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Proof. Suppose

Br = {u = (x, y) ∈ U : ‖u‖ = max{||x||, ||y||} ≤ r}.

Define the operator A by

A(x, y)(t) = (A1y(t), A2x(t))

where

A1y(t) = f1(t, y(t)) · g1

(
t,
∫ t

0
ν1(t, s, y(s)) ds

)
A2x(t) = f2(t, x(t)) · g2

(
t,
∫ t

0
ν2(t, s, x(s)) ds

)
.

Let u = (x, y) ∈ U; from our assumptions, we can deduce that the function Au is
continues on U, and then we have

|A1y(t)| =

∣∣∣∣ f1(t, y(t)).g1

(
t,
∫ t

0
ν1(t, s, y(s)) ds

)∣∣∣∣
=

∣∣∣∣ f1(t, y(t))|.|g1

(
t,
∫ t

0
ν1(t, s, y(s)) ds

)∣∣∣∣
≤ (m(t)|y(t)|+ f ∗1 )(g∗1 + l1

∣∣∣∣ ∫ t

0
ν1(t, s, y(s)) ds

∣∣∣∣)
≤ |y(t)|m1(t)(g∗1 + l1

∫ t

0
k1(t, s)ds)

+ (g∗ + l1
∫ t

0
k1(t, s)ds) f ∗1

≤ ‖y‖(m1g∗1 + m1l1k1) + (g∗1 + l1k1) f ∗1
‖A1y‖ ≤ r1(m1g∗1 + m1l1k1) + (g∗1 + l1k) f ∗1 = r1.

Similar to the above calculation, we can conclude that

‖A2x‖ ≤ r2(m2g∗2 + m2l2k2) + (g∗2 + l2k2) f ∗2 = r2.

Therefore,

‖Au‖U = ‖A(x, y)‖U = ‖(A1y, A2x)‖U = max{‖A1y‖, ‖A2x‖} = r.

Then, the operator A is bounded on U and Au ∈ Br and

‖A(x)‖ ≤ 2(Cr + A∗) = r, r =
2A∗

1− 2C

where A∗ = (g∗ + lk) f ∗ < ∞. This proves that the operator A : Br → Br.
Now, we show that A is continuous on the ball Br.
Let ε > 0 be given, take y1, y2 ∈ Y such that ‖y1 − y2‖ ≤ ε, then
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|A1y1(t)− A1y2(t)|

=

∣∣∣∣ f1(t, y1(t))g1

(
t,
∫ t

0
ν1(t, s, y2(s)) ds

)
− f1(t, y2(t))g1

(
t,
∫ t

0
ν1(t, s, y2(s)) ds

)∣∣∣∣
≤

∣∣∣∣ f1(t, y1(t))g1

(
t,
∫ t

0
ν1(t, s, y1(s)) ds

)
− f1(t, y2(t))g1

(
t,
∫ t

0
ν1(t, s, y1(s)) ds

)∣∣∣∣
+

∣∣∣∣ f1(t, y2(t))g1

(
t,
∫ t

0
ν1(t, s, y1(s)) ds

)
− f1(t, y2(t))g1

(
t,
∫ t

0
ν1(t, s, y2(s)) ds

)∣∣∣∣
≤

∣∣∣∣ f1(t, y1(t))− f1(t, y2(t))||g1

(
t,
∫ t

0
ν1(t, s, y1(s)) ds

)∣∣∣∣
+

∣∣∣∣ f1(t, y2(t))||g1

(
t,
∫ t

0
ν1(t, s, y1(s)) ds

)
− g1

(
t,
∫ t

0
ν1(t, s, y2(s)) ds

)∣∣∣∣
≤ m1(t)|y1(t)− y2(t)|(g∗ + l1

∫ t

0
|k1(t, s)|ds)

+ (m1(t)|y2(t)|+ f ∗)l1
∫ t

0
|ν1(t, s, y1(s))− ν1(t, s, y2(s))| ds (3)

≤ m1g∗|y1(t)− y2(t)|+ m1l1k1|y1(t)− y2(t)|

+ (m1|y2(t)|+ f ∗1 )k1

∫ t

0
|ν1(t, s, y1(s))− ν1(t, s, y2(s))| ds

≤ (m1g∗1 + m1l1k1)ε

+ (m1r1 + f ∗1 )l1
∫ t

0
|ν1(t, s, y1(s))− ν1(t, s, y2(s))| ds.

≤ (m1g∗1 + m1l1k1)ε + 2(m1r1 + f ∗1 )l1
∫ t

0
k1(t, s) ds. (4)

Select T > 0 such that the following inequality holds for t > T.

2r1l1m1

∫ t

0
k1(t, s)ds ≤ (1− C)

ε

2

2 f ∗k1

∫ t

0
k(t, s)ds ≤ (1− C)

ε

2
. (5)

Take into account the following two situations.

(i∗) t ≥ T. In light of (4) and (5), we obtain

|A1y1(t)− A1y2(t)| ≤ (m1g∗1 + m1l1k1)ε + (1− C)
ε

2
+ (1− C)

ε

2
= ε.

(ii∗) t ≤ T. In this instance, let us take a look at the function w = w = w(ε) given by

w(ε) = sup{|ν1(t, s, y1)− ν1(t, s, y2)| : t, s ∈ [0, T], x, y ∈ [−r, r], |y1 − y2| < ε}.

Then, from the uniform continuity of the function ν1 = ν1(t, s, x) on the set
[0, T]× [0, T]× [−r, r] , we deduce that w(ε)→ 0 as ε→ 0.

Thus, from (3), we obtain

|A1y1(t)− A1y2(t)| ≤ (m1g∗1 + l1k1)ε + (1rm1 + f ∗1 )Tw(ε). (6)

Finally, from the two cases (i∗), (ii∗) and the above established facts, we can deduce
that the operator A1 is continuous on Y.
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Similarly, we can conclude that the operator A1 is continuous and for any x1, x2 ∈ X

|A2x1(t)− A2x2(t)| ≤ (m1g∗1 + l1k1)ε + (r1m1 + f ∗1 )Tw(ε). (7)

Therefore,

‖A(x1, y1)− A(x2, y2)‖U = ‖(A1y1, A2x1)− (A1y2, A2x2)‖
= ‖(A1y1 − A1y2, A2x1 − A2x2)‖ = max{‖A1y1(t)− A1y2(t)‖, ‖A2x1(t)− A2x2(t)‖}

≤ (m1g∗1 + l1k1)ε + (r1m1 + f ∗1 )Tw(ε).

Then, the operator A is continuous on the ball Br.
Now, for any u1, u2 ∈ U and fixed t ≥ 0, we obtain

|A1y1(t)− A1y2(t)| ≤ m1g∗1 |y1(t)− y2(t)|+ m1l1k1|y1(t)− y2(t)|

+ (m1|y2(t)|+ f ∗1 )l1
∫ t

0
|ν1(t, s, y1(s))− ν1(t, s, y2(s))| ds

≤ m1g∗1 |y1(t)− y2(t)|+ m1l1k1|y1(t)− y2(t)|

+ 2(m1r1 + f ∗1 )l1
∫ t

0
k1(t, s) ds.

≤ (m1g∗1 + m1k1l1)diam Y(t) + 2(m1r1 + f ∗1 )l1
∫ t

0
k1(t, s) ds.

Hence, we obtain

diam(A1Y)(t) ≤ (m1g∗1 + m1k1l1)diam Y(t) + 2(m1r1 + f ∗1 )l1
∫ t

0
k1(t, s) ds.

As performed above, we can conclude that for any u1, u2 ∈ U, and fixed t ≥ 0,
we obtain

diam(A2X)(t) ≤ (m1g∗2 + m2k2l2)diam X(t) + 2(m2r2 + f ∗2 )l2
∫ t

0
k2(t, s) ds. (8)

Therefore,

diamA(X, Y)(t) = max{diam(A1Y)(t), diam(A2X)(t)}.

Hence,

diamAU(t)

≤ (mg∗ + mkk1)max{(diamY(t), diamX(t))}+ 2mr + f ∗)l[
∫ t

0
k1(t, s) ds +

∫ t

0
k2(t, s) ds]

≤ (mg∗ + mkk1)diamU(t) + 2(mr + f ∗)l[
∫ t

0
k1(t, s) ds +

∫ t

0
k2(t, s) ds]

and
lim
t→∞

sup diamAU(t) ≤ (mg∗ + mkk1) lim
t→∞

sup diamU(t).

Then,
lim
t→∞

sup diamAU(t) ≤ C lim
t→∞

sup diamU(t). (9)

Let T > 0 and ε > 0 be given. Let (x, y) ∈ U and t, s ∈ [0, T] such that s ≤ t and
|t− s| ≤ ε, then
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|A1y(t)− A1y(s)|

=

∣∣∣∣ f1(t, y(t))g1

(
t,
∫ t

0
ν1(t, τ, y(τ)) dτ

)
− f1(s, y(s))g1

(
s,
∫ s

0
ν1(s, τ, y(τ)) dτ

)∣∣∣∣
≤

∣∣∣∣ f1(t, y(t))g1

(
t,
∫ t

0
ν1(t, τ, y(τ)) dτ

)
− f1(s, y(s))g1

(
t,
∫ t

0
ν1(t, τ, y(τ)) dτ

)
+ f1(s, y(s))g1

(
t,
∫ t

0
ν1(t, τ, y(τ)) dτ

)
− f1(s, y(s))g1

(
s,
∫ s

0
ν1(s, τ, y(τ)) dτ

)∣∣∣∣
≤ | f1(t, y(t))− f1(s, y(s))|

∣∣∣∣g1

(
t,
∫ t

0
ν1(t, τ, y(τ)) dτ

)∣∣∣∣
+ | f1(s, y(s))|

∣∣∣∣g1

(
t,
∫ t

0
ν1(t, τ, y(τ))dτ

)
− g1

(
s,
∫ s

0
ν1(s, τ, y(τ)) dτ

)∣∣∣∣
≤ (| f1(t, y(t))− f1(t, y(s))|+ | f1(t, y(s))− f1(s, y(s))|)(g∗ + l1

∫ t

0
k1(t, τ)dτ)

+ (m1(s)|y|+ f ∗1 )|(l1(
∫ t

0
|ν1(t, τ, y(τ))− ν1(s, τ, y(τ))|dτ)

+
∫ t

s
|ν1(t, τ, y(τ))|)

≤ (m1(t)|y(t)− y(s)|+ | f1(t, y(s))− f1(s, y(s))|)(g∗1 + l1
∫ t

0
k1(t, τ)dτ)

+ (m1(s)|y(s)|+ f ∗1 )(l1(
∫ t

0
|ν1(t, τ, y(τ))− ν1(s, τ, y(τ))|dτ) +

∫ t

s
|ν1(t, τ, y(τ))dτ)

≤ (m1|y(t)− y(s)|+ wT
r ( f1, ε))(g∗1 + l1

∫ t

0
k1(t, τ)dτ)

+ mr1l1
∫ t

s
k1(s, τ)dτ + f ∗1 l1

∫ t

s
k1(t, τ)dτ + l1T[m1r1 + f ∗1 ])w

−T
r (ν1, ε)

where

wT
r ( fi, ε) = sup{| fit, y)− fi(s, y) : t, s ∈ [0, T], |t− s| ≤ ε, |y| ≤ r, i = 1, 2.}

w−T
r (νi, ε) = sup{|νi(t, τ, y)− νi(s, τ, y) : |t− s| ≤ ε, τ ∈ [0, T], |y| ≤ r, i = 1, 2.}.

Hence, we deduce that

w(A1Y, ε) ≤ (mw(Y, ε) + wT
r ( f1, ε))(g∗1 + l1

∫ τ

0
|k1(s, τ)|dτ)

+ (ε m1 r l1 sup{|k1(t, τ)| : τ ∈ [0, T]}
+ ε l1 f ∗1 sup{|k1(t, τ)| : τ ∈ [0, T]}
+ k1T(m1r1 + f ∗1 )w

−T
r (ν1, ε)

Through a similar method, we obtain

w(A2X, ε) ≤ (m2wT(X, ε) + wT
r ( f2, ε))(g∗2 + l2

∫ τ

0
|k2(s, τ)|dτ)

+ (ε m2 r2 l2 sup{|k2(t, τ)| : τ ∈ [0, T]}
+ ε k2 f ∗2 sup{|k2(t, τ)| : τ ∈ [0, T]}
+ l2T(m2r2 + f ∗2 )w

−T
r (ν2, ε).
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Therefore,

w(AU, ε) = max{w(A1Y, ε), w(A2X, ε)}

= (mw(U, ε) + wT
r ( f , ε))(g∗ + l

∫ τ

0
|k(s, τ)|dτ)

+ (ε m r l sup{|k(t, τ)| : τ ∈ [0, T]}
+ ε l f ∗ sup{|k(t, τ)| : τ ∈ [0, T]}
+ lT(mr + f ∗)w−T

r (ν1, ε)

+ (ε m r l sup{|k(t, τ)| : τ ∈ [0, T]}
+ ε l f ∗ sup{|k(t, τ)| : τ ∈ [0, T]}
+ lT(mr + f ∗)w−T

r (ν2, ε).

From the uniform continuity of the functions fi = fi(t, x) and the functions
νi = νi(t, s, x), i = 1, 2 on the set [0, T] × [−r, r], we deduce that wr( fi, ε) → 0 and
w−T

r (νi, ε)→ 0 as ε→ 0. Consequently, we obtain

w0(AU) ≤ mw0(U)(g∗ + l
∫ t

s
k(t, τ)dτ),

w0(AU) ≤ (mg∗ + mkl)wT
0 (U)

and as T → ∞, we have
w0(AU) ≤ Cw0(U). (10)

Now, from the estimations (9) and (10) and the definition of µ on U, we obtain

µ(AU) ≤ Cµ(U).

Since all the requirements of Theorem 2 are met, then A has a fixed point (x, y) ∈ U.
Consequently, the coupled system of quadratic functional integral Equation (1) has at least
one solution (x, y) ∈ E, x, y ∈ BC(R+).

3. Asymptotic Stability

We can now deduce from the proof of Theorem 2 the following corollary.

Corollary 1. The solution u ∈ U of the coupled system of quadratic functional integral Equation (1)
is asymptotically stable; that is to say, ∀ ε > 0, there exists T(ε) > 0 and r > 0, such that,
if any two solutions to the coupled system of the quadratic functional integral Equation (1) are
(x, y), (x1, y1) ∈ U, then

||(x, y)− (x1, y1)|| ≤ ε, t ≥ T(ε).

This implies that

|x(t)− x1(t)| ≤ ε and |y(t)− y1(t)| ≤ ε, t ≥ T(ε).

Proof. Let (x, y), (x1, y1) ∈ U be any two solutions of the coupled system of quadratic
functional integral Equation (1). Using assumptions of Theorem 2 and by a similar way to
how relations (6) and (7) are estimated, we have
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|y(t)− y1(t)| = |A1y(t)− A1y1(t)|
≤ (m1g∗1 + l1k1)ε + (r1m1 + f ∗1 )Tw(ε),

and

|x(t)− x1(t)| = |A2x(t)− A2x1(t)|
≤ (m2g∗2 + l2k2)ε + (r2m2 + f ∗2 )Tw(ε).

Hence

‖(x, y)− (x1, y1)‖U = ‖(A1y, A2x)− (A1y1, A2x1)‖
= ‖(A1y− A1y1, A2x− A2x1)‖
= max{‖A1y(t)− A1y1(t)‖, ‖A2x(t)− A2x1(t)‖}
≤ (mg∗ + k1k)ε + (rm + f ∗)Tw(ε),

for t > T(ε).

4. Particular Cases and Example

In this section, we demonstrate some particular systems, which are deduced from
Theorem 2.

• Let fi(t, x) = 1, i = 1, 2; then, the coupled system (1) takes the form

x(t) = g1

(
t,
∫ t

0
ν1(t, s, y(s)) ds

)
, t ≥ 0

y(t) = g2

(
t,
∫ t

0
ν2(t, s, x(s)) ds

)
, t ≥ 0.

Based on conditions (iii)–(v) of Theorem 2, then(1) has at least one asymptotically
stable solution x ∈ BC(R+).
Moreover, when gi(t, x) = x, i = 1, 2. Then, we have a coupled system of Urysohn
integral equations

x(t) =
∫ t

0
ν1(t, s, y(s)) ds, t ≥ 0

y(t) =
∫ t

0
ν2(t, s, x(s)) ds, t ≥ 0,

• Let gi(t, x) = x, i = 1, 2, then, the coupled system (1) takes the form

x(t) = f1(t, y(t)) ·
∫ t

0
ν1(t, s, y(s)) ds, t ≥ 0

y(t) = f2(t, x(t)) ·
∫ t

0
ν2(t, s, x(s)) ds, t ≥ 0,

under the conditions of Theorem 2, then the coupled system of quadratic integral Equa-
tion (1) has at least one asymptotically stable solution (x, y) ∈ BC(R+)× BC(R+).

• Let g(t, x) = 1 + x, in (1), we have

x(t) = f1(t, y(t))
(

1 +
∫ t

0
ν1(t, s, y(s)) ds

)
, t ≥ 0

y(t) = f2(t, x(t))
(

1 +
∫ t

0
ν2(t, s, x(s)) ds

)
, t ≥ 0,
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which under the assumptions of Theorem 2, has at least one asymptotically stable
solution (x, y) ∈ BC(R+)× BC(R+).

Example: Consider the following coupled system of functional equations

x(t) =
arctan(t + x(t))

(1 + t)2 sin(t +
∫ t

0

t(2t− s) sin(|y(s)|)
1 + t4 ds), t ≥ 0 (11)

y(t) =
arccot(t + x(t))

(1 + t)2 cos(t +
∫ t

0

t sin(|x(s)|)
4π(t2 + 1)(s + 1)

ds), t ≥ 0.

Now, we study the solvability of a coupled system of functional Equation (11) on
the space BC(R+)× BC(R+). Take into account that this coupled system of functional
equations is a specific instance of system (1) with

g1(t, x(t)) =
1

1 + t
sin(t + x(t)), g2(t, x(t)) =

1
1 + t

cos(t + x(t)),

f1(t, x(t)) =
arctan(t + x(t))

1 + t
, f2(t, x(t)) =

arccot(t + x(t))
1 + t

,

ν1(t, s, x(s)) =
t(2t− s) sin(|x(t)|)

1 + t4 , ν2(t, s, x(s)) =
sin(|x(t)|)

4π(t
2
3 + 1)(

√
t− s + 1)

.

Obviously, functions fi, (i = 1, 2) are mutually continuous. Currently, for any x, y ∈
R+ and t ∈ R+

| fi(t, x(t))− fi(t, y(t))| ≤ 1
2

∣∣x(t)− y(t)|.

This indicates that condition (v) is satisfied with f ∗ = π
2 and m = 1

2 , where
f1(t, 0) = t

1+t2 arctan(t), f2(t, 0) = 1
1+t arccot(t). However, we also have

|gi(t, x(t))− gi(t, y(t))| ≤ |x(t)− y(t)|
2

,

with l = 1
2 , g1(t, 0) = 1

1+t sin(t), g2(t, 0) = 1
1+t cos(t) and g∗ = 1

2 . Further, observe that
νi(t, s, x)(i = 1, 2) fulfills condition (iv), with

|ν1(t, s, x(s))| ≤ t
2π(t2 + 1)(s + 1)

,

and
|ν2(t, s, x(s))| ≤ 1

4π(t
2
3 + 1)(

√
t− s + 1)

This indicates that we can insert k1(t, s) = t
2π(t2+1)(s+1) , and k2(t, s) = 1

4π(t
3
4 +1)(

√
t−s+1)

.

To verify the assumption (iv), notice that

lim
t→∞

∫ t

0
k1(t, s) = lim

t→∞

∫ t

0

t
2π(t2 + 1)(s + 1)

ds = lim
t→∞

t ln(t + 1)
2π · (t2 + 1)

= 0,

and

lim
t→∞

∫ t

0
k2(t, s) = lim

t→∞

∫ t

0

1

4π(t
2
3 + 1)(

√
t− s + 1)

ds = lim
t→∞

√
t− ln

(√
t + 1

)
2π · (t 2

3 + 1)
= 0.

Moreover, we have k = 0.0906987.
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Finally, let us pay attention to the fact that the inequality of Theorem 2 has the form

C = mg∗ + mkl ' 0.272674675 < 1,

consequently, all the requirements of Theorem 2 have been met. As a result, the coupled
system (11) has at least one asymptotically stable solution in the space BC(R+)× BC(R+).

5. Conclusions

Coupled systems of differential and integral equations have been addressed by many
authors and in different classes of functions; for example, see [16–23].

The investigations in this work continue those contained in papers [11–13]. In par-
ticular, in this paper, we use a technique associated with measures of noncompactness in
BC(R+) by a given modulus of continuity, to establish the solvability of a coupled system
of integral equations.

We discussed the solvability and asymptotic stability of that coupled system of func-
tional integral equation on the real half-axis. Our investigation is lying in the space of
bounded continuous functions on R+ (BC(R+)). We started by applying the technique
associated with measures of noncompactness on a coupled system of functional integral
equation in BC(R+). Finally, some particular coupled systems of the well-known Uryshon
integral equations, a coupled system of functional equations and an example are illustrated.
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5. Banaś, J., Jleli, M., Mursaleen, M., Samet, B., Vetro, C. (Eds.) Advances in Nonlinear Analysis via the Concept of Measure of
Noncompactness; Springer: Singapore; New Delhi, India, 2017.
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