Improved Higher Order Compositions for Nonlinear Equations
Abstract
:1. Introduction
2. Preliminaries
- (i)
- Linear, if there exists a parameter l and a natural number such that
- (ii)
- Of convergence order q, if there exist a parameter L, and a natural number such that
3. Development of First Sixth Order Iterative Method
4. Development of Second Sixth Order Iterative Method
5. Numerical Testing
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Argyros, I.K.; Cho, Y.J.; Hilout, S. Numerical Methods for Equations and Its Applications; Taylor and Francis, CRC Press: New York, NY, USA, 2012. [Google Scholar]
- Argyros, I.K.; Magreñán, Á.A. Iterative Methods and Their Dynamics with Applications; CRC Press: New York, NY, USA, 2017. [Google Scholar]
- Argyros, I.K. Unified Convergence Criterion for Banach space valued methods with applications. Mathematics 2021, 9, 1942. [Google Scholar] [CrossRef]
- Argyros, I.K. The Theory and Applications of Iteration Methods, 2nd ed.; Engineering Series; CRC Press, Taylor and Francis Publishing Group: Boca Raton, FL, USA, 2022. [Google Scholar]
- Chapra, S.C.; Canale, R.P. Numerical Methods for Engineers; McGraw-Hill Book Company: New York, NY, USA, 1988. [Google Scholar]
- Ortega, J.M.; Rheinholdt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Abdul-Hassan, N.Y.; Ali, A.H.; Park, C.A. A new fifth-order iterative method free from second derivative for solving nonlinear equations. J. Appl. Math. Comput. 2022, 68, 2877–2886. [Google Scholar] [CrossRef]
- Chun, C. A simply constructed third-order modifications of Newton’s method. J. Comput. Appl. Math. 2008, 219, 81–89. [Google Scholar] [CrossRef][Green Version]
- Grau-Sanchez, M.; Grau, A.; Noguera, M. On the computational efficiency index and some iterative methods for solving system of nonlinear equations. J. Comput. Appl. Math. 2011, 236, 1259–1266. [Google Scholar] [CrossRef][Green Version]
- Petković, M.S.; Petković, L.D. Families of optimal multipoint methods for solving nonlinear equations: A survey. Appl. Anal. Discret. Math. 2010, 4, 1–22. [Google Scholar] [CrossRef]
- Petković, L.D.; Petković, M.S. A note on some recent methods for solving nonlinear equations. Appl. Math. Comput. 2007, 185, 368–374. [Google Scholar] [CrossRef]
- Sharma, R.; Deep, G. A study of the local convergence of a derivative free method in Banach spaces. J. Anal. 2022. [Google Scholar] [CrossRef]
- Soleymani, F.; Khdhr, F.W.; Saeed, R.K.; Golzarpoor, J. A family of high order iterations for calculating the sign of a matrix. Math. Methods Appl. Sci. 2020, 43, 8192–8203. [Google Scholar] [CrossRef]
- Zhanlav, T.; Otgondorj, K. Higher order Jarratt-like iterations for solving systems of nonlinear equations. Appl. Math. Comput. 2021, 395, 125849. [Google Scholar] [CrossRef]
- Liu, T. A multigrid-homotopy method for nonlinear inverse problems. Comput. Math. Appl. 2020, 79, 1706–1717. [Google Scholar] [CrossRef]
- Liu, T. Porosity reconstruction based on Biot elastic model of porous media by homotopy perturbation method. Chaos Solitons Fractals 2022, 158, 112007. [Google Scholar] [CrossRef]
- Soleymani, F.; Zhu, S. RBF-FD solution for a financial partial-integro differential equation utilizing the generalized multiquadric function. Comput. Math. Appl. 2021, 82, 161–178. [Google Scholar] [CrossRef]
- Neta, B. A sixth order family of methods for nonlinear equations. Int. J. Comp. Math. 1979, 7, 157–161. [Google Scholar] [CrossRef]
- Kou, J.; Li, Y. An improvement of Jarratt method. Appl. Math. Comput. 2007, 189, 1816–1821. [Google Scholar] [CrossRef]
- Singh, S. Convergence of Higher Order Iterative Methods in Banach Spaces. Ph.D. Thesis, Indian Institute of Technology, Kharagpur, India, 2016. [Google Scholar]
- Sharma, J.R.; Sharma, R.; Bahl, A. An improved Newton-Traub composition for solving systems of nonlinear equations. Appl. Math. Comput. 2016, 290, 98–110. [Google Scholar] [CrossRef]
- Kou, J.; Li, Y.; Wang, X. Some variants of Ostrowski’s method with seventh-order convergence. J. Comput. Appl. Math. 2007, 209, 153–159. [Google Scholar] [CrossRef][Green Version]
- Maheshwari, A.K. A fourth-order iterative method for solving nonlinear equations. Appl. Math. Comput. 2007, 188, 339–344. [Google Scholar] [CrossRef]
- Parhi, S.K.; Gupta, D.K. A sixth order method for nonlinear equations. Appl. Math. Comput. 2008, 203, 50–55. [Google Scholar] [CrossRef]
- Petković, M.S. On a general class of multipoint root-finding methods of high computational efficiency. SIAM J. Numer. Anal. 2010, 47, 4402–4414. [Google Scholar] [CrossRef]
- Potra, F.A.; Pták, V. Nondiscrete Induction and Iterative Processes, Research Notes in Mathematics; Pitman: Boston, MA, USA, 1984. [Google Scholar]
- Sharma, R.; Deep, G.; Bahl, A. Design and Analysis of an Efficient Multi step Iterative Scheme for systems of Nonlinear Equations. J. Math. Anal. 2021, 12, 53–71. [Google Scholar]
- Homeier, H.H.H. A modified Newton method with cubic convergence: The multivariable case. J. Comput. Appl. Math. 2004, 169, 161–169. [Google Scholar] [CrossRef]
- Traub, J.F. Iterative Methods for the Solution of Equations; Chelsea Publishing Company: New York, NY, USA, 1977. [Google Scholar]
- Quarteroni, A.; Sacco, R.; Saleri, F. Numerical Mathematics; Springer: New York, NY, USA, 2000. [Google Scholar]
- Wolfram, S. The Mathematica Book, 5th ed.; Wolfram Media: Champaign, IL, USA, 2003. [Google Scholar]
4 | 3 | 3 | 3 | 4 | 3 | 3 | ||
2 | 3 | 3 | 3 | 2 | 3 | 2 | 3 | |
2 | 3 | 3 | 3 | 3 | 2 | 3 | ||
3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
2 | 2 | 2 | 2 | 4 | 2 | 3 | ||
4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
2 | 3 | 2 | 2 | 3 | 2 | 2 | ||
3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 | 4 | 2 | 2 | 2 | 2 | 2 | ||
1 | 2 | 3 | 2 | 2 | 2 | 2 | 2 |
16 | 12 | 12 | 12 | 16 | 12 | 15 | ||
2 | 12 | 12 | 12 | 8 | 12 | 8 | 15 | |
8 | 12 | 12 | 12 | 12 | 8 | 15 | ||
3 | 12 | 12 | 12 | 12 | 12 | 12 | 15 | |
8 | 8 | 8 | 8 | 16 | 8 | 15 | ||
4 | 12 | 12 | 12 | 12 | 12 | 12 | 15 | |
8 | 12 | 8 | 8 | 12 | 8 | 10 | ||
3 | 12 | 8 | 8 | 8 | 8 | 8 | 10 | |
8 | 16 | 8 | 8 | 8 | 8 | 10 | ||
1 | 8 | 12 | 8 | 8 | 8 | 8 | 10 |
k | ||||||||
---|---|---|---|---|---|---|---|---|
1 | ||||||||
2 | ||||||||
3 | ||||||||
1 | ||||||||
2 | ||||||||
3 | ||||||||
1 | ||||||||
2 | ||||||||
3 | ||||||||
1 | ||||||||
2 | ||||||||
3 | ||||||||
1 | ||||||||
2 | ||||||||
3 | ||||||||
1 | ||||||||
2 | ||||||||
3 | ||||||||
1 | ||||||||
2 | ||||||||
3 | ||||||||
1 | ||||||||
2 | ||||||||
3 | ||||||||
1 | ||||||||
2 | ||||||||
3 | ||||||||
1 | ||||||||
2 | ||||||||
3 |
k | ||||||||
---|---|---|---|---|---|---|---|---|
1 | ||||||||
2 | ||||||||
3 | ||||||||
1 | ||||||||
2 | ||||||||
3 | ||||||||
1 | ||||||||
2 | ||||||||
3 | ||||||||
1 | ||||||||
2 | ||||||||
3 | ||||||||
1 | ||||||||
2 | ||||||||
3 | ||||||||
1 | ||||||||
2 | ||||||||
3 | ||||||||
1 | ||||||||
2 | ||||||||
3 | ||||||||
1 | ||||||||
2 | ||||||||
3 | ||||||||
1 | ||||||||
2 | ||||||||
3 | ||||||||
1 | ||||||||
2 | ||||||||
3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deep, G.; Argyros, I.K. Improved Higher Order Compositions for Nonlinear Equations. Foundations 2023, 3, 25-36. https://doi.org/10.3390/foundations3010003
Deep G, Argyros IK. Improved Higher Order Compositions for Nonlinear Equations. Foundations. 2023; 3(1):25-36. https://doi.org/10.3390/foundations3010003
Chicago/Turabian StyleDeep, Gagan, and Ioannis K. Argyros. 2023. "Improved Higher Order Compositions for Nonlinear Equations" Foundations 3, no. 1: 25-36. https://doi.org/10.3390/foundations3010003