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Abstract: Iterative methods which have high convergence order are crucial in computational mathe-
matics since the iterates produce sequences converging to the root of a non-linear equation. A plethora
of applications in chemistry and physics require the solution of non-linear equations in abstract spaces
iteratively. The derivation of the order of the iterative methods requires expansions using Taylor
series formula and higher-order derivatives not present in the method. Thus, these results cannot
prove the convergence of the iterative method in these cases when such higher-order derivatives
are non-existent. However, these methods may still converge. Our motivation originates from the
need to handle these problems. No error estimates are given that are controlled by constants. The
process introduced in this paper discusses both the local and the semi-local convergence analysis of
two step fifth and multi-step 5 + 3r order iterative methods obtained using only information from the
operators on these methods. Finally, the novelty of our process relates to the fact that the convergence
conditions depend only on the functions and operators which are present in the methods. Thus, the
applicability is extended to these methods. Numerical applications complement the theory.

Keywords: local convergence; semi-local convergence; Banach space; Fréchet derivative; convergence
of a method
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1. Introduction

The most commonly recurring problems in engineering, the physical and chemical
sciences, computing and applied mathematics can be usually summed up as solving a
non-linear equation of the form

G(x) = 0, (1)

with G : D ⊆ E1 → E2 being differentiable as, per Fréchet, E1, E2 denotes complete normed
linear spaces and D is a non-empty, open and convex set.

Researchers have attempted for decades to trounce this nonlinearity. From the an-
alytical view, these equations are very challenging to solve. The utilisation of iterative
methods (IM) to find the solution of such non-linear equations is predominantly chosen
among researchers for this very reason. The most predominantly used IM for solving such
nonlinear equations is Newton’s method. In recent years, with advancements in science
and mathematics, many new higher-order iterative methods for dealing with nonlinear
equations have been found and are presently being employed [1–8]. Nevertheless, these
results on the convergence of iterative methods that are currently being utilised in the
above-mentioned articles are derived by applying high-order derivatives. In addition, no
results address the error bounds, convergence radii or the domain in which the solution
is unique.

The study of local convergence analysis (LCA) and semi-local analysis (SLA) of an
IM permits calculating the radii of the convergence domains, error bounds and a region in
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which the solution is unique. The work in [9–12] discusses the results of local and semi-local
convergence of different iterative methods. In the above-mentioned articles, important
results discussing radii of convergence domains and measurements on error estimates are
discussed,thereby expanding the utility of these iterative methods. Outcomes of these type
of studies are crucial as they exhibit the difficulty in selecting starting points.

In this article, we establish theorems of convergence for two multi-step IMs with
fifth (2) and 5 + 3p (3) order convergence proposed in [8]. The methods are:

yi = xi − G′(xi)
−1G(xi)

τ1(xi) = Pi +
1
4
(Pi − I)2, Pi = G′(yi)

−1G′(xi)

xi+1 = yi − τ1(xi)G′(xi)
−1G(yi)

(2)

and

z0(xi) = xi − G′(xi)
−1G(xi),

z1(xi) = z0(xi)− τ1(xi)G′(xi)
−1G(z0(xi))

z2(xi) = z1(xi)− τ1(xi)G′(xi)
−1G(z1(xi))

. . .

xi+1 = zp(xi) = zp−1(xi)− τ1(xi)G′(xi)
−1G(zp−1(xi)),

(3)

where p is a positive integer.
It is worth emphasizing that (2) and (3) are iterative and not analytical methods. That

is, a solution denoted by x∗ is obtained as an approximation using these methods. The
iterative methods are more popular than the analytical methods, since in general it is rarely
possible to find the closed form of the solution in the latter form.

Motivation : The LCA of the methods (2) and (3) is given in [8]. The order is specified
using Taylor’s formula and requires the employment of higher-order derivatives not
present in the method. Additionally, these works cannot give estimates on the error bounds
‖xi − x∗‖, the radii of convergence domains or the uniqueness domain. To observe the
limitations of the Taylor series approach, consider G on D = [−0.5, 1.5] by

G(t) =
{

t3 ln(t2) + t5 − t4, if t 6= 0
0, if t = 0

. (4)

Then, we can effortlessly observe that since G′′′ is unbounded, the conclusions on
convergence of (2) and (3) discussed in [8] are not appropriate for this example.

Novelty : The aforementioned disadvantages provide encourage us to introduce
convergence theorems providing the domains and hence comparing the domains of con-
vergence of (2) and (3) by considering hypotheses based only on G′. This research work
also presents important results for the estimation of the error bounds ‖xi − x∗‖ and radii of
the domain of convergence. Discussions about the exact location and the uniqueness of the
root x∗ are also provided in this work.

The rest of the details of this article can be outlined as follows: Section 2 deals with
LCA of the methods (2) and (3). The SLA considered more important than LC and not
provided in [8] is also dealt with in this article in Section 3. The convergence outcomes are
tested using numerical examples and are given in Section 4. Example 4 deals with a real
world application problem. In Example 5, we revisit the motivational example to show that
limn→+∞ xn = x∗ = 1. Conclusions of this study are given in Section 5.

2. Local Convergence Analysis

Some scalar functions are developed to prove the convergence. Let T = [0,+∞).
Suppose:
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(i) There exists a function ϕ0:T → R which is non-decreasing and continuous (NC)
and the equation ϕ0(t)− 1 = 0 admits a minimal solution (MS) ρ0 ∈ T − {0}. Set
T0 = [0, ρ0).

(ii) There exists a function ϕ:T0 → R which is NC so that the equation g0(t) − 1 = 0
admits a MS r0 ∈ T0 − {0}, with the function g0:T0 → R being

g0(t) =

∫ 1
0 ϕ((1− θ)t)dθ

1− ϕ0(t)
.

(iii) The equation ϕ0(g0(t)t)− 1 = 0 admits a MS ρ ∈ T0 − {0}. Set T1 = [0, ρ1), where
ρ1 = min{ρ0, ρ}.

(iv) The equation g1(t)− 1 = 0 admits a MS r1 ∈ T1 − {0}, provided the function g1:T1 →
R is defined by

g1(t) =
[∫ 1

0 ϕ((1− θ)g0(t)t)dθ

1− ϕ0(g0(t)t)
+

1
4
(

ϕ̄(t)
1− ϕ0(g0(t)t)

)2 (1 +
∫ 1

0 ϕ0(θg0(t)t)dθ)

1− ϕ0(t)

]
g0(t), (5)

where

ϕ̄(t) =


ϕ((1 + g0(t))t),
or
ϕ0(t) + ϕ0(g0(t)t)

.

In applications, the smallest version of the function ϕ̄ shall be chosen.
Set

r = min{r0, r1}. (6)

The parameter r is the radius of the convergence ball (RC) for the method (2) (see
Theorem 1).

Set T2 = [0, r).
Then, if t ∈ T2, it is implied that

0 ≤ ϕ0(t) < 1, (7)

0 ≤ ϕ0(g0(t)t) < 1, (8)

0 ≤ g0(t) < 1 (9)

and 0 ≤ g1(t) < 1. (10)

The following conditions justify the introduction of the functions ϕ0 and ϕ and helps
in proving the LC of the method (2).

(A1) There exists x∗ ∈ D with G(x∗) = 0 and G′(x∗)−1 ∈ L (E2, E1).
(A2) ‖G′(x∗)−1(G′(u) − G′(x∗))‖ ≤ ϕ0(‖u − x∗‖) for each u ∈ D. Set D0 = D ∩

S(x∗, ρ0).
(A3) ‖G′(x∗)−1(G′(u2)− G′(u1))‖ ≤ ϕ(‖u2 − u1‖) for each u1, u2 ∈ D0.

and
(A4) S[x∗, r] ⊂ D, with r given in (6).

Conditions (A1)–(A4) are employed to show the LC of the method (2). Let di = ‖xi− x∗‖.

Theorem 1. Under the conditions (A1)–(A4), further assume that the starting point x0 ∈
S(x∗, r)− {x∗}. Then, the sequence {xi} given by the method (2) is convergent to x∗ and

‖yi − x∗‖ ≤ g0(di)di ≤ di < r (11)

and
di+1 ≤ g1(di)di ≤ di, (12)

where (6) gives the formula for the radius r and the functions g0 and g1 are previously provided.
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Proof. Let us pick v ∈ S(x∗, r)− {x∗}. By applying the conditions (A1), (A2), (6) and (7),
we observe in turn that

‖G′(x∗)−1(G′(v)− G′(x∗))‖ ≤ ϕ0(‖v− x∗‖) ≤ ϕ0(r) < 1. (13)

Estimate (13) and the standard Banach lemma on linear invertible operators [9,10,13]
guarantee that G′(v)−1 ∈ L (E2, E1) together with

‖G′(v)−1G′(x∗)‖ ≤ 1
1− ϕ0(‖v− x∗‖) . (14)

Hypothesis x0 ∈ S(x∗, r)− {x∗} and (14) imply that the iterate y0 exists. Thus, by the
first sub-step of method (2), we get in turn that

y0 − x∗ = x0 − x∗ − G′(x0)
−1G(x0)

= G′(x0)
−1[G′(x0)(x0 − x∗)− (G(x0)− G(x∗))]

= −G′(x0)
−1G′(x∗)[

∫ 1

0
G′(x∗)−1(G′(x∗ + Φ(x0 − x∗))dΦ− G′(x0))](x0 − x∗).

(15)

In view of (A3), (6), (9), (14) (for v = x0) and (15), we obtain in turn that

‖y0 − x∗‖ ≤
∫ 1

0 ϕ((1−Φ)d0)dΦd0

1− ϕ0(d0)

≤ g0(d0)d0

≤ d0 < r.

(16)

Hence, the iterate y0 ∈ S(x∗, r)− {x∗} and the assertion (11) hold if i = 0. Notice also
that (14) holds for v = y0, since y0 ∈ S(x∗, r)− {x∗}. Hence, the iterate x1 exists by the
second sub-step of the method (2). Moreover, the third sub-step gives

x1 − x∗ = y0 − x∗ − G′(y0)
−1G(y0) + (G′(y0)

−1 − τ1G′(x0)
−1)G(y0)

= y0 − x∗ − G′(y0)
−1G(y0) + G′(y0)

−1(I − G′(y0)τ1G′(x0)
−1)G(y0)

= y0 − x∗ − G′(y0)
−1G(y0) + [G′(y0)

−1(G′(x0)− G′(y0)τ1)]G′(x0)
−1G(y0)

= y0 − x∗ − G′(y0)
−1G(y0)−

1
4
(G′(y0)

−1G′(x0)− I)2G′(x0)
−1G(y0),

(17)

since the bracket gives

G′(x0)− G′(y0)G′(y0)
−1G′(x0)− G′(y0)

1
2
(P0 − I) = −1

4
(P0 − I)2.

Furthermore, by (6), (10), (A3), (14) (for v = x0, y0), (16) and (17), we can attain in
turn that

d1 ≤
[∫ 1

0 ϕ((1−Φ)‖y0 − x∗‖)dΦ
1− ϕ0(‖y0 − x∗‖) +

1
4
(

ϕ̄0

1− ϕ0(‖y0 − x∗‖) )
2 (1 +

∫ 1
0 ϕ0(Φ‖y0 − x∗‖)dΦ)

1− ϕ0(d0)

]
‖y0 − x∗‖

≤ g1(d0)d0 ≤ d0.

Therefore, the iterate x1 ∈ S(x∗, r)− {x∗} and the assertion (12) remain true for i = 0.
The induction for the assertions (11) and (12) is aborted by switching x0, y0, x1 by xk, yk, xk+1
in the above calculations. Finally, from the estimate

dk+1 ≤ λdk < r,
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where λ = g1(d0) ∈ [0, 1) we deduce that the iterate xk+1 ∈ S(x∗, r)− {x∗} and limk→+∞
xk = x∗.

Next, a region is determined containing only one solution.

Proposition 1. Suppose:

(i) (1) has a solution v∗ ∈ S(x∗, ρ2) for some ρ2 > 0.

(ii) The condition (A2) holds in the ball S(x∗, ρ2).

(iii) There exist ρ3 ≥ ρ2 such that ∫ 1

0
ϕ0(Φρ3)dΦ < 1.

Then, in the region D1, where D1 = D ∩ S[x∗, ρ3], the Equation (1) has only one solution x∗.

Proof. Let us define the linear operator E =
∫ 1

0 G′(x∗ + Φ(v∗ − x∗))dΦ. By utilizing the
conditions (ii) and (iii), we attain in turn that

‖G′(x∗)−1(E − G′(x∗))‖ ≤
∫ 1

0
ϕ0(Φ‖v∗ − x∗‖)dΦ

≤
∫ 1

0
ϕ0(Φρ3)dΦ < 1.

Therefore, we deduce that v∗ = x∗, since the linear operator E−1 ∈ L (E2, E1) and

v∗ − x∗ = E−1(G(v∗)− G(x∗)) = E−1(0) = 0.

Remark 1. (1) The parameter ρ2 can be chosen to be r.
(2) The result of Theorem 1 can immediately be extended to hold for method (3) as follows:

Define the following real functions on the interval T2

¯̄ϕ(t) =


ϕ(2t)
or
2ϕ0(t),

κ(t) =

∫ 1
0 ϕ(1−Φ)tdΦ

1− ϕ0(t)
+

¯̄ϕ(t)(1 +
∫ 1

0 ϕ0(Φt)dΦ)

(1− ϕ0(t))2

+
ϕ̄(t)

(1− ϕ0(t))2 (1 +
1
4

ϕ̄(t)
1− ϕ0(t)

)(1 +
∫ 1

0
ϕ0(Φt)dΦ),

and

gk(t) = κk−1(t)g1(t)g0(t) for each k = 2, 3, . . . , p.

Assume that the equations gk(t)− 1 = 0 admits smallest solutions rk ∈ T2 − {0}.
Define the parameter r̄ by

r̄ = min{r0, r, rk}. (18)

Then, the parameter r̄ is a RC for the method (3).

Theorem 2. Under the conditions (A1)–(A4) for r̄ = r, the sequence {zn} generated by (3) is
convergent to x∗.
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Proof. By applying Theorem 1, we get in turn that

‖z0(xm)− x∗‖ ≤ g0(dm)dm ≤ dm < r̄,

‖z1(xm)− x∗‖ ≤ g1(dm)dm ≤ dm.

Then, the calculations for the rest of the sub-steps are in turn:

z2(xm)− x∗ = z1(xm)− x∗ − G′(z1(xm))
−1G(z1(xm)) + (G′(z1(xm))

−1 − G′(xm)
−1)G(z1(xm))

+ (I − τ1(xm))G′(xm)
−1G(z1(xm)),

thus, ‖z2(xm)− x∗‖ ≤
[∫ 1

0 ϕ((1−Φ)‖z1(xm)− x∗‖)dΦ
1− ϕ0(‖z1(xm)− x∗‖) +

δ1(1 +
∫ 1

0 ϕ0(Φ‖z1(xm)− x∗‖)dΦ)

(1− ϕ0(‖z1(xm)− x∗‖))(1− ϕ0(dm))

+
δ0

1− ϕ0(‖z0(xm)− x∗‖) (1 +
1
4
(

δ0

1− ϕ0(‖z0(xm)− x∗‖) ))×

(1 +
∫ 1

0 ϕ0(Φ‖zm(xm)− x∗‖)dΦ)

1− ϕ0(dm)

]
‖z1(xm)− x∗‖

≤ κ(dm)‖z1(xm)− x∗‖
≤ κ(dm)g1(dm)‖z0(x∗)− x∗‖
≤ κ(dm)g1(dm)g0(dm)dm

≤ dm < r̄,

where we also used the estimates

‖z0(xm)− x∗‖ ≤ dm, ‖z1(xm)− x∗‖ ≤ dm,

‖G′(z1(xm))
−1 − G′(xm)

−1‖ = ‖G′(z1(xm))
−1(G′(xm)− G′(z1(xm))G′(xm)

−1‖

≤ δ1

(1− ϕ0(‖z1(xm)− x∗‖)(1− ϕ0(dm))

≤
¯̄ϕ(dm)

(1− ϕ0(dm))2 ,

for δ1(m) = δ1 =


ϕ(dm + ‖z1(xm)− x∗‖)
or
ϕ0(dm) + ϕ0(‖z1(xm)− x∗‖)

≤


ϕ(2dm)
or
2ϕ0(dm)

and

I − τ1 = (I − G′(z0(xm))
−1G′(xm)(I − 1

4
(I − G′(z0(xm))

−1G′(xm))),

so, ‖I − τ1‖ ≤
δ0

1− ϕ0(‖z0(xm)− x∗‖) (1 +
1
4

δ0

1− ϕ0(‖z0(xm)− x∗‖) )

≤ ϕ̄(dm)

1− ϕ0(dm)
(1 +

1
4

ϕ̄(dm)

1− ϕ0(dm)
),

where δ0(m) = δ0 =


ϕ(dm + ‖z0(xm)− x∗‖)
or
ϕ0(dm) + ϕ0(‖z0(xm)− x∗‖)

≤


ϕ(2dm)
or
2ϕ0(dm).
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By switching z1, z2 by zk−1, zk in the above calculations we get

‖zk(xm)− x∗‖ ≤ κ(dm)‖zk−1(xm)− x∗‖
≤ κ2(dm)‖zk−2(xm)− x∗‖
≤ . . . ≤ κk−2(dm)‖z2(xm)− x∗‖
≤ κk−2(dm)g1(dm)g0(dm)dm

≤ dm.

Moreover, in particular

dm+1 = ‖zp(xm)− x∗‖
≤ gp(dm)dm

≤ λ1dm ≤ r̄,

where λ1 = gp(d0) ∈ [0, 1).

Therefore, we deduce that limn→+∞ xn = x∗ and all the iterates {zk(xm)} ⊂ S(x∗, r̄).

Remark 2. The conclusions of the solution given in Proposition 1 are also clearly valid for
method (3).

3. Semi-Local Analysis

The convergence in this case uses the concept of a majorizing sequence.
Define the scalar sequence for α0 = 0 and β0 ≥ 0 and for each i = 0, 1, 2, . . . as follows

ψ̄i =

{
ψ(βi − αi),
ψ0(αi) + ψ0(βi)

,

hi =
1 + ψ0(αi)

1− ψ0(βi)
+

1
4
( ψ̄i

1− ψ0(βi)

)2,

αi+1 = βi +
hi
∫ 1

0 ψ(Φ(βi − αi))dΦ(βi − αi)

1− ψ0(αi)
,

γi+1 =
∫ 1

0
ψ((1−Φ)(αi+1 − αi))dΦ(αi+1 − αi) + (1 + ψ0(αi))(αi+1 − βi),

βi+1 = αi+1 +
γi+1

1− ψ0(αi+1)
.

(19)

The sequence {αi} is shown to be majorizing for method (3). We now produce a
general convergence result for it.

Lemma 1. Suppose that there exists δ > 0 so that for each i = 0, 1, 2, . . .

ψ0(βi) < 1 and βi ≤ δ. (20)

Then, the sequence {αi} generated by (19) is non-decreasing (ND) and convergent to some
δ∗ ∈ [0, δ].

Proof. It follows by formula (19) and condition (20) that {αi} is bounded above by δ and
ND. Thus, we can state that there exists δ∗ ∈ [0, δ] such that limi→∞ αi = δ∗.

Remark 3. (1) The limit point δ∗ is the unique least upper bound (LUB) for the sequence {αi}.
(2) A possible choice for δ = ρ0, where the parameter ρ0 is given in condition (i) of Section 2.
(3) We can take δ = ψ−1

0 (1), if the function ψ0 is strictly increasing.
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Next, again we relate the functions ψ0, ψ and the sequence {αi} to the method (2).
Suppose:

(H1) There exists a point x0 ∈ D and a parameter β0 ≥ 0 with G′(x0)
−1 ∈ L (E2, E1) and

‖G′(x0)
−1G(x0)‖ ≤ β0.

(H2) ‖G′(x0)
−1(G′(u) − G′(x0))‖ ≤ ψ0(‖u − x0‖) for each u ∈ D. Set D2 = D ∩

S(x0, ρ0).
(H3) ‖G′(x0)

−1(G′(u2)− G′(u1))‖ ≤ ψ(‖u2 − u1‖) for each u1, u2 ∈ D2.
(H4) Condition (20) holds.
(H5) S[x0, δ∗] ⊂ D.

Next, the preceding notation and the conditions (H1)–(H5) are employed to show the
SLA of the method (2).

Theorem 3. Assume the conditions (H1)–(H5) hold. Then, the sequence {xi} produced by the
method (2) is well-defined in the ball S(x0, δ∗), remains in the ball S[x0, δ∗] for each i = 0, 1, 2, . . .
and is convergent to some x∗ ∈ S[x0, δ∗] such that

‖yi − xi‖ ≤ βi − αi (21)

‖xi+1 − yi‖ ≤ αi+1 − βi (22)

and ‖x∗ − xi‖ ≤ α∗ − αi. (23)

Proof. Mathematical induction is used to verify the assertions (21) and (22). Method (2),
sequence (19) and condition (H1) imply

‖y0 − x0‖ = ‖G′(x0)
−1G(x0)‖ ≤ β0 = β0 − α0 < δ∗.

Thus, the iterate y0 ∈ S(x0, δ∗) and the assertion (21) hold for i = 0.
Let u ∈ S(x0, δ∗) be an arbitrary point. Then, it follows by (H2) and the definition of

δ∗ that for each u ∈ S(x0, δ∗)

‖G′(x0)
−1(G′(u)− G′(x0))‖ ≤ ψ0(‖u− x0‖) ≤ ψ0(δ

∗) < 1.

Hence, we have G′(u)−1 ∈ L (E2, E1) and

‖G′(u)−1G′(x0)‖ ≤
1

1− ψ0(‖u− x0‖)
. (24)

In particular, for u = y0, G′(y0)
−1 ∈ L (E2, E1) and the iterate x1 exists. Suppose

that (21) holds for each m = 0, 1, 2, . . . , i. We need the estimates

G(ym) = G(ym)− G(xm)− G′(xm)(ym − xm),

‖G′(x0)
−1G(ym)‖ = ‖

∫ 1

0
G′(x0)

−1(G′(xm + Φ(ym − xm))− G′(xm))dΦ(ym − xm)‖

≤
∫ 1

0
ψ(Φ‖ym − xm‖)dΦ‖ym − xm‖

≤
∫ 1

0
ψ(Φ(βm − αm))dΦ(βm − αm),

(25)

‖τ1(xm)‖ ≤ ‖G′(ym)
−1G′(x0)‖‖G′(x0)

−1G′(xm)‖+
1
4
‖G′(yi)

−1(G′(yi)− G′(xi))‖2

≤ 1 + ψ0(‖xm − x0‖)
1− ψ0(‖ym − x0‖)

+
1
4
(

ψ̄m

1− ψ0(‖ym − x0‖)
)2

≤ 1 + ψ0(αm)

1− ψ0(βm)
+

1
4
(

ψ̄m

1− ψ0(βm)
)2 = hm,

(26)
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where we also used that

‖G′(x0)
−1G′(xi)‖ = ‖G′(x0)

−1(G′(xm)− G′(x0) + G′(x0))‖
≤ 1 + ‖G′(x0)

−1(G′(xm)− G′(x0))‖
≤ 1 + ψ0(‖xm − x0‖) ≤ 1 + ψ0(αm).

Then, by method (2), (25) and (26), it follows that

‖xm+1 − ym‖ = ‖τ1(xm)G′(xm)
−1G(ym)‖

≤ ‖τ1(xm)‖‖G′(xm)
−1G′(x0)‖‖G′(x0)

−1G(ym)‖

≤
hm
∫ 1

0 ψ(Φ(βm − αm))dΦ(βm − αm)

1− ψ0(αm)

= αm+1 − βm

and

‖xm+1 − x0‖ ≤ ‖xm+1 − ym‖+ ‖ym − x0‖ ≤ αm+1 − βm + βm − α0

= tm+1 < δ∗.

Thus, the iterate xm+1 ∈ S(x0, δ∗) and the estimate (22) hold. Moreover, by the first
sub-step of method (2), we can formulate that

G(xm+1) = G(xm+1)− G(xm)− G′(xm)(ym − xm)

= G(xm+1)− G(xm)− G′(xm)(xm+1 − xm) + G′(xm)(xm+1 − xm)− G′(xm)(ym − xm)

=
∫ 1

0
[G′(xm + Φ(xm+1 − xm))− G′(xm)]dΦ(xm+1 − xm)

+ (G′(xm)− G′(x0) + G′(x0))(xm+1 − ym).

(27)

By the induction hypotheses, (H3) and (27), we have in turn

‖G′(x0)
−1G(xm+1)‖ ≤

∫ 1

0
ψ((1−Φ)‖xm+1 − xm‖)dΦ‖xm+1 − xm‖

+ (1 + ψ0(‖xm − x0‖))‖xm+1 − ym‖

≤
∫ 1

0
ψ((1−Φ)(αm+1 − αm)dΦ(αm+1 − αm) + (1 + ψ0(αm))(αm+1 − βm)

= γm+1.

(28)

Furthermore, by applying first sub-step of (2), (19), (24) (for u = xm+1) and (28) we get
in turn

‖ym+1 − xm+1‖ ≤ ‖G′(xm+1)
−1G′(x0)‖‖G′(x0)

−1G(xm+1)‖

≤ γm+1

1− ψ0(αm+1)

= βm+1 − αm+1

and

‖ym+1 − x0‖ ≤ ‖ym+1 − xm+1‖+ ‖xm+1 − x0‖
≤ βm+1 − αm+1 + αm+1 − α0

= βm+1 < δ∗.

Therefore, the iterate ym+1 ∈ S(x0, δ∗) and the induction for the assertions (21) and (22) is
completed. Observe that the sequence {αm} is Cauchy and hence convergent. Thus, the
sequence {xm} is also Cauchy by (21) and (22) in a Banach space E1. Consequently, there
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exists x∗ ∈ S[x0, δ∗] so that limm→+∞ xm = x∗. Therefore, by the continuity of the operator
G, and the estimate (27) for m→ +∞, we deduce that G(x∗) = 0. Let j ≥ 0 be an integer.
Then, if we let j→ +∞ in the estimate

‖xm+j − xm‖ ≤ αm+j − αm,

we show estimate (22).

Next, a region is determined in which the solution is unique.

Proposition 2. Suppose:

(i) A solution z∗ ∈ S(x0, q) of (1) exists for some q > 0.

(ii) Condition (H2) holds in the ball S(x0, q).

(iii) There exists q1 > q such that

∫ 1

0
ψ0((1−Φ)q + Φq1)dΦ < 1. (29)

Then, in the region D2, where D2 = D ∩ S[x0, q1], the only solution of (1) is z∗.

Proof. Let z∗1 ∈ D2 with G(z∗1) = 0. Then, it follows by (ii) and (29) that for B =
∫ 1

0 G′(z∗ +
Φ(z∗1 − z∗))dΦ,

‖G′(x0)
−1(B− G′(x0))‖ ≤

∫ 1

0
ψ0((1−Φ)‖z∗ − x0‖+ Φ‖z∗1 − x0‖)dΦ

≤
∫ 1

0
ψ0((1−Φ)q1 + Φq)dΦ

< 1,

thus, we conclude that z∗1 = z∗.

Remark 4. (1) If the condition (H5) is switched by U[x0, ρ0] ⊂ D or U[x0, δ] ⊂ D, then the
conclusions of the Theorem (3) are still valid.

(2) Under all the conditions (H1)–(H5), we can set in Proposition 2 z∗ = x∗ and q = δ∗.

4. Numerical Examples

We first discuss examples which illustrate the local convergence criteria.

Example 1. Consider the system of differential equations with

G′1(u1) = eu1 , G′2(u2) = (e− 1)u2 + 1, G′3(u3) = 1

subject to G1(0) = G2(0) = G3(0) = 0. Let G = (G1, G2, G3). Let E1 = E2 = R3 and
D = S[0, 1]. Then x∗ = (0, 0, 0)T . Let function G on D for u = (u1, u2, u3)

T be

G(u) = (eu1 − 1,
e− 1

2
u2

2 + u2, u3)
T .

This definition gives

G′(u) =

eu1 0 0
0 (e− 1)u2 + 1 0
0 0 1


Thus, by the definition of G it follows that G′(x∗) = 1. Then, conditions (A1)–(A4) are

satisfied if ϕ0(t) = (e− 1)t, ϕ(t) = e
1

e−1 t, ρ0 = 0.581977 and D0 = D ∩ S(x∗, ρ0). Then, the
radii are as presented in Table 1. For method (3), the radii is found using (18) for p = 3, 4, 5, 6.
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Table 1. Estimates for Example 1.

Method (2) Method (3)
r = k 0 1 2 3 4 5 6

min{r0, r1} rk 0.382692 0.395131 0.306563 0.250887 0.216718 0.194214 0.1784

r = 0.382692 r̄ = min{r0, r, rk} = 0.250887 0.216718 0.194214 0.1784

Example 2. Let E1 = E2 = D = R. Consider the function G on D as G(x) = sinx. It follows
that G′(x) = cosx. We get x∗ = 0. Hence, conditions (A1)− (A4) hold if ϕ0(t) = ϕ(t) = t,
ρ0 = 1 and D0 = D ∩ S(x∗, ρ0). Values of the convergence radii r and r̄ are as given in Table 2. r̄
is found using (18) for p = 3, 4, 5, 6.

Table 2. Estimates for Example 2.

Method (2) Method (3)
r = k 0 1 2 3 4 5 6

min{r0, r1} rk 0.666667 0.628126 0.541078 0.476459 0.43181 0.399697 0.375661

r = 0.628126 r̄ = min{r0, r, rk} = 0.476459 0.43181 0.399697 0.375661

Example 3. Let E1 = E2 = R and D = S(x0, 1− a) for some a ∈ [0, 1). Consider G in D as

G(x) = x3 − a

x∗ = a1/3 is a solution. Choose x0 = 1. Thus, (H1)–(H5) are satisfied if β0 = 1−a
3 , ψ0(t) = (3− a)t,

ρ0 = 0.487805 D2 = D ∩ S(x0, ρ0), and ψ = 2(1 + 1
3−a )t. Values of ψ0(βi) and βi can be found

in Table 3.
Here, δ∗ = 0.0179926.
Hence, we can conclude that the sequence {xi} is convergent to some x∗ ∈ S[x0, δ∗].

Table 3. Estimates for Example 3.

i 0 1 2 3 4 5

ψ0(βi) 0.0341667 0.0368766 0.0368847 0.0368847 0.0368847 0.0368847
βi 0.0166667 0.0179886 0.0179926 0.0179926 0.0179926 0.0179926
αi 0 0.0170946 0.0179899 0.0179926 0.0179926 0.0179926

Example 4. We now discuss a real-world application problem which has wide applications in
physical and chemical sciences. At 500 ◦C and 250 atm, the quartic equation for fractional conversion
which depicts the fraction of the nitrogen-hydrogen feed that gets converted to ammonia can be
framed as follows

G(t) = t4 − 7.79075t3 + 14.7445t2 + 2.511t− 1.674.

x∗ = 0.27776 is a solution. Let D = (0.3, 0.4) and choose x0 = 0.3. Then, conditions (H1) is
satisfied for

‖G′(x0)
−1G(x0)‖ = 0.0217956 = β0.

We get ψ0(t) = ψ(t) = 1.56036t, ρ0 = 0.640877 and D2 = D ∩ S[x0, ρ0]. Condition (20)
is verified in Table 4.

Here, δ∗ = 0.0229759.
Therefore, we can conclude that limi→∞ xi = x∗ ∈ S[x0, δ∗].
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Table 4. Estimates for Example 4.

i 0 1 2 3 4 5

ψ0(βi) 0.034009 0.0358481 0.0358507 0.0358507 0.0358507 0.0358507
βi 0.0217956 0.0229742 0.0229759 0.0229759 0.0229759 0.0229759
αi 0 0.0221793 0.0229748 0.0229759 0.0229759 0.0229759

Example 5. We reconsider the numerical example given in the introduction part to emphasize the
aspect that our method does not require the existence of higher-order derivatives. Using (2), we
obtain the solution x∗ = 1 after three iterations starting from x0 = 1.2. Also, we can analyze
this solution from the graph of G(t) given in Figure 1. On examining, we find that (A1)–(A4)
hold if ϕ0(t) = ϕ(t) = 96.8 t, ρ0 = 0.0103306 and D0 = D ∩ S(x∗, ρ0). Values of r and r̄( for
p = 3, 4, 5, 6) are given in Table 5. Error estimates are plotted in Figure 2.

Table 5. Estimates for Example 5.

Method (2) Method (3)
r = k 0 1 2 3 4 5 6

min{r0, r1} rk 0.006887 0.009228 0.006320 0.005150 0.004454 0.003997 0.003675

r = 0.006887 r̄ = min{r0, r, rk} = 0.005150 0.004454 0.003997 0.003675

Figure 1. Graph of G(t) = t3 ln(t2) + t5 − t4.

Figure 2. Error estimates for Example 5.
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5. Conclusions

Many applications in chemistry and physics require solving abstract equations by
employing an iterative method. That is why a new local analysis based on generalized
conditions is established using the first derivative, which is the only one present in cur-
rent methods. The new approach determines upper bounds on the error distances and
the domain containing only one solution. Earlier local convergence theories [8] rely on
derivatives which do not appear in the methods. Moreover, they do not give information
on the error distances that can be computed, especially a priori. The same is true for the
convergence region. The methods are extended further by considering the semi-local case,
which is considered more interesting than the local and was not considered in [8]. Thus,
the applicability of these methods is increased in different directions. The technique relies
on the inverse of the operator on the method. Other than that, it is method-free. That is
why it can be employed with the same benefits on other such methods [14–17]. This will be
the direction of our research in the near future.
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