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Abstract: High-convergence order iterative methods play a major role in scientific, computational and
engineering mathematics, as they produce sequences that converge and thereby provide solutions
to nonlinear equations. The convergence order is calculated using Taylor Series extensions, which
require the existence and computation of high-order derivatives that do not occur in the methodology.
These results cannot, therefore, ensure that the method converges in cases where there are no such
high-order derivatives. However, the method could converge. In this paper, we are developing
a process in which both the local and semi-local convergence analyses of two related methods of
the sixth order are obtained exclusively from information provided by the operators in the method.
Numeric applications supplement the theory.
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1. Introduction

The problem most common in applied and computational mathematics, and in the fields
of science and engineering generally, is that of finding a solution to a nonlinear equation.

F(x) = 0 (1)

where F : Ω ⊆ X → Y is derivable as per Fréchet, X and Y are complete normed linear
spaces and Ω is a non-null, open and convex set.

Researchers have battled for a long time to overcome this nonlinearity. In most of
the cases, a direct solution is very hard to obtain. For this reason, the use of an iterative
algorithm to arrive at a conclusion has been widely used by researchers and scientists.
Newton’s method is a well-known iterative method for handling non-linear equations.
Many new iterative strategies of higher order for the handling of non-linear equalities have
been detected and are being applied in the last few years [1–11]. Theorems of convergence
in the majority of these papers, however, are deduced by the application of high-order
derivatives. In addition, the results are not discussed in terms of error bounds, convergence
radii, or in the region where the solution is unique.

Examining local (LCA) and semi-local analyses (SLA) of an iterative algorithm makes
it possible to estimate convergence domains, error estimates, and the unique region of a
solution. The local and semi-local convergence results of efficient iterative methods were
derived and stated in [9–13]. Important results were presented in these works, which
include convergence radii, error estimation measurement, and extended benefits of this
iteration approach. The results of this kind of analysis are valuable because they illustrate
the complexities of starting point selection. Additionally, the applicability of our analysis
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can be extended to engineering problems such as the shrinking projection methods used
for solving variational inclusion problems as in [14–16].

In this article, convergence theorems are developed for two competing methods having
sixth order convergence found in [17] and are as stated below:

yn = xn − F′(xn)
−1F(xn)

zn = xn − 2(F′(xn) + F′(yn))
−1F(xn)

xn+1 = zn − (
7
2

I − 4F′(xn)
−1F′(yn) +

3
2
(F′(xn)

−1F′(yn)
2)F′(xn)

−1F(zn)

(2)

and

yn = xn − F′(xn)
−1F(xn)

An = F′(xn) + 2F′(
xn + yn

2
) + F′(yn)

zn = yn − 4A−1
n F(yn)

Bn = F′(xn) + 2F′(
xn + zn

2
) + F′(zn)

xn+1 = zn − 4B−1
n F(zn).

(3)

The local convergence of methods (2) and (3) are given in [17]. The order was es-
tablished assuming that the seventh derivative (at least) of the operator F exists. As a
result, these schemes’ applicability is limited. In order to observe it, we define F on
Ω = [−0.5, 1.5] by

F(t) =
{

t3 ln(t) + 3t5 − 3t4, if t 6= 0
0, if t = 0

(4)

The third derivative is given by

F
′′′
(t) = 11− 72t + 180t2 + 6 ln(t).

Hence, due to the unboundedness of F′′′, the conclusions on convergence of (2) and (3)
are not true for this example. Nor does it provide a formula for the approximation of
the error, the region of convergence, or the singleness and exact location of its root x∗.
This strengthens our idea to develop the Ball-Convergence-Theory and thus compare the
convergence range of (2) and (3) using hypotheses based on F′ only. This research provides
important formulas for the assessment of errors and convergence radii. The study also
discusses the precise position and singleness of x∗.

The rest of the contents are: Section 2 deals with the LCA of the methods (2) and (3).
Section 3 discusses the SLA of the methods under consideration. Numerical examples are
in Section 4. Concluding comments are also included.

2. LCA

Set M = [0,+∞). Certain functions defined on the interval M play a role in the LCA
of these methods. Assume:

(i) ∃ function ω0 : M→ R, which is non-decreasing and continuous such that the function

ω0(t)− 1

admits a smallest positive root ρ0. Set M0 = [0, ρ0).

(ii) ∃ a function ω : M0 → R, which is non-decreasing and continuous such that
the function

g1(t)− 1
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admits a smallest positive root r1 ∈ M0, where g1 : M0 → R is

g1(t) =

∫ 1
0 ω((1− θ)t)dθ

1−ω0(t)
.

(iii) The function p(t) − 1 has a smallest positive root ρp ∈ M0, where the function
p : M0 → R is given as

p(t) =
1
2
(ω0(t) + ω0(g1(t)t)).

Set M1 = [0, ρ), where ρ = min{ρ0, ρp}.

(iv) The functions g2(t) − 1, g3(t) − 1 have smallest positive roots r2, r3 ∈ M1, where
g2 : M1 → R, g3 : M1 → R are given by

g2(t) = g1(t) +
ω̄(t)(1 +

∫ 1
0 ω0(θt)dθ)

2(1−ω0(t))(1− p(t))
,

g3(t) =
[

1 +
1
2

(
3
( ω̄(t)

1−ω0(t)
)2

+ 2
( ω̄(t)

1−ω0(t)
)
+ 2
)
(1 +

∫ 1
0 ω0(θg2(t)t)dθ

1−ω0(t)

]
g2(t),

ω̄(t) =
{

ω0(t) + ω0(g1(t)t)
ω(t(1 + g1(t)))

.

Note that in practice, we choose the smallest of the two functions in the formula for
the function ω̄.

Define the parameter r as

r = min{rm}, m = 1, 2, 3. (5)

The parameter r is shown to be a radius of convergence (RC) for the method (2)
(see Theorem 1).

Let M2 = [0, r). Then, for each t ∈ M2, the following items hold:

0 ≤ ω0(t) < 1 (6)

0 ≤ p(t) < 1 (7)

and 0 ≤ gm(t) < 1. (8)

The notation U(x∗, α) stands for the open ball with center x∗ and of radius α > 0,
whereas U[x∗, α] stands for the closure of the ball U(x∗, α).

The scalar functions ω0 and ω relate x∗ to operators appearing on the method (2) or
the method (3) are as follows.

Suppose:

(H1) ∃ a solution x∗ ∈ Ω of the equation F(x) = 0 such that F′(x∗)−1 ∈ L (Y, X).

(H2) ‖F′(x∗)−1(F′(u)− F′(x∗))‖ ≤ ω0(‖x− x∗‖) for each x ∈ Ω.
Set Ω0 = U(x∗, ρ0) ∩Ω.

(H3) ‖F′(x∗)−1(F′(u2)− F′(u1))‖ ≤ ω(‖u2 − u1‖) for each u1, u2 ∈ Ω0.

(H4) U[x∗, d] ⊂ Ω, where d is specified later.

The conditions (H1)–(H2) are utilized first to prove the convergence of the method (2).
Let ln = ‖xn − x∗‖.

Theorem 1. Assume the conditions (H1)–(H4) hold and the initial guess x0 ∈ U(x∗, d) for d = r.
Then, the following assertion holds:

lim
n→∞

xn = x∗
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Proof. The iterates {xk}, {yk}, {zk} shall be shown to exist in the ball U(x∗, r) by mathe-
matical induction. Let u ∈ U(x∗, r), but arbitrary. By utilizing item (6) and the hypotheses
(H1), (H2),

‖F′(x∗)−1(F′(u)− F′(x∗))‖ ≤ ω0(‖u− x∗‖) ≤ ω0(r) < 1.

Then, it follows by the standard Lemma due to Banach [12,18] involving linear opera-
tors that their inverses F′(u)−1 ∈ L (Y, X) with

‖F′(u)−1F′(x∗)‖ ≤ 1
1−ω0(‖u− x∗‖) . (9)

If we choose u = x0, then the iterate y0 exists by the first sub-step of the method (2) if
k = 0, since by hypothesis x0 ∈ U(x∗, r). Moreover, we have

y0− x∗ = x0− x∗− F′(x0)
−1− x∗ = F′(x0)

−1[
∫ 1

0
F′(x∗+ϑ(x0− x∗))dϑ− F′(x0)](x0− x∗),

which gives by (H3), (8) (for m = 1), (9) (for u = x0) and (5) that

‖y0 − x∗‖ ≤
∫ 1

0 ω((1− ϑ)l0)dϑ

1−ω0(l0)
≤ g1(l0)l0 ≤ l0 < r. (10)

Thus, the iterate y0 ∈ U(x∗, r). Then, by (5), (7), (H2) and (10), we obtain

‖(2F′(x∗))−1(F′(x0) + F′(y0)− 2F′(x∗))‖ ≤ 1
2 (‖F′(x∗)−1(F′(x0)− F′(x∗))‖+ ‖F′(x∗)−1(F′(y0)− F′(x∗))‖)

≤ 1
2
(ω0(l0) + ω0(‖y0 − x∗‖))

≤ p(l0) ≤ p(r) < 1,

so
‖(F′(x0) + F′(y0))

−1F′(x∗)‖ ≤ 1
2(1− p(l0))

. (11)

Hence, the iterate z0 exists by the second sub-step of the method (2) and

z0 − x∗ = y0 − x∗ + (F′(x0)
−1 − 2(F′(x0) + F′(y0))

−1)F(x0)

= y0 − x∗ + F′(x0)
−1(F′(x0) + F′(y0)− 2F′(x0))(F′(x0) + F′(y0))

−1F(x0),

thus

‖z0 − x∗‖ ≤ ‖y0 − x∗‖+
ω̄n(1 +

∫ 1
0 ω0(ϑl0))dϑ‖xn − x∗‖

2(1−ω0(l0))(1− p(l0))

≤ g2(l0)l0 ≤ l0,

(12)

since

ω̄n =

{
ω0(l0) + ω0(‖y0 − x∗‖)
ω(l0 + ‖y0 − x∗‖) ,

F(x0) = F(xn)− F(x∗) =
∫ 1

0 [F
′(x∗ + ϑ(x0 − x∗))dϑ− F′(x∗) + F′(x∗)](xn − x∗),

hence, ‖F′(x∗)−1F(x0)‖ ≤ (1 +
∫ 1

0
ω0(ϑ‖x0 − x∗‖)dϑ)ln.

It also follows by (12) that the iterate z0 ∈ U(x∗, r). Furthermore, the iterate x1 exists
by the third sub-step of the method (2) for k = 0. By the third sub-step, it follows in turn

x1 − x∗ = z0 − x∗ − 1
2
[3(I − F′(xn)

−1F′(yn))
2 + (I − F′(xn)

−1F′(yn)) + 2I]F′(xn)
−1F(zn)
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leading to

l1≤ [1 + 1
2 (3(

ω̄n
1−ω0(ln)

)2 + 2( ω̄n
1−ω0(ln)

) + 2) (1+
∫ 1

0 ω0(ϑ‖zn−x∗‖)dϑ)

1−ω0(ln)
]‖zn − x∗‖

≤ g3(ln)ln ≤ ln.
(13)

Thus, the iterate x1 ∈ U(x∗, r). Exchange x0, y0, z0, x1 by xk, yk, zk, xk+1 in the preced-
ing calculations to see that the following estimates hold:

‖yk − x∗‖ ≤ g1(lk)lk ≤ lk < r,

‖zk − x∗‖ ≤ g2(lk)lk ≤ lk

and
lk+1 ≤ g3(lk)lk ≤ lk.

Therefore, the iterates {xk}, {yk}, {zk} ∈ U(x∗, r). Finally, from

lk+1 ≤ ξlk < r, ξ = g3(l0) ∈ [0, 1)

it follows limk→∞ xk = x∗ and xk+1 ∈ U(x∗, r).

The following proposition is to determine the uniqueness of this solution x∗.

Proposition 1. Assume:

(i) ∃ a solution x̄ ∈ U(x∗, ρ2) for some ρ2 > 0.

(ii) The hypothesis (H2) holds on U(x∗, ρ2).

(iii) There exists ρ3 > ρ2 such that ∫ 1

0
ω0(ϑρ3)dϑ < 1.

Set Ω2 = U(x∗, ρ3) ∩Ω. Then, the only solution of (1) in the region Ω2 is x∗.

Proof. Assume ∃ x̄ ∈ Ω2 with F(x̄) = 0. It follows that for

Q =
∫ 1

0
F′(x∗ + ϑ(x̄− x∗))dϑ,

‖F′(x∗)−1(Q− F′(x∗))‖ ≤
∫ 1

0
ω0(ϑ‖x̄− x∗‖)dϑ

≤
∫ 1

0
ω0(ϑρ3)dϑ < 1,

thus, x̄ = x∗ by the identity x̄− x∗ = Q−1(F(x̄− F(x∗)) = Q−1(0) = 0 and the invertibility
of the operator Q.

The LCA of the method (3) is obtained analogously, but the functions g2 and g3 are
given instead by



Foundations 2023, 3 132

g2(t) =

[ ∫ 1
0 ω((1−ϑ)g1(t)t)dϑ

1−ω0(g1(t)t)
+

(1+
∫ 1

0 ω0(ϑg1(t)t)dϑ)(ω̄(t)+2( (1+g1(t))t
2 ))

(1−ω0(g1(t)t))(1−q(t))

]
g1(t),

q(t) =
1
4
(ω0(t) + 2ω0

(
(1 + g1(t))t

2

)
+ ω0(g1(t)t)),

q1(t) =
1
4
[
ω0(t) + 2ω0

(
(1 + g2(t))t

2

)
+ ω0(g2(t)t)

]
and g3(t) =

[ ∫ 1
0 ω((1−ϑ)g2(t)t)dϑ

1−ω0(g2(t)t)
+

(1+
∫ 1

0 ω0(ϑg2(t)t)dϑ)(ω1(t)+2ω(
(1+g2(t))t

2 ))

(1−ω0(g2(t)t))(1−q1(t))

]
g2(t),

where ω1(t) =
{

ω0(t) + ω0(g2(t)t)
ω((1 + g2(t))t)

.

This time the RC r̄ is provided again by the formula (5), but with the new functions g2
and g3. Then, similarly under the conditions (H1)–(H4) with d = r̄, it follows

‖(4F′(x∗))−1(An − 4F′(x∗))‖ ≤ 1
4

[
‖F′(x∗)−1(F′(xn)− F′(x∗))‖+ 2‖F′(x∗)−1(F′

(
xn+yn

2

)
− F′(x∗))‖

+ ‖F′(x∗)−1(F′(yn)− F′(x∗))‖
]

≤ q(ln) = qn < 1,

‖A−1
n F′(x∗)‖ ≤ 1

1− qn
,

‖F′(x∗)−1(An − 4F′(yn))‖ ≤ ‖F′(x∗)−1(F′(xn)− F′(yn))‖+ 2‖F′(x∗)−1(F′( xn+yn
2 )− F′(yn))‖

≤ ω̄n + 2ω

(
‖yn − xn‖

2

)
,

‖F′(x∗)−1F(yn)‖ = ‖
∫ 1

0 F′(x∗)−1[F′(x∗ + ϑ(yn − x∗))dϑ− F′(x∗) + F′(x∗)](yn − x∗)‖

≤ (1 +
∫ 1

0
ω0(ϑ‖yn − x∗‖)dϑ)‖yn − x∗‖,

zn − x∗ = yn − x∗ − F′(yn)
−1F(yn) + F′(yn)

−1(An − 4F′(yn))A−1
n F(yn),

‖zn − x∗‖ ≤
[ ∫ 1

0 ω((1−ϑ)‖yn−x∗‖)dϑ

1−ω0(‖yn−x∗‖) +
(1+

∫ 1
0 ω0(ϑ‖yn−x∗‖)dϑ)(ω̄n+2ω(

‖yn−xn‖
2 ))

(1−ω0(‖yn−x∗‖))(1−qn)

]
‖yn − x∗‖

≤ g2(ln)ln ≤ ln,

xn+1 − x∗ = zn − x∗ − F′(zn)
−1F(zn) + F′(zn)

−1(Bn − 4F′(zn))F(zn),

ln+1 ≤
[ ∫ 1

0 ω((1−ϑ)‖zn−x∗‖)dϑ

1−ω0(‖zn−x∗‖) +
(1+

∫ 1
0 ω0(ϑ‖zn−x∗‖)dϑ)(ω̄1

n+2ω(
‖yn−xn‖

2 ))

(1−ω0(‖zn−x∗‖))(1−q1
n)

]
‖zn − x∗‖

≤ g3(ln)ln ≤ ln,

where ω̄1
n =

{
ω0(ln) + ω0(‖zn − x∗‖)
ω((ln + ‖zn − x∗‖) .

Therefore, under the above-mentioned changes, the conclusions of the Theorem 1
hold, but for the method (3). The results of the Proposition (1) obviously also apply to the
method (3). Therefore, we can provide the corresponding result for the method (3).

Theorem 2. Assume the conditions (H1)–(H4) hold for d = r̄ and the initial guess x0 ∈ U(x∗, r̄).
Then, the following assertion holds:

lim
n→+∞

xn = x∗.
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Proof. It follows from Theorem 1 under the preceding changes.

Remark 1. Under the conditions (H1)–(H4), we can set ρ2 = r or ρ2 = r̄ in Proposition 1
depending on which method is used.

3. SLA

If the role of x∗ is replaced by x0 in the calculations of the previous section, one can
introduce the SLA utilizing majorizing sequences. These sequences are defined for some
λ ≥ 0, respectively, by t0 = 0, s0 = λ,

pn = p(tn) =
1
2
(ω0(tn) + ω0(sn)),

un = sn +
ω(sn − tn)(sn − tn)

(1−ω0(tn))(1− pn)
,

an = (1 +
∫ 1

0
ω0(tn + ϑ(un − tn))dϑ)(un − tn) + (1 + ω0(tn))(sn − tn),

tn+1 = un +
1
2

[
3(

ω(sn − tn)

1−ω0(tn)
)2 + 2(

ω(sn − tn)

1−ω0(tn)
) + 2

]
an

1−ω0(tn)
,

µn+1 =
∫ 1

0
ω((1− ϑ)(tn+1 − tn))dϑ(tn+1 − tn) + (1 + ω0(tn))(tn+1 − sn),

sn+1 = tn+1 +
µn+1

1−ω0(tn+1)

(14)

and

ψ(tn) =
1
4
(ω0(tn) + 2ω0(

sn − tn

2
) + ω0(sn)),

un = sn + 4

∫ 1
0 ω((1− ϑ)(sn − tn))dϑ(sn − tn)

1− ψ(tn)
,

bn = (1 +
∫ 1

0
ω0(sn + ϑ(un − sn))dϑ)(un − sn) +

∫ 1

0
ω((1− ϑ)(sn − tn))dϑ(sn − tn),

ψ1(tn) =
1
4
(ω0(tn) + 2ω0(

tn + un

2
) + ω0(un)),

tn+1 = un + 4
bn

1− ψ1(tn)
,

sn+1 = tn+1 +
µn+1

1−ω0(tn+1)
.

(15)

These sequences majorize {xn} (see Theorem 3). However, first, we develop some
convergence conditions for them.

Lemma 1. Assume for each n = 0, 1, 2, . . .

ω0(tn) < 1, p(tn) < 1 and tn ≤ ξ for some ξ ≥ 0. (16)

Then, the sequence {tn} given by the method (2) is bounded from above by ξ, non-decreasing
and is convergent to some ξ∗ ∈ [0, ξ].

Proof. The result is implied immediately from the formula (14) and the condition (16).

Lemma 2. Suppose that for each n = 0, 1, 2, . . .

ω0(tn) < 1, ψ(tn) < 1, ψ1(tn) < 1 and tn ≤ ξ1 for some ξ1 ≥ 0. (17)
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Then, the sequence {tn} given by the formula (15) is bounded from above by ξ1 and is
convergent to some ξ∗1 ∈ [0, ξ1].

Proof. The result is implied immediately by the formula (15) and the condition (17).

Remark 2. A possible choice for the upper bounds ξ or ξ1 is ρ0 given in (i) of Section 2.

The following conditions are used for both methods. Suppose:

(C1) There exists an element x0 ∈ Ω and a parameter λ ≥ 0 with F′(x0)
−1 ∈ L (Y, X) and

‖F′(x0)
−1F(x0)‖ ≤ λ.

(C2) ‖F′(x0)
−1(F′(u)− F′(x0))‖ ≤ ω0(‖x− x0‖) for each u ∈ Ω.

Set Ω1 = U(x0, ρ0) ∩Ω.
(C3) ‖F′(x0)

−1(F′(u2)− F′(u1))‖ ≤ ω(‖u2 − u1‖) for each u1, u2 ∈ Ω1.
(C4) Conditions (16) and (17) hold for the methods (2) and (3), respectively.
(C5) U[x0, ξ̄] ⊂ Ω, where ξ̄ = ξ or ξ̄ = ξ1 depending on which method is used.

Next, we are developing the semi-local convergence theorem for the method (2).

Theorem 3. Under the conditions (C1)–(C5), the sequence {xn} generated by the method (2) is
convergent to a solution x∗ ∈ U[x0, ξ∗] of the given equation F(x) = 0.

Proof. As in Theorem 1, mathematical induction and the following calculations lead in
turn to

zn − yn = −(F′(xn) + F′(yn))
−1(2F′(xn)− (F′(xn) + F′(yn)))F′(xn)

−1F(xn),

‖zn − yn‖ ≤
ω(‖yn − xn‖)‖yn − xn‖

(1− p(‖xn − x0‖))(1−ω0(‖xn − x0‖))

≤ ω(sn − tn)(sn − tn)

(1− p(tn))(1−ω0(tn))
= un − sn,

‖xn+1 − zn‖ ≤
1
2
(3(

ω(‖yn − xn‖)
1−ω0(‖xn − x0‖)

)2 + 2(
ω(‖yn − xn‖)

1−ω0(‖xn − x0‖)
) + 2)

an

1−ω0(‖xn − x0‖)

≤ 1
2
(3(

ω(sn − tn)

1−ω0(tn)
)2 + 2(

ω(sn − tn)

1−ω0(tn)
) + 2)

an

1−ω0(tn)

= tn+1 − un,

F(xn+1) = F(xn+1)− F(xn)− F′(xn)(xn+1 − xn) + F′(xn)(xn+1 − yn),

‖F′(x0)
−1F(xn+1)‖ ≤ ‖

∫ 1
0 F′(x0)

−1(F′(xn + ϑ(xn+1 + xn))dϑ− F′(xn))(xn+1 − xn) + ‖F′(x0)
−1(F′(xn)− F′(x0)− F′(x0))‖

≤
∫ 1

0 ω((1− ϑ)‖xn+1 − xn‖)dϑ‖xn+1 − xn‖+ (1 + ω0(‖xn − x0‖))‖xn+1 − yn‖

≤
∫ 1

0
ω((1− ϑ)(tn+1 − tn))dϑ(tn+1 − tn) + (1 + ω0(tn))(tn+1 − sn) = µn+1,

(18)

‖yn+1 − xn+1‖ ≤ ‖F′(xn+1)
−1F′(x0)‖‖F′(x0)

−1F(xn+1)‖

≤ µn+1

1−ω0(‖xn+1 − x0‖)
≤ µn+1

1−ω0(tn+1)
= sn+1 − tn+1,

‖zn − x0‖ ≤ ‖zn − yn‖+ ‖yn − x0‖
≤ un − sn + sn − t0 = un ≤ ξ∗,

‖xn+1 − x0‖ ≤ ‖xn+1 − zn‖+ ‖zn − x0‖
≤ tn+1 − un + un − t0 = tn+1 ≤ ξ∗,

‖yn+1 − x0‖ ≤ ‖yn+1 − xn+1‖+ ‖xn+1 − x0‖
≤ sn+1 − tn+1 + tn+1 − t0 = sn+1 ≤ ξ∗,
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since

F(zn) = F(zn)− F(xn) + F(xn)

=
∫ 1

0 (F′(xn + ϑ(zn − xn))dϑ− F′(x0) + F′(x0))(zn − xn) + (F′(xn)− F′(x0) + F′(x0))(yn − xn),

so ‖F′(x0)
−1F(zn)‖ ≤ (1 +

∫ 1
0 ω0(‖xn − x0‖+ ϑ‖zn − xn‖)dϑ)‖zn − xn‖+ (1 + ω0(‖xn − x0‖))‖yn − xn‖ = ān

≤ (1 +
∫ 1

0
ω0(tn + ϑ(un − tn))dϑ)(un − tn) + (1 + ω0(tn))(sn − tn) = an.

Notice also that ‖y0− x0‖ = λ = s0− t0 ≤ ξ∗, so y0 ∈ U[x0, ξ] initiating the induction.
Thus, the sequence {xn} is fundamental in a Banach space X (since {tn} is fundamental as
convergent by the condition (C4)). By letting n→ ∞ in (18) and using the continuity of the
operator F, we conclude that F(x∗) = 0.

Proposition 2. Assume:

(i) ∃ a solution y∗ ∈ U(x0, ρ3) of (1) for some ρ3 > 0.
(ii) The condition (C2) holds on the ball U(x0, ρ3).

There exists ρ4 ≥ ρ3 such that∫ 1

0
ω0((1− θ)ρ3 + θρ4)dθ < 1. (19)

Set Ω2 = U[x0, ρ4] ∩Ω.
Then, the only solution of the equation F(x) = 0 in the region Ω2 is y∗.

Proof. Define the linear operator G =
∫ 1

0 F′(y∗ + θ(ȳ∗ − y∗))dθ provided ȳ∗ ∈ Ω and
F(ȳ∗) = 0. It then follows that

‖F′(x0)
−1(G− F′(x0))‖ ≤

∫ 1

0
ω0((1− θ)‖y∗ − x0‖+ θ‖ȳ∗ − x0‖)dθ

≤
∫ 1

0
ω0((1− θ)ρ3 + θρ4)dθ < 1.

Hence, we deduce that ȳ∗ = y∗.

Remark 3.

(1) The parameter ρ0 can replace ξ∗ or ξ∗1 in the Theorem 3.
(2) Under conditions of Theorem 3, set ρ3 = ξ∗ or ρ3 = ξ∗1 in the Proposition 2.

Similarly, for the method (3), we have in turn the estimates

‖zn − yn‖ ≤ 4‖A−1
n F′(x0)‖‖F′(x0)

−1F(yn)‖

≤
4
∫ 1

0 ω((1− ϑ)‖yn − xn‖)dϑ‖yn − xn‖
1− ψ(‖xn − x0‖)

≤ un − sn,

‖xn+1 − zn‖ ≤ 4‖B−1
n F′(x0)‖‖F′(x0)

−1F(zn)‖

≤ 4bn

1− ψ1(‖xn − x0‖)
≤ tn+1 − un,

and ‖yn+1 − xn+1‖ ≤
µn+1

1−ω0(‖xn+1 − x0‖)
≤ sn+1 − tn+1.

Thus, the conclusions of Theorem 3 and Proposition 2 hold for the method (3) with
(14), (16) replacing (15) and (17), respectively.
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Theorem 4. Under the conditions (C1)–(C5), the sequence {xn} provided by the method (3) is
convergent to a solution x∗ ∈ U[x0, ξ∗1 ] of (1).

Proof. See Theorem 3 under the preceding changes.

4. Numerical Examples

Example 1. Let X = Y = R. Define the function F on Ω = [−1, 1] by

F(x) = ex − 1.

We obtain x∗ = 0 as a root of F(x). The conditions (H1)–(H4) are satisfied for ω0(t) =
(e− 1)t, ρ0 = 0.581977, Ω0 = U(x∗, ρ0) ∩Ω and ω(t) = et. Then, the radii obtained are as
given in Table 1.

Table 1. Radii for Examples 1 and 2.

Example 1 Example 2

Method (2) Method (3) Method (2) Method (3)

r1 = 0.324947 r1 = 0.324947 r1 = 0.666667 r1 = 0.666667
r2 = 0.201201 r2 = 0.196671 r2 = 0.390253 r2 = 0.444428
r3 = 0.123369 r3 = 0.16627 r3 = 0.240567 r3 = 0.373689

r = 0.123369 r̄ = 0.16627 r = 0.240567 r̄ = 0.373689

Example 2. We define the function F(x) = sin x on Ω, where X = Y = Ω = R. We have
F′(x) = cos x and also x∗ = 0 is the solution of F(x) = 0. Now, the conditions (H1)–(H4) are
validated for ω0(t) = ω(t) = t. Then, the RC are as given in Table 1.

Example 3. Consider the system of differential equations with

F′1(v1) = ev1 , F′2(v2) = (e− 1)v2 + 1, F′3(v3) = 1

subject to the initial conditions F1(0) = F2(0) = F3(0) = 0. Let F = (F1, F2, F3). Let X =
Y = R3 and Ω = U[0, 1]. Then, x∗ = (0, 0, 0)T solves (1). Define the function F on Ω for
v = (v1, v2, v3)

T as

F(v) = (ev1 − 1,
e− 1

2
v2

2 + v2, v3)
T .

Then, the Fréchet derivative is given by

F′(v) =

ev1 0 0
0 (e− 1)v2 + 1 0
0 0 1


Therefore, by the definition of F we have F′(x∗) = 1. Then, conditions (H1)–(H4) are satisfied

if ω0(t) = (e− 1)t, ρ0 = 0.581977, Ω0 = U(x∗, ρ0) ∩Ω and ω(t) = e
1

e−1 t. Then, the radii are
listed in Table 2.

Table 2. Radii for Example 3.

Method 2 Method 3

r1 = 0.382692 r1 = 0.382692
r2 = 0.224974 r2 = 0.242274
r3 = 0.140272 r3 = 0.205931

r = 0.140272 r̄ = 0.205931
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Example 4. Let X = Y = R. Let the function F on Ω for Ω = U(x0, 1− α) for some α ∈ [0, 1) be

F(x) = x3 − α

Fix x0 = 1. Then, the conditions (C1)–(C3) are satisfied for λ = 1−α
3 , ω0(t) = (3− α)t,

Ω1 = (x0, 1
3−α ), ω(t) = 2(1 + 1

3−α )t. Choose ξ̄ = 1
3−α . The conditions of Lemmas 1 and 2 are

verified in Tables 3 and 4, respectively.

Table 3. Estimates for method (2).

n 0 1 2 3 4 5 6 7

ω0(tn) 0 0.0274273 0.060139 0.147707 0.1489201 0.1498202 0.1498211 0.1498211
p(tn) 0.0153889 0.0325636 0.0728308 0.182755 0.1847021 0.1848412 0.1848423 0.1848423

tn 0 0.013713 0.030068 0.0738499 0.0740089 0.07412632 0.0742212 0.0742212

ξ∗ = 0.0742212.

Table 4. Estimates for method (3).

n 0 1 2 3 4 5 6 7 8

ω0(tn) 0 0.0556283 0.0934655 0.114921 0.123201 0.124746 0.124812 0.124813 0.124813
ψ(tn) 0.0170833 0.0403661 0.0547196 0.0610351 0.0623482 0.0624062 0.0624063 0.0624063 0.0624063
ψ1(tn) 0.0188072 0.0691335 0.101844 0.118574 0.123952 0.124779 0.124813 0.124813 0.124813

tn 0 0.0271357 0.0455929 0.0560588 0.0600982 0.0608519 0.0608841 0.0608842 0.0608842

ξ∗1 = 0.0608842.

Hence, we can observe that conditions (C4) and (C5) hold for both the methods (2) and (3).
Thus, the conclusions of Theorem (3) and Theorem (4) hold for (2) and (3), respectively, i.e., the
sequence {xn} produced by the method (2) (or (3)) converges to x∗ ∈ U[x0, ξ∗] (or U[x0, ξ∗1 ]).

Example 5. Let X = Y = R5, Ω = U[0, 1] and consider the system of 5 equations defined by

∑5
j=1,j 6=i xj − exi = 0, 1 ≤ i ≤ 5,

where x∗ = (0.20388835470224016 . . . , 0.20388835470224016 . . . , 0.20388835470224016 . . . ,
0.20388835470224016 . . . , 0.20388835470224016 . . .)T is a root.

Choose x0 = (0.3, 0.3, 0.3, 0.3, 0.3)T . Then, the errors are in Table 5.

Table 5. Error estimates for Example (5).

Methods ‖x0− x∗‖ ‖x1− x∗‖ ‖x2− x∗‖ ‖x3− x∗‖

Method (2) 9.61116× 10−2 5.38484× 10−4 1.7643× 10−17 2.18261× 10−98

Method (3) 9.61116× 10−2 4.29875× 10−5 4.45051× 10−25 5.4804× 10−145

Therefore, we can say that methods (2) and (3) converge to x∗.

5. Conclusions

The LCA and SLA for the methods (2) and (3) are validated by applying a generalized
condition of Lipschitz to the first derivative only. A comparison is made between the two
convergence balls, which are very similar in terms of their efficiency. This study derives
estimates of convergence balls, measurement of error distances, and existence-uniqueness
regions of the solution. Finally, the proposed theoretical results are checked for application
problems. The process of this article shall be applied on other high convergence order
methods using inverses of operators that are linear in our future research [1–8].



Foundations 2023, 3 138

Author Contributions: Conceptualization, I.K.A., S.R., J.A.J. and J.J.; methodology, I.K.A., S.R., J.A.J.
and J.J.; software, I.K.A., S.R., J.A.J. and J.J.; validation, I.K.A., S.R., J.A.J. and J.J.; formal analysis,
I.K.A., S.R., J.A.J. and J.J.; investigation, I.K.A., S.R., J.A.J. and J.J.; resources, I.K.A., S.R., J.A.J. and
J.J.; data curation, I.K.A., S.R., J.A.J. and J.J.; writing—original draft preparation, I.K.A., S.R., J.A.J.
and J.J.; writing—review and editing, I.K.A., S.R., J.A.J. and J.J.; visualization, I.K.A., S.R., J.A.J. and
J.J.; supervision, I.K.A., S.R., J.A.J. and J.J.; project administration, I.K.A., S.R., J.A.J. and J.J.; funding
acquisition, I.K.A., S.R., J.A.J. and J.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

L (X, Y) Set of Linear operators from X to Y
{tn} Scalar sequence

References
1. Cordero, A.; Gómez, E.; Torregrosa, J.R. Efficient high-order iterative methods for solving nonlinear systems and their application

on heat conduction problems. Complexity 2017, 2017, 6457532. [CrossRef]
2. Babajee, D.K.R. On the Kung-Traub conjecture for iterative methods for solving quadratic equations. Algorithms 2016, 9, 1.

[CrossRef]
3. Sharma, J.R.; Sharma, R.; Kalra, N. A novel family of composite Newton–Traub methods for solving systems of nonlinear

equations. Appl. Math. Comput. 2015, 269, 520–535. [CrossRef]
4. Kung, H.; Traub, J.F. Optimal order of one-point and multipoint iteration. J. ACM 1974, 21, 643–651. [CrossRef]
5. Noor, M.A.; Noor, K.I.; Al-Said, E.; Waseem, M. Some new iterative methods for nonlinear equations. Math. Probl. Eng. 2010,

2010, 198943. [CrossRef]
6. Herceg, D.; Herceg, D. A family of methods for solving nonlinear equations. Appl. Math. Comput. 2015, 259, 882–895. [CrossRef]
7. Lotfi, T.; Bakhtiari, P.; Cordero, A.; Mahdiani, K.; Torregrosa, J.R. Some new efficient multipoint iterative methods for solving

nonlinear systems of equations. Int. J. Comput. Math. 2015, 92, 1921–1934. [CrossRef]
8. Waseem, M.; Noor, M.A.; Noor, K.I. Efficient method for solving a system of nonlinear equations. Appl. Math. Comput. 2016,

275, 134–146. [CrossRef]
9. Argyros, I.K.; Sharma, D.; Argyros, C.I.; Parhi, S.K.; Sunanda, S.K. Extended iterative schemes based on decomposition for

nonlinear models. J. Appl. Math. Comput. 2022, 68, 1485–1504. [CrossRef]
10. Argyros, C.I.; Argyros, I.K.; Regmi, S.; John, J.A.; Jayaraman, J. Semi-Local Convergence of a Seventh Order Method with One

Parameter for Solving Non-Linear Equations. Foundations 2022, 2, 827–838. [CrossRef]
11. Argyros, I.K.; Regmi, S.; Shakhno, S.; Yarmola, H. Perturbed Newton Methods for Solving Nonlinear Equations with Applications.

Symmetry 2022, 14, 2206. [CrossRef]
12. Argyros, I.K. The Theory and Applications of Iteration Methods, 2nd ed.; CRC Press/Taylor and Francis Publishing Group Inc.: Boca

Raton, FL, USA, 2022.
13. John, J.A.; Jayaraman, J.; Argyros, I.K. Local Convergence of an Optimal Method of Order Four for Solving Non-Linear System.

Int. J. Appl. Comput. Math. 2022, 8, 194. [CrossRef]
14. Hammad, H.; Cholamjiak, W.; Yambangwai, D.; Dutta, H. A modified shrinking projection methods for numerical reckoning

fixed points of G-nonexpansive mappings in Hilbert spaces with graphs. Miskolc Math. Notes 2019, 20, 941–956. [CrossRef]
15. Hammad, H.A.; Rehman, H.U.; De la Sen, M. Shrinking projection methods for accelerating relaxed inertial Tseng-type algorithm

with applications. Math. Probl. Eng. 2020, 2020, 7487383. [CrossRef]
16. Tuyen, T.M.; Hammad, H.A. Effect of shrinking projection and CQ-methods on two inertial forward–backward algorithms for

solving variational inclusion problems. In Rendiconti del Circolo Matematico di Palermo Series 2; Springer: Cham, Switzerland,
2021; pp. 1–15.

http://doi.org/10.1155/2017/6457532
http://dx.doi.org/10.3390/a9010001
http://dx.doi.org/10.1016/j.amc.2015.07.092
http://dx.doi.org/10.1145/321850.321860
http://dx.doi.org/10.1155/2010/198943
http://dx.doi.org/10.1016/j.amc.2015.03.028
http://dx.doi.org/10.1080/00207160.2014.946412
http://dx.doi.org/10.1016/j.amc.2015.11.061
http://dx.doi.org/10.1007/s12190-021-01570-5
http://dx.doi.org/10.3390/foundations2040056
http://dx.doi.org/10.3390/sym14102206
http://dx.doi.org/10.1007/s40819-022-01404-3
http://dx.doi.org/10.18514/MMN.2019.2954
http://dx.doi.org/10.1155/2020/7487383


Foundations 2023, 3 139

17. Abro, H.A.; Shaikh, M.M. A new time-efficient and convergent nonlinear solver. Appl. Math. Comput. 2019, 355, 516–536.
[CrossRef]

18. Kantorovich, L.V.; Akilov, G.P. Functional Analysis in Normed Spaces; Pergamon Press: Oxford, UK, 1964.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.amc.2019.03.012

	Introduction
	LCA
	SLA
	Numerical Examples
	Conclusions
	References

