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Abstract: Multiannual growth systems are modeled in generic terms and investigated using partial
derivatives and Lagrange multipliers. Grown stock density and temperature sum are used as inde-
pendent variables. Estate capitalization increases continuously with grown stock and temperature
sum, whereas capital return rate and gross profit rate reach a maximum with respect to grown stock.
As two restrictions are applied simultaneously, the results mostly but not always follow intuition.
The derivative of capital return rate with respect to gross profit rate is positive, and negative with
respect to capitalization. The derivative of capitalization with respect to capital return rate shows
some positive values, as well as that with respect to gross profit rate. The derivative of the gross
profit rate is positive with respect to both capitalization and capital return rate. The results indicate a
variety of alternative strategies, which may or may not be multiobjective.
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1. Introduction

Growing biological systems provide ecosystem services, corresponding to crops, air
purification, carbon storage, biodiversity, and protection from hazards such as erosion
and avalanches [1,2]. Due to the variety of necessary ecosystem services, multiobjective
management has gained popularity [3–9]. Our primary focus here is on forestry, but we
believe the results can be applied or adapted to estates growing other multiannual plants
such as bamboo or fruit trees [10,11].

The principal microeconomic objective in capital investments is the rate of return on
capital [12–14]. Plant-growing estates can be seen as investments, possibly yielding a return
on capital. Such return, however, can be partially operative and partially nonoperative.
Operative return is based on owner activities, such as timber sales, whereas nonopera-
tive occurs independent of owner activities, for example, as eventually increasing estate
market values.

As the return on capital may be due to operations or capital valuations, there cor-
respondingly are different possible strategies available. Straightforwardly, the operative
capital return rate can be taken as an objective. On the other hand, value increment in the
real estate market can be aspired [15,16]. In the latter case, one can simply select increasing
estate value as the objective.

One can then ask, what is the role of profit in microeconomics. Profit naturally con-
tributes to the operative capital return rate, but it hardly suffices as an independent measure
of performance in capital-intensive businesses [12–14]. There are, however, circumstances
where the gross profit rate is of particular interest [17,18], even if not necessarily microe-
conomic interest. A gross income stream is partially used to pay taxes, and the goods
produced serve as input to the regional economy. In the case of forestry, the wood raw
material produced enables industries, as well as services the industries need. In other
words, the gross profit rate may suffice as an objective to public agents.

Lagrange multipliers have been previously used to optimize sampling in measure-
ments of the timber stock [19]. Eulerian–Lagrangian extremization has been used in the
gasification of forest residues [20]. Lagrange multipliers have been used in a relaxation
approach regarding road network placement and harvesting machinery location [21].
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In this paper, we intend to present a simple, generic model of estates growing multian-
nual plants using hyperbolic growth functions and Lagrange multipliers. Our focus is on
economical quantities. We first present a simple expression for the capitalization of forest
estates, as well as for the gross profit rate and capital return rate. Grown stock density and
temperature sum are taken as independent variables. The capital return rate is extremized,
with gross profit rate and capitalization as restrictions. In the second stage, capitalization
is taken as the main objective function, and capital return rate and gross profit rate as
restrictions. Third, the gross profit rate is maximized, with capitalization and capital return
rate as restrictions. Lagrange multipliers, determining the total derivative of any objective
function with respect to any restriction, are determined. Generality is aspired—however,
numerical solution with two restrictions requires fixing parameters to describe European
boreal forestry.

2. Materials and Methods

Estates growing multiannual plants are here approached in terms of statics. In other
words, an idealized steady-state system is discussed. Even if trees grow annually, a forest
estate may remain in a stationary state provided that the amount of annual growth is
harvested annually. Stationarity within an estate may require an even stand age distri-
bution [22]. Such a requirement, however, vanishes if expected values of observables are
discussed within a stand [23]. Average grown stocking, estate value per hectare, gross
profit rate, and operative capital return rate within a rotation are to be discussed, as well as
the corresponding average growing season temperature sum.

Let us first establish a measure for the independent variable of average grown stock
V. It is measured in monetary terms, the average current value of the grown plants per
area unit. Instead of being a random variable, the expected value of the grown stock is
determined by agent activity. It necessarily fluctuates in time, since harvesting occurs
discretely, instead of continuously. Such fluctuation, however, is considered unimportant
in the present context.

The grown stock contributes to capitalization per unit area, given as

C = B + (1 + u)V (1)

where B corresponds to bare land value and u to eventual market premium in the real estate
market [15,16]. It is worth noting that all dependent variables are here discussed in terms
of expected values and given in terms of deterministic equations. Only the expected values
are of interest since fluctuations of the dependent variables tend to average out along with
time.

The average gross profit rate is given in terms of the relative value growth rate
of plants, multiplied by the average grown stock. For the former quantity, a simple
monotonically decreasing function is adopted as a [1 − tanh(kV)], where a and k are scale
factors. Correspondingly, the average gross profit rate is modeled as

P = a[1 − tanh(kV)]V (2)

Finally, the average operative capital return rate is given as

R =
P
C

(3)

The capital return rate is denoted as operative since eventual estate value change,
measurable by the market premium factor u, is assumed not to change, and neither is the
bare land value B affected by the grown stock V.
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Let us then write the derivatives of the capitalization, the gross profit rate, and the
operative capital return rate with respect to the grown stocking as

∂C
∂V

= 1 + u (4)

∂P
∂V

= a
{
[1 − tanh(kV)]− kV

[
1 − tanh2(kV)

]}
(5)

and
∂R
∂V

=
a
{

B[1 − tanh(kV)]− kV
[
1 − tanh2(kV)

]
[B + (1 + u)V]

}
[B + (1 + u)V]2

(6)

Above, the grown stock V is used as the independent variable. Such a representation
may be an oversimplification. The average growing season temperature sum is now taken
as another independent variable. The temperature sum is predominantly determined by
estate location, but it may vary with time. Correspondingly, any agent is able to contribute
to this variable by estate acquisition. The temperature sum is introduced into the scale
factor a in the formula for the gross profit rate as

a = αtanh(
S − ς

ϕ
) (7)

where S is the average temperature sum, ς is a threshold value, and α and ϕ are scale factors.
Once temperature sum is considered, it is plausible to assume that the bare land value

depends on the temperature sum, most simply as

B = βS (8)

where S is the average temperature sum, and β is a scale factor.
Let us then write the derivatives of the capitalization, the gross profit rate, and the

operative capital return rate with respect to the temperature sum as

∂C
∂S

= β (9)

∂P
∂S

= αV[1 − tanh(kV)]
1
ϕ

[
1 − tanh2(

S − ς

ϕ
)

]
(10)

and

∂R
∂S

= αV[1 − tanh(kV)]


1
ϕ

[
1 − tanh2( S−ς

ϕ )
]

βS + (1 + u)V
−

βtanh( S−ς
ϕ )

[βS + (1 + u)V]2

 (11)

It is found from Equations (4) and (9) that the derivative of capitalization with respect to
both grown stock and temperature sum is positive. The same applies to the derivative of gross
profit rate with respect to temperature sum (Equation (10)), but the derivative with respect to
grown stock changes from positive to negative with increasing grown stock (Equation (5)).
The derivative of the operative capital return rate with respect to grown stock shows the same
behavior, provided that the bare land value is nonzero (Equation (6)). The derivative of the
operative capital return rate with respect to the temperature sum, in general, is positive but
may reach negative values in some peculiar circumstances (Equation (11)).

The operative capital return rate as an objective function, with respect to a restriction
in the gross profit rate and total estate value, results as a Lagrangian

L1 = R − λ1(P − p)− λ2(C − c) (12)

where p is the restriction for the gross profit rate P, and c is the restriction for capitalization
C. Extremization of Equation (12) in terms of ∂L1

∂V = ∂L1
∂S = ∂L1

∂λ1
= ∂L1

∂λ2
= 0 results as an
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extremized Lagrangian L∗
1 . Then, λ1 =

dL∗
1

dp = dR∗
dp = dR∗

dP∗ , and λ2 =
dL∗

1
dc = dR∗

dc = dR∗
dC∗ .

Here, all quantities with an asterisk (*) in the superscript refer to extremized quantities.
Further, extremizing Lagrangians with respect to any Lagrange multiplier results as the
extremized restriction function gaining the restriction value.

The estate capitalization as an objective function, with respect to a restriction in the
capital return rate and the gross profit rate, results as a Lagrangian

L2 = C − λ3(R − r)− λ4(P − p) (13)

where r is the restriction for the operative capital return rate R. Extremization of
Equation (13) results as an extremized Lagrangian L∗

2 . Then, λ3 =
dL∗

2
dr = dC∗

dr = dC∗
dR∗ , and

λ4 =
dL∗

1
dp = dC∗

dp = dC∗
dP∗ .

Finally, the gross profit rate as an objective function, with respect to a restriction in the
capitalization and the capital return rate, results as a Lagrangian

L3 = P − λ5(C − c)− λ6(R − r) (14)

where r is the restriction for the operative capital return rate R. Extremization of
Equation (14) results as an extremized Lagrangian. Then, λ5 =

dL∗
3

dc = dP∗
dc = dP∗

dC∗ , and

λ6 =
dL∗

3
dr = dP∗

dr = dP∗
dR∗ .

For all the expressions above, analytical solutions exist. However, many of them
would not be easy to interpret. Numerical solutions, instead, can be graphically illustrated.
Numerical solutions require parameter values—fixing parameter values, however, reduce
the generality of the treatment. Here, reduced generality is accepted, and a set of parameter
values, corresponding to European boreal conditions, is adopted as given in Table 1. The
parametrization in Table 1 is designed simply by matching Equations (2) and (8) with boreal
growth and yield models [24–29], as well as financial data from the region [30,31].

Table 1. Parameter values used in numerical solutions.

Symbol Value Unit Name

u 0.3 Relative estate market premium

k 0.000101 Grown stocking scale factor

α 0.1 Relative growth scale factor

ς 600 Degrees C Thermal sum threshold value

ϕ 450 Degrees C Thermal sum scale factor

β 0.7 Eur/(ha*degrees C) Bare land value scale factor

3. Results

First, the estate capitalization, given in Equation (1), consisting of two terms, is domi-
nated by the latter term, given the parameter values in Table 1. The estate capitalization in
relation to the grown stock value in turn is dominated by the parameter u, corresponding
to estate market premium, in relation to grown stock value.

The expected value of gross profit rate, as given in Equations (2) and (7), is shown
in Figure 1. The expected value of operative capital return rate, as given in Equation (3),
is shown in Figure 2. It is found that both the gross profit rate and the capital return rate
depend strongly on the temperature sum. Both reach a maximum as a function of grown
stock, but the capital return rate reaches the maximum at a much lower stock than the gross
profit rate (Figures 1 and 2).



Foundations 2023, 3 119

Foundations 2023, 3, FOR PEER REVIEW 5 
 

 

3. Results 
First, the estate capitalization, given in Equation (1), consisting of two terms, is dom-

inated by the latter term, given the parameter values in Table 1. The estate capitalization 
in relation to the grown stock value in turn is dominated by the parameter u, correspond-
ing to estate market premium, in relation to grown stock value. 

The expected value of gross profit rate, as given in Equations (2) and (7), is shown in 
Figure 1. The expected value of operative capital return rate, as given in Equation (3), is 
shown in Figure 2. It is found that both the gross profit rate and the capital return rate 
depend strongly on the temperature sum. Both reach a maximum as a function of grown 
stock, but the capital return rate reaches the maximum at a much lower stock than the 
gross profit rate (Figures 1 and 2).  

 
Figure 1. Expected value of gross profit rate as a function of grown stock and temperature sum. 

 
Figure 2. Expected value of operative capital return rate as a function of grown stock and tempera-
ture sum. 

Figures 1 and 2 also readily reveal that the derivative of the gross profit rate and the 
operative capital return rate are both positive at low grown stock and negative at large 

Figure 1. Expected value of gross profit rate as a function of grown stock and temperature sum.

Foundations 2023, 3, FOR PEER REVIEW 5 
 

 

3. Results 
First, the estate capitalization, given in Equation (1), consisting of two terms, is dom-

inated by the latter term, given the parameter values in Table 1. The estate capitalization 
in relation to the grown stock value in turn is dominated by the parameter u, correspond-
ing to estate market premium, in relation to grown stock value. 

The expected value of gross profit rate, as given in Equations (2) and (7), is shown in 
Figure 1. The expected value of operative capital return rate, as given in Equation (3), is 
shown in Figure 2. It is found that both the gross profit rate and the capital return rate 
depend strongly on the temperature sum. Both reach a maximum as a function of grown 
stock, but the capital return rate reaches the maximum at a much lower stock than the 
gross profit rate (Figures 1 and 2).  

 
Figure 1. Expected value of gross profit rate as a function of grown stock and temperature sum. 

 
Figure 2. Expected value of operative capital return rate as a function of grown stock and tempera-
ture sum. 

Figures 1 and 2 also readily reveal that the derivative of the gross profit rate and the 
operative capital return rate are both positive at low grown stock and negative at large 
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ture sum.

Figures 1 and 2 also readily reveal that the derivative of the gross profit rate and the
operative capital return rate are both positive at low grown stock and negative at large
grown stock, as indicated in Equations (5) and (6). The sign change happens at much lower
grown stock in the case of the operative capital return rate. Equation (4) indicates that the
derivative of the capitalization with respect to grown stock is constant, corresponding to
(1 + u).

Figures 3 and 4 show the derivatives of gross profit rate and operative capital return
rate, respectively, with respect to the temperature sum. The effect of the temperature sum
is the greatest with low temperature sum. The derivative reaches the highest values in the
range of grown stock where the affected property is of the highest value. The derivative
of the gross profit rate is always positive, whereas the derivative of the capital return rate
reaches also some negative values. The latter appear in the case of high temperature sum
and low grown stock, where the grown stock does not dominate the denominators in
Equation (11).
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Extremizing the Lagrangian of Equation (12) results as solutions of the Lagrange
multipliers λ1 = dR∗

dP∗ and λ2 = dR∗
dC∗ , corresponding to the total derivatives of the operative

capital return rate under restrictions in both gross profit rate and capitalization. It is found
from Figure 5 that the derivative with respect to the gross profit rate is always positive, and
that with respect to capitalization is negative (Figure 6). The grown stock appearing in both
the numerator and denominator of Equation (3), the magnitude of both of the derivatives
vanish along with increasing grown stock.
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Extremizing the Lagrangian of Equation (13) results as solutions of the Lagrange mul-
tipliers λ3 = dC∗

dR∗ and λ4 = dC∗
dP∗ , corresponding to the total derivatives of the capitalization

under restrictions in both capital return rate and gross profit rate. The derivative of the
capitalization with respect to the operative capital return rate shows behavior somewhat
less compliant with intuition: positive derivative values appear in Figure 7. This may
be related to the fact that the partial derivatives of the capitalization and the operative
capital return rate with respect to the grown stocking are of the same sign, unless the grown
stocking is large (Equations (4) and (6)). The derivative of the capitalization with respect
to the gross profit rate changes from positive to negative as the gross profit rate starts do
diminish as a function of grown stocking (Figure 8).
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Extremizing the Lagrangian of Equation (14) results as solutions of the Lagrange
multipliers λ5 = dP∗

dC∗ and λ6 = dP∗
dR∗ , corresponding to the total derivatives of the gross

profit rate under restrictions in both capitalization and capital return rate. Both of the total
derivatives in Figures 9 and 10 are positive, λ5 reaching a maximum with grown stock, λ6
increasing apparently linearly.
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4. Discussion

Three different objective functions have been discussed in this paper. The three
different objective functions obviously correspond to three different strategies. The capital
return rate appears the most natural objective function in capital economy [12–14]. A
shortcoming is that the operative capital return rate only incorporates operative revenues
and omits eventual development in estate valuation.

The second objective function, the estate capitalization, appears unconventional on
first hearing. However, such an objective function may be essential if the intention is to
create profits in the real estate market. The capitalization function appearing in Equation (1)
has been proposed to apply in the Nordic countries and in North America [15,16,32,33],
indicating that it may be profitable to acquire estates of low grown stock and divest estates
of high grown stock.

The third objective function, the gross profit rate, appears the most peculiar. Profit
contributes to the return rate of capital, but neglects capitalization, and thus hardly suffices
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as an independent measure of financial performance. However, there are circumstances
where the gross profit rate, reflecting the value stream of the production, may be of inter-
est [17,18]. A gross income stream is partially used to pay taxes, and the goods produced
serve as input to the regional economy. In the case of forestry, the wood raw material
produced enables industries, as well as services the industries’ need. In other words, the
gross profit rate may suffice as an objective for public agents.

Considering any one of the three objective functions individually is not a very com-
plicated task. Given objective functions in the form of Equations (1)–(3), their deriva-
tives with respect to the grown stock and the temperature sum can be written as in
Equations (4) to (11). Considering two objective functions simultaneously, their relation-
ship can be clarified in terms of the chain rule of derivatives, using Equations (4) to (11).

Considering three objective functions simultaneously is a somewhat more complicated
issue, here discussed in terms of Lagrange multipliers. Some of the results appear intuitive,
whereas others are counterintuitive at first glance. Intuition can be supported by discussing
partial derivatives between the objective functions, readily solvable from Equation (3).

The partial derivative of the capital return rate with respect to gross profit rate is always
positive, and with respect to capitalization almost certainly negative (Equation (3)). The
Lagrange multipliers λ1 = dR∗

dP∗ and λ2 = dR∗
dC∗ , corresponding to the total derivatives of the

operative capital return rate under restrictions in both gross profit rate and capitalization,
display the same signs as the corresponding partial derivatives, in Figures 5 and 6.

The partial derivative of the capitalization with respect to the capital return rate is
almost certainly negative and, with respect to the gross profit rate, is always positive
(Equation (3)). The Lagrange multipliers λ3 = dC∗

dR∗ and λ4 = dC∗
dP∗ , corresponding to the

total derivatives of the capitalization under restrictions in both capital return rate and gross
profit rate, however, both display positive and negative values in Figures 7 and 8. The
appearance of positive values in Figure 7 is suspected to be related to the fact that the partial
derivatives of the capitalization and the operative capital return rate with respect to the
grown stock are of the same sign unless the grown stocking is large (Equations (4) and (6)).
The appearance of negative values in Figure 8 is suspected to be related to the fact that the
partial derivatives of the capitalization and the gross profit rate with respect to the grown
stock are of different signs at large grown stock (Equations (4) and (5)).

The partial derivative of the gross profit rate with respect to capitalization corresponds
to the capital return rate, according to Equation (3). The Lagrange multiplier λ5 = dP∗

dC∗ ,
corresponding to the total derivative of the gross profit rate under restrictions in both
capitalization and capital return rate, produces results very much like the capital return
rate. In other words, Figure 9 does not differ much from Figure 2. Similarly, the partial
derivative of the gross profit rate with respect to capital return rate corresponds to the
capitalization, according to Equation (3). The Lagrange multiplier λ6 = dP∗

dR∗ , corresponding
to the total derivative of the gross profit rate under restrictions in both capitalization and
capital return rate, does not differ much from the capitalization given in Equation (1).

One might ask whether Equation (3) would solve the entire problematics very straight-
forwardly. In the extremized state, the capital return rate indeed is

R∗ =
P∗

C∗ =
p
c

(15)

Then, the partial derivatives become straightforwardly

∂R∗

∂P∗ =
1

C∗ =
1
c

(16)

and
∂R∗

∂C∗ = − R∗

(C∗)2 = −R∗

c2 (17)
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However, the Lagrange multipliers correspond to total derivatives, such as

λ1 =
dR∗

dP∗ =
dR∗

dP∗ (V, S, p, c) (18)

which can be expanded with the chain rule of partial derivatives

λ1 =
dR∗

dP∗ =
∂R∗

∂V
∂V
∂P∗ +

∂R∗

∂S
∂S

∂P∗ +
∂R∗

∂p
∂p

∂P∗ +
∂R∗

∂c
∂c

∂P∗ (19)

Then, one might ask whether the Lagrange multipliers could be determined directly
using Equation (19). No, they cannot; the extremizing condition

∂L1

∂V
=

∂L1

∂S
=

∂L1

∂λ1
=

∂L1

∂λ2
= 0 (20)

must be applied to find the extremized quantities.

5. Conclusions

Growing biological systems were modeled in generic terms and investigated using
partial derivatives and Lagrange multipliers. Grown stock density and temperature sum
were used as independent variables. Estate capitalization increased continuously with
grown stock and temperature sum, whereas capital return rate and gross profit rate reached
a maximum with respect to the grown stock. As two restrictions were applied simulta-
neously, the results mostly but not always followed intuition. The derivative of capital
return rate with respect to gross profit rate was positive, and negative with respect to
capitalization. The derivative of capitalization with respect to capital return rate showed
some positive and some negative values, as well as that with respect to gross profit rate.
The derivative of gross profit rate was positive with respect to both capitalization and
capital return rate. The results indicated a variety of alternative strategies, which may or
may not be multiobjective.
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