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Abstract: It is known that, from a modeling point of view, fractional dynamic equations are more
suitable compared to integer derivative models. In fact, a fractional dynamic equation is referred to
as an equation with memory. To demonstrate that the fractional dynamic model is better than the
corresponding integer model, we need to compute the solutions of the fractional differential equations
and compare them with an integer model relative to the data available. In this work, we will illustrate
that the linear nq-order sequential Caputo fractional differential equations, which are sequential of
order q where q < 1 with fractional initial conditions and/or boundary conditions, can be solved.
The reason for choosing sequential fractional dynamic equations is that linear non-sequential Caputo
fractional dynamic equations with constant coefficients cannot be solved in general. We used the
Laplace transform method to solve sequential Caputo fractional initial value problems. We used
fractional boundary conditions to compute Green’s function for sequential boundary value problems.
In addition, the solution of the sequential dynamic equations yields the solution of the corresponding
integer-order differential equations as a special case as q→ 1.

Keywords: sequential Caputo fractional derivative; fractional initial and boundary value problems;
Mittag–Leffler functions; Green’s function

MSC: 34A08; 34A12

1. Introduction

Dynamic equations with integer-order, ordinary, partial, and hybrid models with
initial and/or boundary conditions have been used as mathematical models in various
branches of science and engineering. The concept of fractional calculus was known over
300 years ago. However, the study of fractional dynamic equations gained importance due
to its myriad applications in widespread fields of science and engineering. In the past four
decades, the application of fractional dynamic equations has been felt in several scientific
and engineering areas. See [1–30] for some applications. See [14–16,19,20,24,27,31–33] for
monographs on analysis and applications of fractional dynamic equations. The paper [31]
is entirely dedicated to the study of Mittag–Leffler functions. The Mittag–Leffler function
plays a crucial role in the study of linear fractional differential equations. See [34–44] for
some analysis and numerical work on Caputo fractional differential equations. Additionally,
see [45–49] for some work on fractional boundary value problems and sequential fractional
boundary value problems. In [20], the authors observed in their experiment that the use
of half-order derivatives and integrals led to a formulation of certain electro-chemical
problems that was more economical and useful than the classical approach in terms of
Fick’s law of diffusion. In short, we can establish that fractional-order differential equations
represent a better model only when the solution of the fractional order is closer to the

Foundations 2022, 2, 1129–1142. https://doi.org/10.3390/foundations2040074 https://www.mdpi.com/journal/foundations

https://doi.org/10.3390/foundations2040074
https://doi.org/10.3390/foundations2040074
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foundations
https://www.mdpi.com
https://orcid.org/0000-0002-1576-9635
https://orcid.org/0000-0002-2492-1731
https://doi.org/10.3390/foundations2040074
https://www.mdpi.com/journal/foundations
https://www.mdpi.com/article/10.3390/foundations2040074?type=check_update&version=2


Foundations 2022, 2 1130

data compared to the integer model. To reach this conclusion or judgement, we should
be able to solve the fractional differential equation whose solution reduces to the integer
solution as the fractional order q tends to its nearest integer. For certain values of the
fractional order, the solution of the fractional order has the least error with the data.
In [1], the authors demonstrated that the modeling of some real phenomena by fractional
differential equations of appropriate fractional order is better than the nearest integer-order
model. If the fractional order is q < 1, then we can solve the linear initial value problem,
which involves Mittag–Leffler functions. The two-parameter Mittag–Leffler function is the
generalization of the exponential function, and it is, in fact, the exponential function when
the two parameters are exactly 1. We can solve the linear Caputo fractional differential
equation of the form

cDq
0+u = λu + f (t), (1)

when (n− 1) < q < n for any integer n. However, the initial conditions are those of the
nth-order differential equations. The initial conditions will be of the form,

u(k)(0) = bk, f or k = 0, 1, . . . (n− 1).

See [14,24] for more details. In order to obtain the solution, the authors start with the
basis solution as

1, t, t2, . . . . . . . . . , t(n−1).

However, we cannot solve a general linear fractional differential equation of any order
q when (n− 1) < q < n, especially when we have lower-order fractional derivatives in the
fractional differential equation. See, for example, Equation (4.2) from [24] presented below,

cDQ
0+u + b cDq

0+u = h(t). (2)

It is to be noted that if the initial conditions are provided for the above equation, the
initial conditions will be the same as those of the nearest integer derivative. For example,
if Q > q and (n− 1) < Q < n, then the initial conditions will be the same as those of the
nth-order differential equation. However, if Q and q are integers, theoretically we can solve
the equation by assuming u = ert to be the solution and find values of r to find the general
solution. The main reason for this is that the integer-order derivative is sequential. In order
to compute the solution of the linear Caputo fractional differential equation of order nq
where (n− 1) < nq < n when it has terms involving kq-order fractional derivatives with
k = 0, 1, 2, . . . (n− 1), the Caputo fractional derivative must be sequential. In this case, we
can use the Mittag–Leffler functions Eq,r(λtq) with its parameter q, r < 1. In addition, as
q, r → 1, the integer solution can be obtained as a special case. In order to establish that the
Caputo fractional differential equation represents a better model compared with the integer
model, we need to compute the solution of the corresponding fractional model. In addition,
the solution of the Caputo fractional model should tend to the solution of the integer model
when the fractional order q→ 1. However, the standard method we adopt, like the use of
the Wronskian to find two linearly independent solutions or the variations of the parameter
method, cannot be used for sequential Caputo fractional differential equations. The only
suitable method seems to be the Laplace transform method. For that purpose, the Laplace
transform table, which includes the transforms of appropriate Mittag–Leffler functions or
generalizations of Mittag–Leffler functions, has been included. See [4,20,41–43] for some
sequential initial value problems.

In this work, we will also look at some sequential boundary value problems. The need
for this is mainly to take advantage of the parameter q of the Caputo fractional derivative
to enhance the mathematical model. The majority of the work done on fractional boundary
value problems is, in general, on non-sequential boundary value problems. In addition,
most works have used integer boundary conditions. The integer derivative involved in
boundary value problems is known to be sequential. In short, most work has used Green’s
functions of the integer order in the majority of the fractional boundary value problems.
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As far as the boundary value problem is concerned, in literature, the linear operator has
only the highest derivative term of order q, such that the value of q is (n− 1) < q < n. For
example, when n = 1, most literature has used the corresponding boundary condition as
that of the second-order boundary value problem. Thus, it is relatively easy to compute
Green’s function, which is the same as the integer order. Green’s function will not have any
effect from the order of the fractional derivative. Related to the sequential boundary value
problem, we have included the lower-order fractional derivative terms and have used the
fractional derivative in the boundary condition as well. Thus, the Green’s function that is
computed will involve the sequential derivative of order q.

Recently, in [44], we published a result on sequential Caputo versus non-sequential
Caputo fractional initial and boundary value problems. Please see the references in [44]
for more work on the sequential boundary value problem. Before proceeding, a remark
on the research article [50] is in order. Their conclusion on the coincidence of the left and
the right boundary conditions hinges on Theorem 4 of their result. They claim that the
Caputo left derivative computed at x = a and the Caputo right derivative computed at
x = b are true only for constant functions. Their proof is based on cDq

a+ f (x)|x=a = 0 and
cDq

b− f (x)|x=b = 0 for every increasing function f (x) on [a, b]. A simple counter-example
is that f (x) = (x − a)q when computed from the left, is Γ(q + 1) for all x ∈ (a, b). By
continuity, the derivative is identically Γ(q + 1) for all x ∈ [a, b]. Similarly, when we
compute f (x) = (b− x)q from the right (using the definition of the right derivative with
the proper sign), it will yield Γ(q + 1) for all x ∈ [a, b]. It is to be noted that f (x) = (x− a)q

is an increasing function in x, as they assumed in their Theorem 4. Our example is a direct
generalization of the integer result. In short, when we say that the left derivative is equal
to the right derivative, we mean that the left Caputo derivative of a function f (x − a)
can be transformed to the right Caputo derivative of the function f (b − x). However,
for symmetric functions such as f ((x− a), (b− x)) = f ((b− x), (x− a)), the Caputo left
derivative will be exactly equal to the right Caputo derivative for any x ∈ [a, b]. In other
cases, we need to replace (x− a) and (b− x) with (b− x) and (x− a), respectively, which
is illustrated by our example of f (x) = (x− a)q. One can construct many such examples.

In this work, we will recall some results we have developed relative to linear sequential
Caputo fractional boundary value problems, which cannot be solved in general if they are
non-sequential. The advantage of our results is that we can compute the numerical solution
of the linear sequential Caputo fractional differential equations with fractional boundary
conditions. This numerical solution tends to the corresponding solution of the integer
boundary value problems. However, in the literature, fractional boundary conditions have
been used only for Riemann–Liouville boundary value problems. As an example, see [51].
However, these authors obtained an estimate for Green’s function instead of computing
Green’s function. In our work, we will recall the exact expression of Green’s function that
can be obtained for linear sequential Caputo fractional boundary value problems involving
fractional boundary conditions.

In this work, our major contributions are: (1) we provide a methodology for solving the
linear sequential Caputo fractional differential equations with fractional initial conditions,
and (2) we provide a methodology for solving linear sequential Caputo fractional boundary
value problems with fractional boundary conditions.

Our work here in solving linear sequential Caputo fractional differential equations
with fractional initial conditions and fractional boundary conditions is the initial step in
solving weakly non-linear fractional differential equations. With this initial step, and by de-
veloping appropriate comparison theorems, we can solve the weakly non-linear problem by
the monotone method, generalized monotone method, quasilinearization method, and gen-
eralized quasilinearization method. These are open problems of importance in applications.

Some applications, such as ice-melting problems, in integer-order partial differential
equations with initial and boundary conditions have been developed in [52,53]. It is an
interesting open problem to study Caputo time fractional partial differential equations of
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the same model, and the model can be improved by choosing the value of q as a parameter
using the available data.

2. Preliminaries

In this section, we recall some basic definitions about the sequential initial and bound-
ary value problems in our main results that are useful to discuss.

Definition 1. Let q > 0 and u(t) : (0, ∞) −→ R. Then, the Riemann–Liouville derivative of u(t)
of order q is given by

Dq
0+u(t) =

1
Γ(n− q)

dn

dtn

∫ t

0

u(s)
(t− s)q−n+1 ds,

where n ∈ N such that (n− 1) < q < n.

Note that in the above definition, we can replace q by nq such that (n− 1) < nq < n.

Definition 2. The Riemann–Liouville fractional integral of order q is defined by

D−q
0+u(t) =

1
Γ(q)

∫ t

0
(t− s)(q−1)u(s)ds, (3)

where 0 < q < 1.

Definition 3. Let nq > 0, and u(t) : (0, ∞) −→ R. Then, the Caputo derivative of u(t) order nq
is given by

cDnq
0+u(t) =

1
Γ(n− nq)

∫ t

0
(t− s)−nq+n−1u(n)(s)ds,

where n ∈ N such that (n− 1) < nq < n. In particular, if q = 1, then nq = n is an integer and
cDnqu = u(n)(t) and cDqu = u′(x).

Note that the definition of the Caputo fractional integral of order q is same as that of
the Riemann–Liouville fractional integral of order q for 0 < q < 1.

The next definitions are useful for sequential boundary value problems.

Definition 4. The Caputo (left-sided) fractional derivative of u(x) of order q, when (n− 1) <
q < n, is given by

cDq
a+u(x) =

1
Γ(n− q)

∫ x

a
(x− s)n−q−1u(n)(s)ds, x > a, (4)

and the (right-sided) fractional derivative is given by

cDq
b−u(x) =

(−1)n

Γ(n− q)

∫ b

x
(s− x)n−q−1u(n)(s)ds, x < b, (5)

where u(n)(t) = dn(u)
dtn .

In particular, if q = n is an integer, then cDq
0+u = u(n)(x) and cDq

0+u = u′(x) if q = 1.
In this work, we choose the value of q such that it is replaced by nq and (n− 1) < nq < n.
In short, if q = 1, then we have the nth-order derivative. The next definition is that of the
Mittag–Leffler function. It is the generalization of the exponential function and it plays
the same role for fractional differential equations as the exponential function plays for the
integer derivative dynamic equations, especially when 0 < q < 1.
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Definition 5. The Mittag–Leffler function of two parameters q, r is given by

Eq,r(λ(t− t0)
q) =

∞

∑
k=0

(λ(t− t0)
q)k

Γ(qk + r)
,

where q, r > 0. Furthermore, for t0 = 0 and r = 1, we obtain

Eq,1(λtq) =
∞

∑
k=0

(λtq)k

Γ(qk + 1)
,

where q > 0.

See [14,24,31] for more details on the Mittag–Leffler functions.
If q = r = 1, then the Mittag–Leffler (ML for short) function is the usual exponential

function. In this work, we use the ML function when 0 < q ≤ 1. In addition, the Mittag–
Leffler functions with r = 1, as well as r = q and 0 < q < 1, will be useful when sequential
derivatives are involved. In the integer-order case, the solutions of linear equations with
constant coefficients depend on the trigonometric functions of sine and cosine, which are
defined in terms of the exponential function. In this work, we need fractional trigonometric
sine and cosine functions that depend on the value of q as well. For that purpose, we define
the following fractional trigonometric functions sinq,1(λtq) and cosq,1(λtq) .

Definition 6. The fractional trigonometric functions sinq,1(λtq) and cosq,1(λtq) are given by

sinq,1(λtq) =
1
2i
[Eq,1(iλtq)− Eq,1(−iλtq)],

and
cosq,1(λtq) =

1
2
[Eq,1(iλtq) + Eq,1(−iλtq)],

respectively.

Using the above definition, similarly, we can define sinq,q(λtq) and cosq,q(λtq) using
Eq,q(λtq) in place of Eq,1(λtq) .

Another definition which we need is that of the fractional trigonometric function
involving complex numbers of the form λ + iµ. For that purpose, we will define the
generalized fractional trigonometric functions G sinq,1((λ + iµ)tq) and G cosq,1((λ + iµ)tq)
as follows:

Definition 7. The generalized fractional trigonometric functions G sinq,1((λ + iµ)tq) and
G cosq,1((λ + iµ)tq) are given by

G sinq,1((λ + iµ)tq) =
1
2i
[Eq,1((λ + iµ)tq)− Eq,1((λ− iµ)tq)],

and
G cosq,1((λ + iµ)tq) =

1
2
[Eq,1((λ + iµ)tq)) + Eq,1((λ− iµ)tq)],

respectively.

One can also define G sinq,q((λ+ iµ)tq) and G cosq,q((λ+ iµ)tq) by replacing Eq,1((λ+
iµ)tq) and Eq,1((λ− iµ)tq) by Eq,q((λ + iµ)tq) and Eq,q((λ− iµ)tq), respectively.

Remark 1. If q = 1 in the above definition, then the functions G sinq,1((λ + iµ)tq) and
G sinq,q((λ + iµ)tq) reduce to eλt sin(µt). Similarly, G cosq,1((λ + iµ)tq) and G cosq,q((λ +

iµ)tq) also reduce to eλt cos(µt). Note that this simplification cannot be done when the Mittag–
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Leffler function is involved (with q < 1). The reason for that is the Mittag–Leffler function does not
enjoy the properties of the exponential function. Furthermore , note that we will use the Mittag–
Leffler functions and all fractional trigonometric functions with the independent variable t for initial
value problems and x for boundary value problems.

Can we apply a method similar to the integer case for the linear homogeneous Caputo
fractional differential equation of order nq when (n− 1) < nq < n? In short, can we seek a
solution of the form Eq,1(rtq), where the values of r would be a polynomial of degree n?
For that purpose, we will consider linear Caputo fractional differential equations of order
nq with constant coefficients of the form:

n

∑
k=0

ak
cDkq

0+u(t) = 0. (6)

The answer is affirmative if the Caputo fractional derivative of order kq is sequential
of order q for k = 2, 3, 4 . . . n in (6). We will provide the definition later. It is to be noted
that the integer-order derivative is sequential, but the Caputo fractional derivative need
not be sequential.

Recalling the definition of the Caputo fractional derivative of order nq when (n− 1) <
nq < n, we have

cD2q
0+(u) =

1
Γ(2− 2q)

∫ t

0

u(2)(s)
(t− s)2q−1 ds.

Let u(t) = tω in the above definition, where 2q is such that 1 < 2q < 2.
Then,

cD2q
0+(t

ω) =
Γ(ω + 1))tω−2q

Γ(1− 2q + ω)
.

In particular, if ω = q, we obtain cD2q
0+(t

q) = Γ(q+1)t−q

Γ(1−q) .

On the other hand, if we compute cDq
0+(t

q) = Γ(1 + q), then cDq
0+(

cDq
0+(t

q)) = 0.
In short

cD2q
0+(Eq,1(λtq)) 6= (λ)2Eq,1(λtq),

if cD2q
0+(u) is not sequential.

If cD2q
0+(u) is sequential, then we have

cD2q
0+(Eq,1(λtq)) = (λ)2Eq,1(λtq).

Next, we provide the definition for the sequential Caputo derivative.

Definition 8. The Caputo fractional derivative of u(t) of order nq for (n− 1) < nq < n is said to
be the sequential Caputo fractional derivative of order q if the relation

(cDnq
0+)u(t) =

cDq
0+(

cD(n−1)q
0+ )u(t), (7)

holds for n = 2, 3, . . .

In short, we can rewrite (7) as follows:

(cDnq
0+)u(t) =

cDq
0+(

cDq
0+(

cDq
0+ . . .c Dq

0+)u),

n times. Although we can find the general solution of the homogeneous sequential Caputo
fractional differential Equation (6) using Eq,1(rtq), we also require the initial conditions in
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terms of the Caputo fractional derivative of the lower order evaluated at t = 0. Basically,
the initial conditions will be of the form:

(cDkq
0+)u(t)|t=0 = bk (bk ∈ R; k = 0, 1, . . . . . . , (n− 1)). (8)

Once we have the initial conditions of the above form, then we can also use the
Laplace transform method to solve the linear homogeneous sequential Caputo fractional
differential Equation (6) with initial conditions. The Laplace transform method is also
useful to find the solution of the linear non-homogeneous sequential Caputo fractional
differential equation with fractional initial conditions, since the variation-of-parameter
method will not be useful.

The next result is related to taking the Laplace transform of the Caputo sequential
derivative of order nq, which is sequential of order q. This will be very useful in solving the
linear Caputo sequential fractional differential equation of order nq, which is sequential of
order q with constant coefficients.

From now on, we will use the notation scDnq
0+u(t) for a Caputo derivative of order nq,

which is sequential of order q. The next known result is related to the sequential Caputo
fractional derivative of order nq.

Theorem 1. The Laplace transform of a sequential Caputo fractional derivative of u(t) of order nq
on [0, ∞), when nq is such that n− 1 < nq < n is given by

L(scDnq
0+u(t)) = snqU(s)− s(nq−1)u(0)− s(n−1)q−1(scDq

0+u(t)|t=0)

− s(n−2)q−1(scD2q
0+u(t)|t=0) . . .− sq−1(scD(n−1)q

0+ u(t)|t=0), (9)

where U(s) = L(u(t)).

For proof, see [42].
Next, we provide Laplace transform tables that will be useful in solving the nq-

order linear non-homogeneous sequential Caputo fractional differential equation (which is
sequential of order q with 0 < q < 1) with Caputo fractional initial conditions. In fact, for
all practical and computational purposes, we choose the value of q such that 0.5 ≤ q < 1,
when n = 2. This way, we use the value of q such that q < 1 and provide a solution with
the least error with the available data. See [1] as an example.

Now, we will recall the Laplace transform table for some basic fractional functions
that will be needed in our work. See [22,23] for more detailed Laplace transform tables.

Note that one can define the (right) sequential Caputo fractional derivative of order
nq in terms of the (right) sequential Caputo fractional derivative of order q.

Definition 9. The Caputo fractional derivative of order nq, for (n− 1) < nq < n, which is (left
at x = a) the sequential Caputo fractional derivative of order q, can be written as

(cDnq
a+)u(x) = (cDq

a+(
cDq

a+(. . . . . . n times)u(x). (10)

Definition 10. The Caputo fractional derivative of order nq for (n− 1) < nq < n (right at x = b)
is a sequential Caputo fractional derivative of order q if

(cDnq
b−)u(x) = (cDq

b−(
cDq

b−(. . . . . . n times)u(x). (11)
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Laplace transform Table
S.N f (t) = L−1[F(s)] F(s) = L( f (t))
1. Eq,1(±λtq) sq−1

sq∓λ sq > λ, q > −1
2. tq−1Eq,q(±λtq) 1

sq∓λ sq > λ, q > −1

3. tq

q Eq,q(±λtq) sq−1

(sq∓λ)2 sq > λ, q > −1

4. sinq,1(λtq) λsq−1

s2q+λ2 s > 0

5. cosq,1(λtq) s2q−1

s2q+λ2 s > 0
6. tq−1sinq,q(λtq) λ

s2q+λ2 s > 0

7. tq−1cosq,q(λtq) sq

s2q+λ2 s > 0

8. Eq,1(λtq) + λtq

q Eq,q(λtq) s2q−1

(sq−λ)2

9. tq−1 ∑∞
k=0

(k+1)λktqk

Γ(qk+q)
sq

(sq−λ)2

10. t2q−1 ∑∞
k=0

(k+1)λktqk

Γ(qk+2q)
1

(sq−λ)2

11. ∑∞
k=0

k(k+1)
2

(λtq)k−1

Γ(q(k−1)+1)
s3q−1

(sq−λ)3

12. Gcosq,1{(λ + iµ)tq} sq−1(sq−λ)
(sq−λ)2+µ2

13. Gsinq,1{(λ + iµ)tq} µsq−1

(sq−λ)2+µ2

15. tq−1Gcosq,q{(λ + iµ)tq} sq−λ
(sq−λ)2+µ2

16. tq−1Gsinq,q{(λ + iµ)tq} µ

(sq−λ)2+µ2

Note that in this work, we consider the left sequential Caputo fractional derivative
only for initial value problems. However, we need both the left and right sequential Caputo
fractional derivatives for boundary value problems. We use notation t for the initial value
problem and x for boundary value problems.

3. Main Results
3.1. Solution of Linear Sequential Caputo Fractional Differential Equations with Fractional
Initial Conditions

In this section, we will provide a method to solve a linear non-homogeneous sequential
Caputo fractional differential equation of order nq, which is sequential of order q. In
addition, the initial conditions will involve the sequential Caputo fractional derivatives of
u(t) of order kq for k = 1, 2, . . . (n− 1) at t = 0.

For that purpose, consider the linear non-homogeneous sequential fractional differen-
tial equations of order nq with initial conditions involving Caputo fractional derivatives of
order kq with k = 0, 1, . . . , (n− 1) of the form:

n

∑
k=0

ak (
scDkq

0+)u(t) = f (t), (12)

with initial conditions of the form,

(scDkq
0+)u(t)|t=0 = bk (bk ∈ R; k = 0, 1, . . . . . . , (n− 1)). (13)

Note that we need to use the Laplace transform method only to solve (12) and (13).
The main reason for this is that the product rule for the Caputo derivative is not available,
but it is needed to apply the method of undetermined coefficients and for the variation-of-
parameter method. One needs to use Equation (1) in order to apply the Laplace transform
method. Here, we only recall the results resulting for n = 2 and f (t) = 0.

scD2q
0+u + bscDq

0+u + cu = 0, t ∈ (0, ∞) (14)
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with initial conditions as,

u(0) = A, scDq
0+u(t)|t=0 = B. (15)

We assume that 0.5 < q < 1. Now, applying Laplace transform on (14) and (15) using
Theorem 1, we obtain

s2qU(s)− s(2q−1)u(0)− s(q−1)(scDq
0+u(t)|t=0) + b(sqU(s)− s(q−1)u(0)) + cU(s) = 0, (16)

where U(s) = L(u(t)).
Our aim here is to show that when q = 1, our results yield the results of the second-

order linear homogeneous differential equation with initial conditions as a special case.
Now, solving for U(s) from Equation (16) and substituting the initial conditions from

Equation (15), we obtain

U(s) =
As(2q−1) + (B + bA)s(q−1)

s2q + bsq + c
. (17)

For convenience, we will denote As(2q−1) + (B + bA)s(q−1) = sq−1G(s).
Now, if we can take the inverse Laplace transform on both sides of Equation (17), we

obtain the solution of the sequential Caputo initial value problem (14) and (15) of order 2q.
We can compute the solution of (14) and (15) based on the roots of the quadratic

equation s2q + bsq + c = 0 in terms of sq.

1. Let b 6= 0, b2 − 4c > 0. In this case, the quadratic equation s2q + bsq + c = 0 will
have real and distinct roots, say λ1 and λ2. That is, we can factor s2q + bsq + c =
(sq− λ1)(sq− λ2). In this case, using the partial fraction method, we can write (17) as

sq−1G(s)
s2q + bsq + c

=
c1sq−1

(sq − λ1)
+

c2sq−1

(sq − λ2)
.

Here, the constants ci for i = 1, 2 depend on A, B, b, c, λ1, and λ2. Using the above
relation in Equation (17) and taking the inverse Laplace transform, we can write the
solutions of (14) and (15) as

u(t) = c1Eq,1(λ1tq) + c2Eq,1(λ2tq).

Note that in the above case, if b = 0 and c < 0, we will have two real and distinct
roots. The solution can be obtained on the same lines as above.

2. b 6= 0, b2 − 4c = 0. In this case, the quadratic equation s2q + bsq + c = 0 will have
real and coincident roots, say λ. Then, we can factor as s2q + bsq + c = (sq − λ)2. In
this case, by algebraic manipulation, we can write (17) as

sq−1G(s)
s2q + bsq + c

=
Asq−1

(sq − λ)
+

(λA + B + bA)sq−1

(sq − λ)2 .

Using the Laplace transform table, the above relation, and Relation (17), we can write
the solutions of (14) and (15) as

u(t) = AEq,1(λtq) +
(λA + B + bA)tq

q
Eq,q(λtq).

3. If b 6= 0, thenb2 − 4c < 0. In this case, the quadratic equation s2q + bsq + c = 0 will
have complex roots of the form λ± iµ. We can write s2q + bsq + c = (sq − λ)2 + µ2.
Then by algebraic manipulation, we can write (17) as

sq−1G(s)
s2q + bsq + c

=
g1sq−1(sq − λ)

(sq − λ)2 + µ2 +
µg2

(sq − λ)2 + µ2
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and
1

s2q + bsq + c
=

1
µ

µ

(sq − λ)2 + µ2 ,

where g1 and g2 are constants that can be determined.
Now, using the table and the above relation, we can take the inverse Laplace trans-
form of Relation (17) to obtain the solutions of (14) and (15) as

u(t) = g1Gcosq,1{(λ + iµ)tq}+ g2Gsinq,1{(λ + iµ)tq}.

Further, if λ = 0, then the solution of (14) and (15) will be

u(t) = g1cosq,1(µtq) + g2sinq,1(µtq).

Furthermore, note that if q = 1, one can easily observe that the integer results can be
obtained as a special case, except when the factors are complex numbers with the
real part not equal to zero. Even in that situation, the results of the integer case can
be obtained using the exponential rules.
Note that we can also use the above technique to solve non-homogeneous sequential
Caputo fractional differential equations when f (t) 6= 0. In this case, Mittag–Leffler
functions Eq,q(λtq) will be needed in the convolution integral.

Remark 2. It is to be noted that the linear sequential Caputo fractional differential equations with
fractional initial conditions can be reduced to a system of Caputo fractional differential equations
with initial conditions. However, the converse is, in general, not true, as in the integer case.
See [22,23] for recent work on two and three systems of non-homogeneous linear Caputo fractional
differential equations with initial conditions. It is to be noted that the standard method of finding
the fundamental matrix cannot be used to solve Caputo fractional differential systems with initial
conditions. In [23], a numerical method to solve nonlinear Caputo fractional system of a SIR model
is developed. A more detailed Laplace transform is also provided in [23].

3.2. Linear Sequential Caputo Fractional Boundary Value Problems with Fractional
Boundary Conditions

In [47,48,51,54–60], the authors studied fractional boundary value problems. For
the non-homogeneous boundary value problem, they constructed Green’s function. It is
to be noted that the boundary conditions for non-sequential differential equations will
be the same as those of the nearest integer boundary value problem. In addition, even
solving the homogeneous Caputo fractional differential equations with the corresponding
boundary conditions is not easy and sometimes not possible. However, if we consider
the sequential boundary value problem, we can adopt the same technique that we use to
solve the corresponding integer problem. Observe that the boundary conditions will also
involve the left and right fractional derivatives. In [40,41,44,61,62], sequential initial value
problems and sequential boundary value problems were studied.

Remark 3. In the research article [50], the authors claimed that the only function whose left
derivative of a function at x = a+ equals the right derivative of the function at x = b− is true
for constant functions. Their claim is based on the assumption that cDq

a+ f (x)|x=a = 0 and
cDq

b− f (x)|x=b = 0 for every increasing function f (x). Certainly, it is not true when f (x) =
(x− a)q, which is an increasing function of f (x).

In fact, cDq
a+(x− a)q = Γ(q + 1) on [a.b).

In a sequential derivative, we need cDq
a+ f (x) to be differentiable on [a, b), which implies that

cDq
a+ f (x) is continuous on [a, b]. From this, we obtain

cDq
a+(x− a)q|x=a =

cDq
b−(b− x)q|x=b = Γ(q + 1).

See [58] for the mathematical model, which requires symmetric fractional derivatives.
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Remark 4. Note that for symmetric functions, the left derivative at any point x = x1 will be
exactly equal to the right derivative at x = x1. For example, if f (x) = (x− a)nq(b− x)nq for any
integer n and q such that 0 < q ≤ 1, it is easy to show that the left derivative is exactly equal to the
right derivative at any point x = x1. For functions which are not symmetric, we can show that they
are the same when we replace (x− a) by (b− x) and (b− x) by (x− a).

Next, we recall a result from [61,62]. See [62] for numerical results on linear sequential
Caputo boundary value problems.

Consider the sequential Caputo fractional boundary value problem with mixed bound-
ary conditions of the form:

−cD2qu + u = f (x),
cDqu(0) = 0,
cDqu(1) = 0.

(18)

The solution of (18) is given by

u(x) =
∫ 1

0
G(x, s) f (s)ds, (19)

where G(x, s) is Green’s function given by,

G(x, s) =


[
sinq(s) +

cosq(s)
tanq(1)

]
cosq(x), x < s[

sinq(x) + cosq(x)
tanq(1)

]
cosq(s), x > s.

(20)

Hence,

u(x) =
∫ 1

0
G(x, s) f (s)ds, (21)

which means that,

u(x) =
∫ x

0

[
sinq(x) + cosq(x)

tanq(1)

][
cosq(s)

]
f (s)ds

+
∫ 1

x

[
sinq(s) +

cosq(s)
tanq(1)

][
cosq(x)

]
f (s)ds.

(22)

This is just to illustrate that the above representation of the solution is possible when
we assume that the fractional derivative cD2q

0+u is sequential. Note that the majority of
the Caputo fractional boundary value problems available in the literature use the linear
operator cD2q

0+u, which is not sequential. Consequently, the boundary conditions will not
involve left and right fractional derivatives. In addition, Green’s function will be the same
as that of the linear operator, being the second derivative.

4. Conclusions

In this work, we have demonstrated the advantage of studying linear sequential
Caputo fractional differential equations with fractional initial value problems, and linear
sequential Caputo fractional boundary value problems with fractional boundary condi-
tions. In particular, differential equations with Caputo fractional derivatives of order nq is
sequential of order q where q < 1 are very useful. The advantage is that the solution of the
sequential Caputo fractional differential equation yields the solution of the corresponding
integer differential equation as a special case. In addition, it is possible to find an appro-
priate value of q that matches the data available for the specific models. This is the first
step in order to solve the nonlinear sequential Caputo fractional initial and boundary value
problems with fractional initial and boundary conditions. In our future work, we plan to
develop comparison theorems for relative sequential dynamic equations, which will be
useful to solve nonlinear sequential Caputo dynamic equations with initial and boundary
conditions. The advantage of our work is that the value of q can be used as a parameter to
enhance the model driven by data. Solving linear sequential Caputo fractional dynamic
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equations is immensely useful in solving weakly non-linear sequential Caputo fractional
differential equations by any of the iterative methods.
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