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Abstract: It is well known that HIV (human immunodeficiency virus) weakens the immune system of
individuals, resulting in risk of other infections, such as pneumonia. The most frequent viral pneumo-
nia seen in individuals infected with HIV is cytomegalovirus (CMV). In this paper, pneumonia–HIV
co-infection is modeled through the formulation of a mathematical compartmental model consisting
of nine compartments. Some of the basic properties of the model are established, such as the positivity,
boundedness of the system, equilibrium points, and computation of the basic reproduction number.
After obtaining the solution, the homotopy perturbation method (HPM) is applied, as it is known
for its convergence properties. It is observed that the HPM gives an accurate analytical solution that
indicates various important factors that are responsible for the spread of cytomegalovirus pneumonia
in HIV-infected populations, and this is justified through a plot made by using MATLAB 2020a.
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1. Introduction

The spread of infectious diseases in the population is a significant concern. Pathogens
cause these diseases, and there is a problem of negligence in the medical community [1].
Such infections include HIV, pneumonia, flu, cholera, malaria, dengue, etc., which are
increasing daily, resulting in threats to health.

Human immunodeficiency virus (HIV) is a deadly disease, and it has affected ap-
proximately 70 million individuals, resulting in an increase in mortality [2]. HIV directly
attacks the human immune system. Bodily immunity is essential for survival, as it prevents
the body from contracting other infectious diseases. Since HIV destroys the CD4 cells in
our bodies, which are white blood cells that fight against infections, it thus weakens our
immunity, giving way to many other infections, such as pneumonia and tuberculosis. If
HIV is not treated early, it progresses to the next stage of HIV, which is known as AIDS [3].

Even though it is treatable, pneumonia is considered a deadly disease because it
attacks the lungs, which causes an accumulation of pus in the alveoli [4]. This pus blocks
the passage of air to the blood capillaries, resulting in difficulty in breathing. Since a person
suffering from HIV has weak immunity, there are chances that many diseases can attack;
one of these diseases is pneumonia. Individuals suffering from HIV are at an increased risk
of developing viral cytomegalovirus pneumonia [5]. If a person is suffering from two or
more simultaneous diseases that are caused by different pathogens or viruses, such as HIV
and pneumonia, this is called a co-infection. Simultaneous infection with two diseases is a
major health threat. As HIV/AIDS is not a curable disease, the spread of HIV should be
controlled through proper channels. Hence, it is necessary to study the dynamics of the
transmission of HIV–pneumonia co-infection through a population to control its spread.

Modeling infectious diseases can help society prevent their spread to a greater extent,
as medical facilities may not be affordable for the common person. Factors such as the
infection rate can be obtained through mathematical modeling in order to help decrease
the transmission of infections.

Various mathematical models have been studied so far. Teklu and Kotola [6] developed
a mathematical model for studying the dynamics of pneumonia infections by incorporating
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health interventions and vaccinations, highlighting their importance.Naveed et al. [7] pro-
posed a model with time-delay strategies in order to obtain effective results for pneumonia
infection, along with the sensitivity of the parameters. Tilahun et al. [8] analyzed the
importance of various control strategies. In addition, through a cost-effectiveness analysis,
the best strategies for controlling pneumonia in a population were established. The authors
of [9] studied the stability analysis of an HIV/AIDS model along with treatments at differ-
ent stages. The authors of [10] analyzed a mathematical model of HIV with weak CD4 cells.
The authors of [11] provided a model of HIV with intermittent treatment. In addition, the
authors of [12] provided a co-infection model for studying pneumonia–HIV co-infection in
the presence of protection, showing that with minimal interventions, the level of infection
at the peak time could be managed. The authors of [13] provided a deterministic model
for pneumonia–HIV co-infection with treatments. In addition, the authors of [14] modeled
the dynamics of COVID-19 transmission. Some age-related models concerned with HIV
infection were discussed by [15,16]. In addition, the authors of [17] studied the bi-stability
of HIV infection with the immune response.

Biazer [18] studied the Adomain decomposition method, and the results there of were
compared by [19] with the results of the homotopy perturbation method. Rafei showed that
a solution of an epidemic model with a set of nonlinear differential equations converged
faster with the HPM. This method was first developed by He [20,21]. Some of the works
related to the HPM included a study by [22], who developed a vector epidemic model with
nonlinear incidence by applying the HPM, and they validated its usage through simulations.
The authors of [23] studied the SEIR model by solving it with the HPM and highlighted
the importance of disease transmission coefficients in the eradication of diseases. The
authors of [24] studied a mathematical model of listeriosis and anthrax with the HPM
and established various results. The HPM was used to obtain an analytical solution to
mathematical models of HIV/AIDS with a control in a heterogeneous population by [25].

It is clear from this survey of the literature that the homotopy perturbation method
gives more satisfactory solutions for nonlinear differential equations. In our current model,
in order to obtain a better understanding of the spread of disease and to see which param-
eters affect the spread of cytomegalovirus pneumonia in HIV-infected populations, we
incorporate the HPM to obtain an analytical solution.

The organization of this paper is as follows: Section 2 deals with the formulation
of the co-infection model, along with the computation of the equilibrium points and the
calculation of the basic reproduction number. In Section 3, the basics of the homotopy
perturbation method are discussed, along with its application in our model. In Section 4,
the solution obtained with the HPM is analyzed through numerical simulations; lastly,
conclusions are drawn in Section 5.

2. Formulation of the Co-Infection Model

The formulated pneumonia–HIV co-infection mathematical model divides the human
population into nine sub-populations, namely, the susceptible class—S, individuals infected
with pneumonia (of any kind)—Ipn, HIV-infected individuals—IHV , individuals infected
with HIV and with cytomegalovirus pneumonia—IHVpn, the AIDS-infected population—
IA, individuals co-infected with pneumonia–AIDS—IApn, individuals undergoing treat-
ment for pneumonia—Tpn, individuals undergoing treatment for HIV—THV , and individu-
als undergoing treatment for pneumonia–AIDS co-infection—TApn. In addition, the total
human population is given by N = S+ Ipn + IHV + IHVpn + IA + IApn + Tpn + THV + TApn.

Here, it is assumed that susceptible individuals acquire pneumonia infections at the
the contact rate of λpn and acquire HIV infections by coming into contact with HIV-infected
individuals. Now, individuals can acquire HIV infections through various means, such as
the usage of syringes, through blood, etc. In addition, since pneumonia is frequently seen in
HIV-infected individuals, here, we assume that individuals suffering from co-infection have
pneumonia. The stage of the progression of HIV is also taken into account. Since HIV is not
a curable disease, the individual will progress to the next stage of HIV some time after being
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infected with AIDS. In addition, AIDS–pneumonia co-infection is included in the model.
The natural death rate is assumed to be µ, and the death rate due to HIV/AIDS is denoted
by µHV . No deaths due to pneumonia are considered in any of the sub-population classes;
since we have a pneumonia treatment class, we assume that individuals suffering from
pneumonia will, in due course of time, join the pneumonia treatment class, as pneumonia
is treatable. In the case of the occurrence of death among pneumonia patients during
treatment, it is considered according to the natural death rate µ.

Notations, descriptions, and the parametric values of the flow of the population among
the compartments are given in Table 1.

Table 1. Parameters and their descriptions.

Notation Description Parametric Values

N Total human population 0.5

B Birth rate 0.0087

β1
The rate at which susceptible individuals
acquire HIV infections 0.024

β2
The rate at which HIV-infected individuals
are treated 0.23

β3
The rate at which HIV-infected individuals
acquire pneumonia 0.38

β4
The rate at which HIV-infected individuals
acquire AIDS 0.125

β5
The rate at which pneumonia-infected
individuals join pneumonia treatment class 0.42

β6
The rate at which pneumonia-infected
individuals acquire HIV 0.006

β7

The rate at which individuals suffering from
pneumonia–HIV acquire AIDS and join the
AIDS–pneumonia class

0.08

β8

The rate at which AIDS-infected individuals
acquire pneumonia and join the
pneumonia–AIDS class

0.52

β9

The rate at which pneumonia–HIV-infected
individuals join the pneumonia–AIDS
treatment class

0.48

β10
The rate at which AIDS–pneumonia-infected
individuals join the treatment class 0.33

β11
The rate at which individuals treated for
pneumonia are susceptible again 0.5

θ1, θ2 (θ2 > θ1)
Modification parameter responsible for
increased co-infectivity 0.04, 0.06

γ
Contact rate with pneumonia-infected
individuals 0.125

µHV HIV-related death 0.01

µ Natural death rate 0.02
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Based on the above assumptions, the mathematical model formulated here is governed
by a set of nonlinear differential equations:

dS
dt = B + β11Tpn − (λpn + β1 IHV + µ)S,
dIpn

dt = λpnS− (β5 + β6 IHV + µ)Ipn,
dIHV

dt = β1SIHV − (β2 + β3λpn + β4 + µ)IHV ,
dIHVpn

dt = β3λpn IHV + β6 IHV Ipn − (β7 + β8 + µ + µHV)IHVpn,
dIA
dt = β4 IHV − (β8λpn + µ + µHV)IA,

dIApn
dt = β7 IHVpn + β8λpn IA − (β10 + µ + µHV)IApn,

dTpn
dt = β5 Ipn − (β11 + µ)Tpn,

dTHV
dt = β2 IHV − µTHV ,

dTApn
dt = β9 IHVpn + β10 IApn − µTApn.

(1)

where

λp =
γ(Ipn + θ1 IHVpn + θ2 IApn)

N
,

and N(t) = S(t) + Ipn(t) + IHV(t) + IHVpn(t) + IA(t) + IApn(t) + Tpn(t) + THV(t)+
TApn(t), with non-negative conditions S(t) > 0, Ipn(t) ≥ 0, IHV(t) ≥ 0, IHVpn(t) ≥ 0,
IA(t) ≥ 0, IApn(t) ≥ 0, Tpn(t) ≥ 0, THV(t) ≥ 0, TApn(t).

Now, by adding all of the equations of system (1), we get

dN
dt = B− µS− µIpn − µIHV − (µ + µHV)IHVpn − (µ + µHV)IA − (µ + µHV)IApn
−µTpn − µTHV − µTApn
= B− µ

(
S + Ipn + IHV + µIHVpn + µIA + µIApn − µTpn − µTHV − µTApn

)
−µHV IHVpn − µHV IA − µHV IApn
≤ B− µN,

Integrating and taking a limit t→ ∞,

lim
t→∞

sup N ≤ B
µ

.

Hence, the biologically feasible region for the system (1) is

Λ =

{(
S, Ipn, IHV , IHVpn, IA, IApn, Tpn, THV , TApn

)
∈ R9

+ : 0 ≤ N ≤ B
µ

}
.

The model exhibits four equilibrium points:

1. The disease-free equilibrium point:

The disease-free equilibrium point is given by E0
(

B
µ , 0, 0, 0, 0, 0, 0, 0, 0

)
.

The basic reproduction number is computed at the disease-free equilibrium by using
the next-generation matrix method provided by [26]. The basic reproduction number
is defined as the number of secondary infections caused by one infected individual in
a susceptible population. The basic reproduction number is given by

R0 = max{R0pn, R0HV},

where
R0pn =

Bγ1

µN(β5 + µ)
, R0HV =

Bβ1

µ(β2 + β4 + µ)
.
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2. The endemic equilibrium point for pneumonia:
The endemic equilibrium point for pneumonia is given by
E&
(

S&, I&
pn, 0, 0, 0, 0, T&

pn, 0, 0
)

,
where

S& =
N(β5 + µ)

γ1
,

I&
pn =

N(β5 + µ)(β11 + µ)(R0pn − 1)
γ1(β5 + β11 + µ)

,

T&
pn =

N(β5 + µ)β5(R0pn − 1)
γ1(β5 + β11 + µ)

The endemic point for pneumonia exists if R0pn > 1.
3. The endemic equilibrium point for HIV:

The endemic equilibrium point for HIV is given by E#(S#, 0, I#
HV , 0, I#

A, 0, 0, T#
HV , 0

)
,

where

S# =
(β2 + β4 + µ)

β1
,

I#
HV =

µ(R0HV − 1)
β1

,

I#
A =

β4(R0HV − 1)
β1µ(µHV + µ)

,

T#
HV =

β2(R0HV − 1)
β1

The endemic point for HIV exists if R0HV > 1.
4. Endemic equilibrium point:

The endemic equilibrium point is denoted by E∗(S∗, I∗pn, I∗HV , I∗HVpn, I∗A,
I∗Apn, T∗pn, T∗HV , T∗Apn):

S∗ = β2+β3λpn+β4+µ
β1

, I∗pn =
S∗γ1(θ1 IHVpn+θ2 IApn)

(β6 I∗HV+β5+µ)N−S∗γ1
, I∗HV = I∗HV ,

I∗HVpn =
NIHV I∗pn β6+β3γ1(θ2 IApn+I∗Apn)I∗HV
(β9+µHV+µ+β7)N−β3γ1θ1 I∗HV

, I∗A =
β4 I∗HV

β8λpn+µ+µHV
,

I∗Apn =
NI∗HVpn β7+γ1 I∗A β8(θ1 IHVpn+θ2 IApn)

(β10+µ+µHV)N−γ1 I∗A β8θ2
, T∗pn =

β5 I∗pn
(β11+µ)

,

T∗HV =
β2 I∗HV

µ , T∗Apn =
β9 I∗HVpn+β10 I∗Apn

µ .

where
λp(Ψ1λ2

p + Ψ2λp + Ψ3) = 0

Ψ1 = −β8(β7θ2 + f4θ1)β6β3 IHV + β3β8 f3 f4)γ1,
Ψ2 = I2

HV(−β1β6β8(θ2β7 + f4θ1)β3γ1) + (β1β6 f3β8 f4N − (((µHV + µ)(θ2β7
+ f4θ1)β6 + β8(θ2β7 + f4θ1)β1 f2)β3 + f1β8(θ2β7 + f4θ1)β1 f2)β3 + f1β8
(θ2β7 + f4θ1)β6)γ1)IHV + f2β1β8 f3 f4N − f1 f3β8 + β3 f3(µHV + µ) f4γ1,

Ψ3 = (−β1β6((µHV + µ)(θ2β7 + f4θ1)β3 + β8θ2 f3 f4)γ1)I2
HV + β1β6 f3(µHV

+µ) f4N − (((µHV + µ)(θ2β7 + f4θ1)β1 f2β3 + f1(µHV + µ)(θ2β7 + f4θ1)
β6 + β8θ2 f2 f3β1β3)γ1)IHV + f2β1β3(µHV + µ) f4N − f1 f3(µHV + µ) f4γ1
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3. The Homotopy Perturbation Method (HPM) and Its Application in Our Model

The basic idea of the HPM was first discussed by He [20,21]. The HPM is an analytical
method for solving nonlinear differential equations, and it combines the techniques of both
perturbation and homotopy. To use the HPM, we consider the following differential equation:

δ(e) = k(l), l ∈ Ω (2)

This is subject to boundary conditions:

f
(

e,
∂e
∂n

)
= 0, with l ∈ D

where δ stands for a generalized differential operator, f denotes a boundary operator, k
is the analytic function, and D denotes the boundary of the domain Ω. ∂e

∂n represents the
derivative along a normal vector directed externally from Ω. Hence, we write

δ(e) = LN(e) + NN(e)

where LN(e) and NN(e) represent linear and nonlinear terms of the differential equation,
respectively. Thus, we rewrite (2) as

k(l) = LN(e) + NN(e), l ∈ Ω (3)

Now, we define the homotopy with respect to (3), which is given by

H(m, h) = (1− h)(LN(m)− LN(e0)) + h(δ(m)− k(l)) = 0, (4)

By further simplifying (4), we get

H(m, h) = LN(m)− LN(e0) + hLN(e0) + h(NN(e)− k(l)) = 0, (5)

where e0 is the initial approximation of (5) and h is the embedding parameter, h ∈ [0, 1].
Now, as h→ 0, we have H(m, 0) = LN(m)− LN(e0) = 0.
In addition, as h→ 1,

H(m, 1) = δ(m)− k(l) = 0 (6)

Here, LN(m)− LN(e0) and δ(m)− k(l) are called homotopic.
We can also express the solution of the differential equations as

m(t) = m0(t) + hm1(t) + h2m2(t) + . . . (7)

Now, by substituting (7) into (6) and comparing the coefficients of equal powers of h,
the resulting equation is solved to obtain the expression for m0(t), m1(t), m2(t), etc.

Hence, the approximate solution to the differential equation in (2) is given by

lim
h→1

m = m0 + m1 + m2 + . . . (8)

The convergence of (8) was shown by [27].
Now, we apply the HPM to the system (1) to obtain an approximate solution as

follows [28,29]:
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(1 − h)
(

dS
dt − x0

)
+ h

(
dS
dt + B + β11Tpn − (λpn + β1 IHV + µ)S

)
,

(1 − h)
(

dIpn
dt − y0

)
+ h

(
dIpn

dt + λpnS− (β5 + β6 IHV + µ)Ipn

)
,

(1 − h)
(

dIHV
dt − z0

)
+ h

(
dIHV

dt + β1SIHV − (β2 + β3λpn + β4 + µ)IHV

)
,

(1 − h)
(

dIHVpn
dt − r0

)
+ h

(
dIHVpn

dt + β3λpn IHV + β6 IHV Ipn − (β7 + β8 + µ + µHV)IHVpn

)
,

(1 − h)
(

dIA
dt − w0

)
+ h

(
dIA
dt + β4 IHV − (β8λpn + µ + µHV)IA

)
,

(1 − h)
( dIApn

dt − a0

)
+ h

( dIApn
dt + β7 IHVpn + β8λpn IA − (β10 + µ + µHV)IApn

)
,

(1 − h)
(

dTpn
dt − b0

)
+ h

(
dTpn

dt + β5 Ipn − (β11 + µ)Tpn

)
,

(1 − h)
(

dTHV
dt − c0

)
+ h

(
dTHV

dt + β2 IHV − µTHV

)
,

(1 − h)
( dTApn

dt − d0

)
+ h

( dTApn
dt + β9 IHVpn + β10 IApn − µTApn

)
.

(9)

For this, we make the following initial assumptions:

S(0) = S0 = x0,
Ipn(0) = Ipn0 = y0,
IHV(0) = IHV0 = z0,
IHVpn(0) = IHVpn0 = r0,
IA(0) = IA0 = w0,
IApn(0) = IApn0 = a0,
Tpn(0) = Tpn0 = b0,
THV(0) = THV0 = c0,
TApn(0) = TApn0 = d0.

(10)

and
S(t) = x0 + hx1 + h2x2 + h3x3 + . . . ,
Ipn(t) = y0 + hy1 + h2y2 + h3y3 + . . . ,
IHV(t) = z0 + hz1 + h2z2 + h3z3 + . . . ,
IHVpn(t) = r0 + hr1 + h2r2 + h3r3 + . . . ,
IA(t) = w0 + hw1 + h2w2 + h3w3 + . . . ,
IApn(t) = a0 + ha1 + h2a2 + h3a3 + . . . ,
Tpn(t) = b0 + hb1 + h2b2 + h3b3 + . . . ,
THV(t) = c0 + hc1 + h2c2 + h3c3 + . . . ,
TApn(t) = d0 + hd1 + h2d2 + h3d3 + . . . ,

(11)

This is the approximate solution, whose coefficients xi, yi, zi, ri, wi, ai, bi, ci, and di
(where i = 1, 2, 3, . . .) are to be determined. Now, by substituting (10) and (11) into (9),
we get

(1− h)(x
′
0 + hx

′
1 + h2x

′
2 + h3x

′
3 . . .− x

′
0) + h((x

′
0 + hx

′
1 + h2x

′
2 + h3x

′
3 + . . .) + ((z0

+hz1 + h2z2 + h3z3 + . . .) + β1 + µ + φ11)(x0 + hx1 + h2x2 + h3x3 + . . .)− B− β11
(b0 + b1h + b2h2 + b3h3+ . . .)) = 0

(12)

(1− h)(y
′
0 + hy

′
1 + h2y

′
2 + h3y

′
3 + . . .− y

′
0) + h((y

′
0 + hy

′
1 + h2y

′
2 + h3y

′
3 + . . .) + (((z0

+hz1 ++h2z2 + h3z3 + . . .)β6 + β5 + µ)
(
y0 + hy1 + h2y2 + h3y3 + . . .

)
+ φ11(x0 + hx1

+h2x2 + h3x3 + . . .)) = 0
(13)

(1− h)(z
′
0 + hz

′
1 + h2z

′
2 + h3z

′
3 + . . .− z

′
0) + h((z

′
0 + hz

′
1 + h2z

′
2 + h3z

′
3 + . . .) + (β2 + β4)

+µ + φ11β3(z0 + hz1 + h2z2 + h3z3 + . . .)− (x0 + hx1 + h2x2 + h3x3 + . . .)β1(z0 + z1h
+z2h2 + z3h3 + . . .)) = 0

(14)

(1− h)(r
′
0 + hr

′
1 + h2r

′
2 + h3r

′
3 + . . .− r

′
0) + h((r

′
0 + hr

′
1 + h2r

′
2 + h3r

′
3 + . . .) + ((r0 + hr1

+h2r2 + h3r3 + . . .)(β7 + β9 + µ + µHV)− β3φ11(z0 + hz1 + h2z2 + h3z3 + . . .)− β6(z0
+hz1 + h2z2 + h3z3 + . . .)(y0 + hy1 + h2y2 + h3y3 + . . .)) = 0

(15)
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(1− h)(w
′
0 + hw

′
1 + h2w

′
2 + h3w

′
3 + . . .− w

′
0) + h((w

′
0 + hw

′
1 + h2w

′
2 + h3w

′
3 + . . .)

+(β8φ11 + µ + µHV)(w0 + hw1 + h2w2 + h3w3 + . . .)− (z0 + hz1 + h2z2 + h3z3
+ . . .)β4) = 0

(16)

(1− h)(a
′
0 + ha

′
1 + h2a

′
2 + h3a

′
3 + . . .− a

′
0) + h((a

′
0 + ha

′
1 + h2a

′
2 + h3a

′
3 + . . .) + ((β10

+µ + µHV)(a0 + ha1 + h2a2 + h3a3 + . . .)− β7(r0 + hr1 + h2r2 + h3r3 + . . .)− β8
φ11(w0 + hw1 + h2w2 + h3w3 + . . .)) = 0

(17)

(1− h)(b
′
0 + hb

′
1 + h2b

′
2 + h3b

′
3 + . . .− x

′
0) + h((b

′
0 + hb

′
1 + h2b

′
2 + h3b

′
3 + . . .) + (β11

+µ)(b0 + b1h + b2h2 + b3h3 + . . .)− (y0 + hy1 + h2y2 + h3y3 + . . .)β5) = 0
(18)

(1− h)(c
′
0 + hc

′
1 + h2c

′
2 + h3c

′
3 + . . .− c

′
0) + h((c

′
0 + hc

′
1 + h2c

′
2 + h3c

′
3 + . . .)− (z0 + hz1

+h2z2 + h3z3 + . . .)β2 + µ(c0 + hc1 + h2c2 + h3c3 + . . .)) = 0
(19)

(1− h)(d
′
0 + hd

′
1 + h2d

′
2 + h3d

′
3 + . . .− d

′
0) + h((d

′
0 + hd

′
1 + h2d

′
2 + h3d

′
3 + . . .) + (d0

+hd1 + h2d2 + h3d3 + . . .)µ− β9(r0 + hr1 + h2r2 + h3r3 + . . .)− β10(a0 + a1h + a2h2

+a3h3 + . . .)) = 0
(20)

where

φ11 =

γ1

( (
a0 + ha1 + h2a2 + h3a3

)
θ2 +

(
r0 + hr1 + h2r2 + h3r3

)
θ1

+y0 + hy1 + h2y2 + h3y3

)
N

(21)

Now, by setting the coefficients of power of h, h2, h3, . . . to be equal to zero, we derive
the coefficients.

After the first iteration, we get

S(t) = S0 −
((

β1 IHV0 + µ +
γ1
(

Ipn0 + θ1 IHVpn0 + θ2 IApn0
)

N

)
S0 + B + β11Tpn0

)
t, (22)

Ipn(t) = Ipn0 +

(
S0γ1

(
Ipn0 + θ1 IHVpn0 + θ2 IApn0

)
N

− (β6 IHV0 + β5 + µ)Ipn0

)
t, (23)

IHV(t) = IHV0 +

(
S0β1 IHV0 −

(
β3γ1(Ipn0+θ1 IHVpn0+θ2 IApn0)

N + β2 + β4 + µ
)

IHV0

)
t, (24)

IHVpn(t) = IHVpn0 +

(
β3γ1(Ipn0+IHVpn0θ1+IApn0θ2)IHV0

N + β6 Ipn0 IHV0
−(β7 + β9 + µ + µHV)IHVpn0

)
t, (25)

IA(t) = IA0 +

(
β4 IHV0 −

(
β8γ1(Ipn0 + θ1 IHVpn0 + θ2 IApn0)

N
+ µHV + µ

)
IA0

)
t, (26)

IApn(t) = IApn0 +

(
β7 IHVpn0 +

β8γ1(Ipn0+θ1 IHVpn0+θ2 IApn0)IA0
N

+(β10 + µ + µHV)IApn0

)
t, (27)

Tpn(t) = Tpn0 +
(

β5 Ipn0 − (µ + β11)Tpn0
)
t, (28)

THV(t) = THV0 + (β2 IHV0 − µTHV0)t, (29)

TApn(t) = TApn0 +
(

β10 IApn0 + β9 IHVpn0 − µTApn0
)
t, (30)
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After the second iteration, we get

S(t) = S0 − ((β1 IHV0 + µ +
γ1(Ipn0+θ1 IHVpn0+θ2 IApn0)

N )S0 + B + β11Tpn0)t− ((IHV0β1
+µ + θ11)(−(IHV0β1 + µ + θ11)S0 + B + β11Tpn0)− ((S0β1 IHV0 − (β3θ11 + β2
+β4 + µ)IHV0)β1 +

1
N (γ1((β8 IA0θ11 + β7 IHVpn0 + (β10 + µ + µHV)IApn0)θ2)

+(β6 Ipn0 IHV0 + β3 IHV0θ11 − (β7 + β9 + µ + µHV)IHVpn0)θ1 + S0θ11

(IHV0β6 + β5 + µ)Ipn0)S0 + β11(β5 Ipn0(µ + β11)Tpn0))
t2

2 ,

(31)

Ipn(t) = Ipn0 + ( 1
N (S0γ1(Ipn0 + θ1 IHVpn0 + θ2 IApn0))− (β6 IHV0 + β5 + µ)Ipn0)t

+( S0γ1
N ((β8 IA0θ11 + β7 IHVpn0 + (β10 + µ + µHV)IApn0)θ2 + (β6 Ipn0 IHV0

+β3 IHV0θ11 − (β7 + β9 + µ + µHV)IHVpn0)θ1 + S0θ11 − (IHV0β6 + β5 + µ)
Ipn0)− (IHV0β1 + µ + θ11)S0 + B + β11Tpn0 − (IHV0β6 + β5 + µ)(S0θ11

−(IHV0β6 + β5 + µ)Ipn0)− (S0β1 IHV0 − (β3θ11 + β2 + β4 + µ)IHV0)β6 Ipn0)
t2

2 ,

(32)

IHV(t) = IHV0 + (S0β1 IHV0 − ( β3γ1
N (Ipn0 + θ1 IHVpn0 + θ2 IApn0) + β2 + β4 + µ)IHV0)

t + (S0β1(S0β1 IHV0 − (β3θ11 + β2 + β4 + µ)IHV0) + (−(IHV0β1 + µ + θ11)
S0 + B + β11Tpn0)β1 IHV0 − (β3θ11 + β2 + β4 + µ)(S0β1 IHV0 − (β3θ11 + β2

+β4 + µ)IHV0)− β3γ1
N (((β8 IA0θ11 + β7 IHVpn0 + (β10 + µ + µHV )IApn0)θ2+

(β6 Ipn0 IHV0 + β3 IHV0θ11 − (β7 + β9 + µ + µHV)IHVpn0)θ1 + S0θ11

(IHV0β6 + β5 + µ) Ipn0)IHV0))
t2

2 ,

(33)

IHVpn(t) = IHVpn0 + ( β3γ1
N (Ipn0 + IHVpn0θ1 + IApn0θ2)IHV0 + β6 Ipn0 IHV0 − (β7

+β9 + µ + µHV)IHVpn0)t + β3(S0β1 IHV0 − (β3θ11 + β2 + β4 + µ)IHV0)

+ β3γ1
N ((β8 IA0θ11 + β7 IHVpn0 + (β10 + µ + µHV)IApn0)θ2 + (β6 Ipn0 IHV0

+β3 IHV0θ11 − (β7 + β9 + µ + µHV)IHVpn0)θ1 + S0θ11 − (IHV0β6 + β5
+µ)Ipn0)IHV0 + (S0β1 IHV0 − (β3θ11 + β2 + β4 + µ)IHV0)β6 Ipn0 + β6
(S0θ11 − (IHV0β6 + β5 + µ)Ipn0)IHV0 − (β7 + β9 + µ + µHV)(β6 Ipn0 IHV0

+β3 IHV0θ11 − (β7 + β9 + µ + µHV)IHVpn0)
t2

2 ,

(34)

IA(t) = IA0 + (β4 IHV0 − ( β8γ1
N (Ipn0 + θ1 IHVpn0 + θ2 IApn0) + µHV + µ)IA0)t+

(−β4(S0β1 IHV0 − (β3θ11 + β2 + β4 + µ)IHV0) + (β8θ11 + µHV + µ)(β4 IHV0

−(β8θ11 + µHV + µ)IA0) +
β8γ1 IA0

N ((β8 IA0θ11 + β7 IHVpn0 + (β10 + µ + µHV)
IApn0)θ2 + (β6 Ipn0 IHV0 + β3 IHV0θ11 − (β7 + β9 + µ + µHV)IHVpn0)θ1 + S0θ11

−(IHV0β6 + β5 + µ)Ipn0))
t2

2 ,

(35)

IApn(t) = IApn0 + (β7 IHVpn0 +
β8γ1(Ipn0+θ1 IHVpn0+θ2 IApn0)IA0

N + (β10 + µ + µHV)IApn0)t
+(β7(β6 Ipn0 IHV0 + β3 IHV0θ11 − (β7 + β9 + µ + µHV)IHVpn0) + β8θ11(β4 IHV0

−(β8θ11 + µHV + µ)IA0) +
β8γ1 IA0

N ((β8 IA0θ11 + β7 IHVpn0 + (β10 + µ + µHV)
IApn0)θ2 + (β6 Ipn0 IHV0 + β3 IHV0θ11 − (β7 + β9 + µ + µHV)IHVpn0)θ1 + S0θ11
−(IHV0β6 + β5 + µ)Ipn0)− (β10 + µ + µHV)(β8 IA0θ11 + β7 IHVpn0 + (β10 + µ

+µHV)IApn0))
t2

2 ,

(36)

Tpn(t) = Tpn0 + (β5 Ipn0 − (µ + β11)Tpn0)t + (β5(S0θ11 − (IHV0β6 + β5 + µ)Ipn0)

−(µ + β11)(β5 Ipn0 − (µ + β11)Tpn0))
t2

2 ,
(37)

THV(t) = THV0 + (β2 IHV0 − µTHV0)t + (β2(S0β1 IHV0 − (β3θ11 + β2 + β4 + µ)IHV0)

−µ(β2 IHV0 − µTHV0))
t2

2 ,
(38)

TApn(t) = TApn0 + (β10 IApn0 + β9 IHVpn0 − µTApn0)t + (β10(β8 IA0θ11 + IHVpn0β7
+(β10 + µ + µHV)IApn0) + β9(β6 Ipn0 IHV0 + β3 IHV0θ11 − (β7 + β9 + µ + µHV)

IHVpn0)− µ(β10 IApn0 + β9 IHVpn0 − µTApn0))
t2

2 .
(39)

Although we calculated a polynomial with a degree of three, i.e., up to three iterations,
but because the expression was very large, it is not provided here.
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4. Numerical Simulation

Now, to verify the proposed implementation of the analytic homotopy perturbation
method to find the solution of the pneumonia–HIV co-infection model, we assume the
following initial values of the population classes:

S0 = 90, Ipn0 = 72, IHV0 = 34, IHVpn0 = 36, IA0 = 28, IApn0 = 42, Tpn0 = 48, THV0 = 24, TApn0 = 20.

Now, by using the data from Table 1 and these initial values of the population, we
obtain the following polynomials of the third degree (by using the HPM, as in the previous
section; here, we calculated up to the third degree), i.e., up to three iterations:

S(t) = 90− 52.9400t− 40.8500t2 + 3.1400t3,

Ipn(t) = 72− 44.6600t− 25.6400t2 + 3.2180t3,

IHV(t) = 34 + 60.4500t + 32.2000t2 − 4.7500t3,

IHVpn(t) = 36− 6.3000t + 21.7800t2 − 4.0820t3,

IA(t) = 28 + 3.1340t− 3.7960t2 + 1.3240t3,

IApn(t) = 42 + 18.2800t− 3.6060t2 + 0.9677t3,

Tpn(t) = 48 + 5.2800t− 10.7600t2 − 1.7250t3,

THV(t) = 24 + 7.3400t + 6.8750t2 + 2.4230t3,

TApn(t) = 20 + 30.7400t + 1.1960t2 + 3.0780t3.

The solution obtained through the HPM was then plotted using Matlab 2020a, as
shown in Figure 1. It shows the convergence of all compartments at a faster rate and
gives reliable results. Figure 1 indicates the flows of various population densities in
society. We observe that individuals infected with pneumonia acquire HIV, i.e., co-infection,
in approximately six months, and individuals infected with HIV acquire pneumonia
within just a month if precautionary measures prescribed by medical personnel are not
taken within a certain amount of time. It is also observed that the population that is
infected with AIDS keeps on decreasing by a small fraction. Since pneumonia is a treatable
disease if its treatment is begun at right time, there is a possibility of eradicating it in
an endemic situation, making it converge. In addition, we observe that the treatment of
HIV infections and treatment of AIDS–pneumonia increase. This lets us conclude that, to
stop the spread of co-infection, the number HIV-infected individuals should be decreased.
The number of HIV-infected individuals can be reduced by creating health facilities in
regions such as Africa, through medical facilities, and through earlier detection of the
disease so as not allow individuals to be hosts for other opportunistic diseases, such as
cytomegalovirus pneumonia.
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Figure 1. A plot of the different compartments used in the model that was solved by using HPM.

5. Conclusions

This paper studies the co-infection dynamics of pneumonia and HIV/AIDS through
the formulation of a mathematical model that comprises each individual disease and co-
infections thereof, along with their treatment classes. The model comprises four equilibrium
points, namely, disease-free, i.e., non-existence of either disease, the endemic equilibrium
point for HIV (a society with only HIV-infected individuals), the endemic equilibrium point
for pneumonia (a society with only pneumonia-infected individuals), and an endemic point
at which both diseases co-exist. Therefore, formulation of the model explains the spread of
pneumonia–HIV in a real society very well. The main focus of our study was to show the
efficiency of the homotopy perturbation method when used to solve nonlinear differential
equations. Through the numerical simulations, it was observed that solving the system
with the homotopy perturbation method gave reliable results, and convergence was shown
at a faster rate. The results obtained in the numerical simulations show the importance of
the precautionary measures to be taken by HIV-infected individuals to keep themselves
safe from co-infection with pneumonia. Hence, in comparison with pneumonia-infected
individuals, HIV-infected individuals need to be more aware of their health conditions and
need to take the proper medications in order to avoid other infections. However, to avoid
further complications in their health conditions, individuals suffering from either disease
need to take their treatments at the right time so as to prevent the spread of co-infections.
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