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Abstract: This paper highlights 20 significant problems in AI research, with potential solutions via
the SP Theory of Intelligence (SPTI) and its realisation in the SP Computer Model. With other evidence
referenced in the paper, this is strong evidence in support of the SPTI as a promising foundation for the
development of human-level broad AI, aka artificial general intelligence. The 20 problems include: the
tendency of deep neural networks to make major errors in recognition; the need for a coherent account
of generalisation, over- and under-generalisation, and minimising the corrupting effect of ‘dirty data’;
how to achieve one-trial learning; how to achieve transfer learning; the need for transparency in
the representation and processing of knowledge; and how to eliminate the problem of catastrophic
forgetting. In addition to its promise as a foundation for the development of AGI, the SPTI has
potential as a foundation for the study of human learning, perception, and cognition. And it has
potential as a foundation for mathematics, logic, and computing.

Keywords: artificial intelligence; SP Theory of Intelligence; information compression; deep
neural networks

1. Introduction

This paper is about 20 significant problems in Artificial Intelligence (AI) research,
with potential solutions via the SP Theory of Intelligence (SPTI) and its realisation in the SP
Computer Model (SPCM).

The first 17 of those 20 problems in AI research have been described by influential
experts in AI in interviews with science writer Martin Ford, and reported in Ford’s book
Architects of Intelligence [1].

In conjunction with other evidence for strengths of the SPTI in AI and beyond
(Appendix B), the potential of the SPTI to solve those 20 problems in AI research is strong
evidence in support of the SPTI as a promising foundation for the development of human-
level broad AI, aka ‘artificial general intelligence’ (AGI).

1.1. The Potential of the SPTI as Part of the Foundation for Each of Four Different Disciplines

This research has potential as a foundation for four different disciplines:

• Artificial general intelligence. As noted above, this paper describes strong evidence in
support of the SPTI as a promising foundation for the development of AGI (FDAGI).
There is much more evidence in [2] and in a shortened version of that book, [3].

• Mainstream computing. There is evidence that the SPTI, at least when is more mature,
is or will be Turing complete, meaning that it can be used to simulate any Turing
machine ([2], Chapter 2). And, of course, the SPTI has strengths in AI which are
largely missing from the Turing machine concept of computing, as evidenced by Alan
Turing’s own research on AI [4,5].
Since the SPTI works entirely via the compression of information, the evidence, just
mentioned, that it is or will be Turing complete, implies—contrary to how computing
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is normally understood—that all kinds of computing may be achieved via IC. There
is potential in this idea for a radically-new approach to programming and software
engineering, including the potential for the automation or semi-automation of aspects
of software development, and a dramatic simplification in the current plethora of
programming languages and systems.

• Mathematics, logic, and computing. Since mathematics has been developed as an aid
to human thinking, and since mathematics is the product of human minds, and in
view of evidence for the importance of IC in HLPC (Appendix B.4), it should not be
surprising to find that much of mathematics, perhaps all of it, may be understood as a
set of techniques for IC and their application (Appendix B.5).
In keeping with what has just been said, similar things may be said about logic and
(as above) computing Section 7 in [6].

• Human learning, perception, and cognition. In view of evidence for the importance of IC
in HLPC (Appendix B.4), the central importance of IC in the SPTI (Appendix A.1), the
way in which the SPTI models several features of human intelligence (Appendix B.1),
and the biological foundations for this research (Appendix B.7), suggest that the SPTI
has potential as a foundation for the study of HLPC.

In addition to these four areas of study, the SPTI has potential benefits in many and
perhaps all areas of science, as described in the draft paper [7].

1.2. Presentation

To give readers an understanding of the SPTI, Appendix A presents a high-level view
of the system, with pointers to fuller sources of information about the SPTI. Readers not
already familiar with the SPTI should read this appendix, and perhaps some of those other
sources, before reading the rest of the paper.

Each of the 20 sections that follow the Introduction—Sections 2 to 21 inclusive—
describes one of the significant problems in AI research mentioned above, and how each
one may be solved via the SPTI. In many cases, there is a demonstration to help clarify
what has been said.

The appendices are not part of the substance of the paper. Apart from the abbrevia-
tions and the definitions of terms (below), they describe already-published background
information that are intended to help readers understand the main substance of the paper
in Sections 2–21.

The abbreviations are defined in Abbreviations and also where they are first used in
the main sections of the paper or in the appendices.

Terms used in the paper are listed in Appendix C. For each one, there is a link to a
section where the term is defined. In some cases, there is another link to an appendix where
the term is defined.

2. The Need to Bridge the Divide between Symbolic and Sub-Symbolic Kinds of AI

This section is the first of those mentioned above, each of which describes a significant
problem in AI research, and the potential of the SPTI to solve it.

“Many people will tell a story that in the early days of AI we thought intelligence
was symbolic, but then we learned that was a terrible idea. It didn’t work, because
it was too brittle, couldn’t handle noise and couldn’t learn from experience. So
we had to get statistical, and then we had to get neural. I think that’s very much a
false narrative. The early ideas that emphasize the power of symbolic reasoning
and abstract languages expressed in formal systems were incredibly important
and deeply right ideas. I think it’s only now that we’re in the position, as a field,
and as a community, to try to understand how to bring together the best insights
and the power of these different paradigms.” Josh Tenenbaum ([1], pp. 476–477).

The SPTI provides a framework that is showing promise in bridging the divide
between symbolic and sub-symbolic AI:
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• The concept of SP-symbol in the SPTI (Appendix A) can represent a relatively large
‘symbolic’ kind of thing such as a word, or it can represent a relatively fine-grained
kind of thing such as a pixel in an image.

• The concept of SP-multiple-alignment (SPMA, see Appendix A.3) can facilitate the
seamless integration of diverse kinds of knowledge (see Appendix B.1.4), and that
facilitation extends to the seamless integration of symbolic and sub-symbolic kinds
of knowledge.

• The SPTI has IC as a unifying principle (Appendix A.1), a principle which embraces
both symbolic and sub-symbolic kinds of knowledge.

3. The Tendency of Deep Neural Networks to Make Large and Unexpected Errors
in Recognition

“In [a recent] paper [8], [the authors] show how you can fool a deep learning
system by adding a sticker to an image. They take a photo of a banana that
is recognized with great confidence by a deep learning system and then add a
sticker that looks like a psychedelic toaster next to the banana in the photo. Any
human looking at it would say it was a banana with a funny looking sticker next
to it, but the deep learning system immediately says, with great confidence, that
it’s now a picture of a toaster.” Gary Marcus ([1], p. 318).

Although ‘deep neural networks’ (DNNs) often do well in the recognition of images
and speech, they can make surprisingly big and unexpected errors in recognition, as
described in the quote, above.

For example, a DNN may correctly recognise a picture of a car but may fail to recognise
another slightly different picture of a car which, to a person, looks almost identical [9].

It has been reported that a DNN may assign an image with near certainty to a class of
objects such as ‘guitar’ or ‘penguin’, when people judge the given image to be something
like white noise on a TV screen or an abstract pattern containing nothing that resembles a
guitar or a penguin or any other object [10].

From experience with the SPCM to date, and because of the transparency of the SPCM
in both the representation and processing of knowledge (Section 10), it seems very unlikely
that the SPTI, now or when it is more mature, will be vulnerable to the kinds of mistakes
made by DNNs.

Demonstrations of the SPCM’S Robustness

The transparency of the SPCM just mentioned in both the representation and process-
ing of knowledge (Section 10) means that all aspects of the workings of the SPCM are clear
to see. Because of that transparency, some of which is illustrated in Figure 7, one can see
that there is unlikely to be anything in the SPCM that would cause the kinds of haphazard
errors seen in DNNs.

There is also indirect evidence for the robustness of the SPCM via its strengths in:

• Generalisation via unsupervised learning (Section 6.1). There is evidence (described in
Section 6.1) that the SPCM, and earlier models that learn via IC, can, via unsuper-
vised learning, develop intuitively ‘correct’ SP-grammars for corresponding bodies of
knowledge despite the existence of ‘dirty data’ in the input data. Hence, the SPCM
reduces the corrupting effect of any errors in the input data.

• Generalisation via perception (Section 6.2). The SPCM demonstrates an ability to parse a
sentence in a manner that is intuitively ‘correct’, despite errors of omission, addition,
and substitution in the sentence that is to be parsed (see Section 6.2). Again, the SPCM
has a tendency to correct errors rather than introduce them.

4. The Need to Strengthen the Representation and Processing of Natural Languages

“. . . I think that many of the conceptual building blocks needed for human-like
intelligence [AGI] are already here. But there are some missing pieces. One of
them is a clear approach to how natural language can be understood to produce
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knowledge structures upon which reasoning processes can operate.” Stuart J.
Russell ([1], p. 51).

DNNs can do well in recognising speech [11]. Also, they can produce impressive re-
sults in the translation of natural languages (NLs) using a database of equivalences between
surface structures that have been built up via human mark up and pattern matching [12].

Despite successes like these, DNNs are otherwise weak in NL processing:

“. . . with all their impressive advantages, neural networks are not a silver bullet
for natural-language understanding and generation. . . . [In natural language
processing] the core challenges remain: language is discreet and ambiguous, we
do not have a good understanding of how it works, and it is not likely that a
neural network will learn all the subtleties on its own without careful human
guidance. . . . The actual performance on many natural language tasks, even
low-level and seemingly simple ones . . . is still very far from being perfect.” Yoav
Goldberg ([13], Section 21.2).

By contrast, the SPCM does well in the representation and processing of NL, as
outlined in Section 4.1, next.

4.1. Demonstrations of the SPCM’s Strengths in the Processing of Natural Language

The following subsections reference demonstrations of strengths of the SPCM in the
processing of NL.

The examples are all from English. But the features that are demonstrated are, almost
certainly, found in all NLs. Hence, they are evidence for generality in how the SPCM may
process NLs.

4.1.1. Parsing via SP-Multiple-Alignment

An example of the parsing of NL via the SPMA construct is shown and discussed in
Appendix A.3.

4.1.2. Discontinuous Dependencies

SPMAs may also represent and process discontinuous syntactic dependencies in NL
such as the dependency between the ‘number’ (singular or plural) of the subject of a
sentence, and the ‘number’ (singular or plural) of the main verb, and that dependency may
bridge arbitrarily large amounts of intervening structure ([3], Section 8.1).

In Figure A3, a number dependency (plural) is marked in row 8 by the SP-pattern
‘Num PL ; NPp VPp’. Here, the SP-Symbol ‘NPp’ marks the noun phrase as plural, and
the SP-symbol ‘VPp’ marks the verb phrase as plural. As is required for the marking of
discontinuous dependencies, this method can mark dependencies that bridge arbitrarily
large amounts of intervening structure.

In a similar way, the SPMA concept may mark the gender dependencies (masculine
or feminine) within a sentence in French, and, within one sentence, number and gender
kinds of dependency may overlap without interfering with each other, as can be seen in ([2],
Figure 5.8 in Section 5.4.1).

4.1.3. Discontinuous Dependencies in English Auxiliary verbs

The same method for encoding discontinuous dependencies in NL serves very well in
encoding the intricate structure of such dependencies in English auxiliary verbs. How this
may be done is described and demonstrated with the SPCM in ([3], Section 8.2) and ([2],
Section 5.5).

4.1.4. Parsing Which Is Robust against Errors of Omission, Addition, and Substitution

As can be seen in Figure 4, and described in Section 6.2, the SPCM has robust abilities
to arrive at an intuitively ‘correct’ parsing despite errors of omission, addition, and sub-
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stitution, in the sentence being parsed. Naturally, there is a limit to how many errors can
be tolerated.

4.1.5. The Representation and Processing of Semantic Structures

In case Figures A3 and 4 have given the impression that the SPCM is only good for the
processing of NL syntax, it is clear that: apart from the representation of syntax, the SPMA
concept has strengths and potential in the representation and processing of other kinds of
AI-related knowledge that may serve as semantics, summarised in Appendix B.1.3; and
any one of those kinds of knowledge may serve as semantics in the processing of NL.

4.1.6. The Integration of Syntax and Semantics

Because of the versatility of SP-patterns with the SPMA concept (Appendix B.1),
there is one framework which lends itself to the representation and processing of both the
syntax and semantics of NLs. In addition, there is potential for the seamless integration of
syntax with semantics (Appendix B.1.4). That integration means that surface forms may be
translated into meanings, and vice versa. Examples showing how this can be done may be
seen in ([2], Section 5.7, Figures 5.18 and 5.19).

4.1.7. One Mechanism for Both the Parsing and Production of NL

A neat feature of the SPTI is that the production of NL may be achieved by the applica-
tion of IC, using exactly the same mechanisms as are used for the parsing or understanding
of NL. How this is possible is explained in ([3], Section 4.5).

5. Overcoming the Challenges of Unsupervised Learning

“Until we figure out how to do this unsupervised/self-supervised/predictive
learning, we’re not going to make significant progress because I think that’s the
key to learning enough background knowledge about the world so that common
sense will emerge.” Yann Lecun ([1], p. 130).

From this quote it can be seen that the development of unsupervised learning is
regarded as an important challenge for AI research today. So it should be of interest that:
unsupervised learning in the SPCM is based on an earlier programme of research on the
unsupervised learning of language [14]; unsupervised learning is a key part of the SPCM
now; and it is a key part of developments envisaged for the future ([15], Section 12).

In the SP programme of research, unsupervised grammatical inference is regarded
as a paradigm or framework for other kinds of unsupervised learning, not merely the
learning of syntax. In addition to the learning of syntactic structures ([15], Section 12.3), it
may, for example, provide a model for the unsupervised learning of non-syntactic semantic
structures ([15], Section 12.1), and for learning the integration of syntax with semantics
([15], Section 12.3).

With further development, unsupervised learning in the SPCM may itself be a good
foundation for other kinds of learning, such as learning by being told, learning by imitation,
learning via rewards and punishments, and so on.

5.1. Outline of Unsupervised Learning in the SPCM

As noted in Appendix A.4, unsupervised learning in the SPCM means processing
a set of New SP-patterns to discover one or more ‘good’ SP-grammars, where a ‘good’
SP-grammar is a set of Old SP-patterns that provide a means of encoding the given set of
New SP-patterns in an economical manner.

How unsupervised learning is done in the SPCM is described quite fully in ([3],
Section 5) and more fully in ([2], Chapter 9). In outline, unsupervised learning is achieved
as shown in Figure 1.



Foundations 2022, 2 1050

unsupervised-learning()
{

1 Read a set of SP-patterns into New. Old is initially empty.
2 Compile an alphabet of alphabetic SP-symbol types in New and,

for each type, find its frequency of occurrence and the
number of bits required to encode it.

3 While (there are unprocessed SP-patterns in New)
{

3.1 Identify the first or next SP-pattern from New as the
‘current SP-pattern from New’.

3.2 Apply the function CREATE-SP-MULTIPLE-ALIGNMENTS() to
create SPMAs, each one between the current SP-pattern
from New and one or more SP-patterns from Old.

3.3 During 3.2, the current SP-pattern from New is copied into Old,
one symbol at a time, in such a way that the current SP-pattern
from New can be aligned with its copy but that any one
SP-symbol in the current SP-pattern from New cannot be aligned
with the corresponding SP-symbol in the copy.

3.4 Sort the SPMAs formed by this function in order
of their compression scores and select the best
few for further processing.

3.5 Process the selected multiple alignments with the function
DERIVE-SP-PATTERNS(). This function derives encoded
SP-patterns from SPMAs and adds them to Old.

}

4 Apply the function SIFTING-AND-SORTING() to create one or
more alternative SP-grammars for the SP-patterns in New, each
one scored in terms of minimum length encoding principles.
Each SP-grammar is a subset of the SP-patterns in Old.

}

Figure 1. The organisation of unsupervised learning in the SPCM. The workings of the functions
CREATE-SP-MULTIPLE-ALIGNMENTS(), DERIVE-SP-PATTERNS() and SIFTING-AND-SORTING()
are explained in ([2], Chapter 9). Adapted from Figure 9.1 in [2].

5.2. Demonstrations of Unsupervised Learning with the SPCM

There are examples of unsupervised learning via the SPCM in ([2], Chapter 9).
As it stands now, the SPCM can abstract words from an unsegmented body of English-

like artificial language, it can learn syntactic classes of words, and it can learn the abstract
structure of sentences. Its main weakness at present is in learning intermediate levels of
structure such as phrases and clauses. However, it appears that such shortcomings can
be overcome.

6. The Need for a Coherent Account of Generalisation

“The theory [worked on by Roger Shepard and Joshua Tenenbaum] was of how
humans, and many other organisms, solve the basic problem of generalization,
which turned out to be an incredibly deep problem. . . . The basic problem is,
how do we go beyond specific experiences to general truths? Or from the past to
the future?” Joshua Tenenbaum ([1], p. 468).

An important issue in unsupervised learning is how to generalise ‘correctly’ from the
specific information which provides the basis for learning, without over-generalisation
(aka ‘under-fitting’) or under-generalisation (aka ‘over-fitting’). An associated issue is how
to minimise the corrupting effect of ‘dirty data’, meaning data that contains errors with
respect to the language or other knowledge which is being learned.

This generalisation issue is discussed in ([3], Section 5.3). The main elements of the
SPTI solution are described here.

In the SP Theory of Intelligence, generalisation may be seen to occur in two aspects of
AI: as part of the process of unsupervised learning; and as part of the process of parsing or
recognition. Those two aspects are considered in the following two subsections.
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6.1. Generalisation via Unsupervised Learning

The generalisation issue arises quite clearly in considering how a child learns his or
her native language(s), as illustrated in Figure 2.

All possible
utterances

All utterances
in language L

A sample of
utterances

‘dirty
data’

Figure 2. Categories of utterances involved in the learning of a first language, L. In ascending
order of size, they are: the finite sample of utterances from which a child learns; the (infinite) set of
utterances in L; and the larger (infinite) set of all possible utterances. Adapted from Figure 7.1 in [14],
with permission.

Each child learns a language L from a sample of things that they hear being said by
people around them. Although the sample is normally large, it is nevertheless, finite. (It
is assumed here that the learning we are considering is unsupervised. This is because of
evidence that, although correction of errors by adults may be helpful, children are capable
of learning a first language without that kind of error correction [16,17].) That finite sample
is shown as the smallest envelope in Figure 2. ’Dirty data’, meaning data containing errors,
is discussed below.

The variety of possible utterances in the language L is represented by the next largest
envelope in the figure. The largest envelope represents the variety of all possible utterances,
both those in L and everything else including grunts, gurgles, false starts, and so on.

What follows is a summary of what is already largely incorporated in the SPCM:

1. Unsupervised learning in the SP Theory of Intelligence may be seen as a process
of compressing a body of information, I, to achieve lossless compression of I into a
structure T, where the size of T is at or near the minimum that may be achieved with
the available computational resources.

2. T may be divided into two parts:

• An SP-grammar of I called (G). Provided the compression of I has been done
quite thoroughly, G may be seen to be a theory of I which generalises ‘correctly’
beyond I, without either over- or under-generalisations.

• An encoding of I in terms of G, called E. In addition to being an encoding of I, E
contains all the information in I which occurs only once in I, and that is likely to
include all or most of the ‘dirty data’ in I, illustrated in Figure 2.
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3. Discard E and retain G, for the following reasons:

• G is a distillation of what is normally regarded as the most interesting parts of I
which should be retained.

• The encodings in E are not normally of much interest, and E is likely to contain
all the ‘dirty data’ in I which may be discarded.

Demonstrations Relating to Generalisation via Unsupervised Learning

Informal tests with the SPCM ([2], Chapter 9), suggest that the SPCM can learn what
are intuitively ‘correct’ structures, in spite of being supplied with data that is incomplete in
the sense that generalisations are needed to produce a ‘correct’ result.

For example, the SPCM has been run with an input of New SP-patterns comprising
eight sentences like ‘t h a t b o y r u n s’ and ‘s o m e g i r l w a l k s’, and so
on, created via this framework: [(t h a t) or (s o m e)][(b o y) or (g i r l)][(r u n s) or w a l k s)].

With that input, the best SP-grammar created by the SPCM is shown in Figure 3.
(As can be seen in the example in Figure 3, it was created by a version of the SPCM that
used the characters ‘<’ and ‘>’ to mark the beginning and end of each SP-pattern. This
led to unreasonable complications in the SPCM and has now been dropped in favour of
SP-symbols like ‘N’ and ‘#N’ which could be processed like all other SP-symbols.) In terms
of our intuitions, this is at or near the ‘correct’ result for the given input.

< %2 2 s o m e >
< %2 3 t h a t >
< %1 5 b o y >
< %1 6 g i r l >
< %3 4 r u n s >
< %3 7 w a l k s >
< 1 < %2 > < %1 > < %3 > >

Figure 3. The best SP-grammar found by the SPCM when New contains the eight sentences described
in the text.

Now for generalisation via unsupervised learning: if the program is run again with
the same input, but without the sentence ‘(t h a t g i r l r u n s)’, the SP-grammar
that is created is exactly the same as shown in Figure 3. In other words, the SPCM has
generalised from the data and produced a result which, in terms of our intuitions, is correct.

Of course, simple examples like the one just described are only a beginning, and it will
be interesting to see how the SPCM generalises with more ambitious examples, especially
when the program has reached the stage when it can produce plausible SP-grammars from
samples of NL.

Even now, there is a reason to have confidence in the model of generalisation that
has been described: because the model’s basis in compression of information is consis-
tent with much other evidence for the significance of IC in the workings of brains and
nervous systems [18].

Dirty data. With regard to dirty data, mentioned above and shown in Figure 2: in
informal experiments with models of language learning developed in earlier research
that have IC as a unifying principle: “In practice, the programs MK10 and SNPR have
been found [to produce intuitively ‘correct’ results but] to be quite insensitive to errors (of
omission, commission, or substitution) in their data.” ([14], p. 209).

6.2. Generalisation via Perception

The SPCM has a robust ability to recognise things or to parse NL despite errors of
omission, addition, or substitution in what is being recognised or parsed. Incidentally, the
assumption here is that recognition in any sensory modality may be understood largely as
parsing, as described in ([19], Section 4).
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Demonstration of Generalisation via Perception

The example here makes reference, first, to Figure A3 in Appendix A.3.2, which shows
how an SPMA can achieve the effect of parsing the sentence ‘t w o k i t t e n s p l
a y’ in terms of grammatical categories, including words.

To illustrate generalisation via perception, Figure 4, below, shows how the SPCM, with
a New SP-pattern that contains errors (‘t o k i t t e m s p l a x y’), may achieve
what is intuitively a ‘correct’ analysis of the sentence despite the errors, which are described
in the caption of the figure.

0 t o k i t t e m s p l a x y 0

| | | | | | | | | | | |

1 | | Nr 5 k i t t e n #Nr | | | | | 1

| | | | | | | | |

2 | | N Np Nr #Nr s #N | | | | 2

| | | | | | | | |

3 D Dp 4 t w o #D | | | | | | | 3

| | | | | | | | | |

4 NP NPp D Dp #D N Np #N #NP | | | | 4

| | | | | | |

5 | | | Vr 1 p l a y #Vr 5

| | | | |

6 | | | VP VPp Vr #Vr #VP 6

| | | | | |

7 S Num ; NP | #NP VP | #VP #S 7

| | | |

8 Num PL ; NPp VPp 8

Figure 4: As in Figure 13 but with errors in the sentence in row 0 (‘t o k i t t e m s p l

a x y’): an error of omission (‘t o’ instead of ‘t w o’), an error of substitution (‘k i t t e

m s’ instead of ‘k i t t e n s’), and an error of addition (‘p l a x y’ instead of ‘p l a y’).
Adapted from Figure 2 in [45].

15

Figure 4. As in Figure A3 but with errors in the sentence in row 0 (‘t o k i t t e m s p l a x y’):
an error of omission (‘t o’ instead of ‘t w o’), an error of substitution (‘k i t t e m s’ instead of ‘k
i t t e n s’), and an error of addition (‘p l a x y’ instead of ‘p l a y’). Adapted from Figure 2
in [20], with permission. This figure was originally published in Data & Knowledge Engineering, 60,
J. G. Wolff, “Towards an intelligent database system founded on the SP Theory of Computing and
Cognition”, 596–624, Copyright Elsevier (2007).

Recognition in the face of errors, as illustrated in Figure 4, may be seen as a kind of
generalisation, where an incorrect form is generalised to the correct form.

7. How to Learn Usable Knowledge from a Single Exposure or Experience

“How do humans learn concepts not from hundreds or thousands of examples, as
machine learning systems have always been built for, but from just one example?
. . . Children can often learn a new word from seeing just one example of that
word used in the right context, . . . You can show a young child their first giraffe,
and now they know what a giraffe looks like; you can show them a new gesture
or dance move, or how you use a new tool, and right away they’ve got it . . . ”
Joshua Tenenbaum ([1], p. 471).

Most DNNs incorporate some variant of the idea that, in learning, neural connec-
tions gradually gain strength, either via ‘backpropagation’ or via some variant of Donald
Hebb’s concept of learning, which may be expressed briefly as “Neurons that fire together,
wire together.”

This gradualist model of learning in DNNs seems to reflect the way that it takes time
to learn a complex skill such as playing the piano well, or competition-winning abilities in
pool, billiards, or snooker.

But the gradualist model conflicts with the undoubted fact that people can and often
do learn usable knowledge from a single occurrence or experience: memories for significant
events that we experience only once may be retained for many years.

For example, if a child touches something hot, he or she is likely to retain what they
have learned for the rest of their lives, without the need for repetition.

One-trial learning accords with our experience in any ordinary conversation between
two people. Normally, each person responds immediately to what the other person has said.
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It is true that DNNs require the taking in of information supplied by the user, and may
thus be said to have learned something from a single exposure or experience. But unlike
the SPTI, that knowledge is not useful immediately. Any information taken in by a DNN at
the beginning of a training session does not become useful until much more information
has been taken in, and there has been a gradual strengthening of links within the DNN.
Here there is a clear advantage of the SPTI compared with DNNs. The SPCM can use New
information immediately.

It is perhaps worth mentioning that ‘one-trial learning’ is different from ‘zero-shot
learning’, as for example, in the ‘CLIP’ system that features in [21,22]. ‘Zero-shot learning’ is:

“. . . a problem setup in machine learning, where at test time, a learner observes
samples from classes, which were not observed during training, and needs to
predict the class that they belong to. Zero-shot methods generally work by
associating observed and non-observed classes through some form of auxiliary in-
formation, which encodes observable distinguishing properties of objects. . . . For
example, given a set of images of animals to be classified, along with auxiliary tex-
tual descriptions of what animals look like, an artificial intelligence model which
has been trained to recognize horses, but has never been given a zebra, can still
recognize a zebra when it also knows that zebras look like striped horses.” ‘Zero-
shot learning’, Wikipedia, tinyurl.com/yyybvm8x, accessed on 29 August 2022.

7.1. Demonstration of One-Trial Learning

There is a demonstration of one-trial learning in the parsing of a New SP-pattern
representing a sentence (fresh from the system’s environment) in the example shown in
Figure A3 (Appendix A.3.1).

In the example, the New SP-pattern has been ‘learned’ in much the same way that a
tape recorder may be said to ‘learn’ sounds, or a camera may be said to ‘learn’ images.

What is different from a tape recorder or camera is that the newly ‘learned’ information
may be used immediately in, for example, parsing (as illustrated in Figure A3 or in any of
the other aspects of intelligence summarised in Appendix B.1).

7.2. Slow Learning of Complex Knowledge or Skills

In addition to the explanation which the SPTI provides for one-trial learning, the SPTI
also provides an explanation for why people are relatively slow at learning complex bodies
of knowledge or complex skills like those mentioned earlier.

It seems likely that the slow learning of complex things is partly because there is a lot
to be learned, and partly because that kind of learning requires a time-consuming search
through a large abstract space of ways in which the knowledge may be structured in order
to compress it and thus arrive at an efficient configuration.

In the SPCM, that kind of slow learning occurs when the mechanisms of unsupervised
learning are needed to sift and sort through the many ways in which knowledge may be
structured to achieve good levels of IC, as for example, in the induction of an efficient
SP-grammar from raw linguistic data (Section 5.2).

Although such learning in the SPCM is relatively slow compared with one-trial learn-
ing by the model, it is likely, in mature versions of the SPCM, to prove to be relatively
efficient and fast compared with the large computational resources needed by DNNs (see
Section 9).

8. How to Achieve Transfer Learning

“We need to figure out how to think about problems like transfer learning, because
one of the things that humans do extraordinarily well is being able to learn
something, over here, and then to be able to apply that learning in totally new
environments or on a previously unencountered problem, over there.” James
Manyika ([1], p. 276).

https://tinyurl.com/yyybvm8x
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Transfer learning is fundamental in the SPCM. This is because the system does not
suffer from catastrophic forgetting (Section 21). This means that anything that has been
learned and stored in the repository of Old SP-patterns is available at any time to be
incorporated in any other structure.

With DNNs, it is possible, to some extent, to sidestep the problem of catastrophic
forgetting by making a copy of a DNN that has already learned something (eg, how to
recognise a domestic cat) and then exposing the copy to images of things that are related to
cats, such as lions (see, for example, ([23], Section 2)). Then the prior knowledge of cats
may facilitate the later learning of what lions look like.

A recent survey of research on transfer learning [24], mainly about research with DNNs,
concludes that “Several directions are available for future research in the transfer learning
area. . . . And new approaches are needed to solve the knowledge transfer problems in
more complex scenarios.” (p. 71)

From this conclusion, and from the quotation at the beginning of this section, it is clear
that transfer learning in DNNs falls far short of what is achieved by transfer learning in the
SPCM—where transfer learning is an integral part of how the system works, so that new
concepts can be created from any combination of New and Old information.

Demonstration of Transfer Learning with the SPCM

Here is a simple example of how the SPCM can achieve transfer learning between one
Old SP-pattern and one New SP-pattern:

• At the beginning, there is one Old SP-pattern already stored, namely: ‘< %1 3 t h a
t b o y r u n s >’.

• Then a New SP-pattern is received: ‘t h a t g i r l r u n s’.
• The best SP-multiple alignment for these two SP-patterns is shown in Figure 5.
• From that SPMA, the SPCM derives SP-patterns as shown in Figure 6. This is the

beginnings of an SP-grammar for sentences of a given form.
• Because IC in the SPCM is always lossless, the SP-grammar in Figure 6 generates the

original two SP-patterns from which the SP-grammar is derived.

0 t h a t g i r l r u n s 0
| | | | | | | |

1 < %1 3 t h a t b o y r u n s > 1

Figure 5. The best SPMA created by the SPCM between the Old SP-pattern in row 1 and the New
SP-pattern in row 0.

< %1 1 t h a t >
< %2 2 r u n s >
< %3 3 b o y >
< %3 4 g i r l >
< 5 < %1 > < %3 > < %2 > >

Figure 6. The SP-grammar created by the SPCM from the SPMA shown in Figure 5.

This simple example is just a taste of how the SPCM works. As mentioned above,
transfer learning is an integral part of the SPCM, something that could not be removed
from the system without completely destroying its generality and power in diverse aspects
of intelligence.

9. How to Increase the Speed of Learning, and Reduce Demands for Large Amounts of
Data and for Large Computational Resources

“[A] stepping stone [towards artificial general intelligence] is that it’s very impor-
tant that [AI] systems be a lot more data-efficient. So, how many examples do
you need to learn from? If you have an AI program that can really learn from a
single example, that feels meaningful. For example, I can show you a new object,
and you look at it, you’re going to hold it in your hand, and you’re thinking,
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‘I’ve got it.’ Now, I can show you lots of different pictures of that object, or
different versions of that object in different lighting conditions, partially obscured
by something, and you’d still be able to say, ‘Yep, that’s the same object.’ But
machines can’t do that off of a single example yet. That would be a real stepping
stone to [artificial general intelligence] for me.” Oren Etzioni ([1], p. 502).

In connection with the large volumes of data and large computational resources that
are often associated with the training of DNNs, it has been discovered by Emma Strubell
and colleagues [25] that, when electricity is generated from fossil fuels, the process of
training a large AI model can emit more than 626,000 pounds of carbon dioxide, which is
equivalent to nearly five times the lifetime emissions of the average American car, including
the manufacture of the car itself.

The SPTI suggests two main ways in which learning can be done faster, with less data,
and fewer computational resources:

• Learning via a single exposure or experience. Take advantage of the way in which the
SPCM can, as a normal part of how it works, learn usable knowledge from a single
exposure or experience (Section 7).

• Transfer learning. Take advantage of the way in which the SPCM can, and frequently does,
incorporate already-stored knowledge in the learning of something new (Section 8).

It is true that the SPTI is likely, like people, to be relatively slow in learning complex
knowledge and skills (Section 7.2). But even here there can be benefits from one-trial
learning and transfer learning.

It seems likely that in unsupervised learning, a mature SPCM will be substantially
more efficient than the current generation of DNNs.

10. The Need for Transparency in the Representation and Processing of Knowledge

“The current machine learning concentration on deep learning and its non-
transparent structures is such a hang-up.” Judea Pearl ([1], p. 369).

It is now widely recognised that a major problem with DNNs is that the way in which
learned knowledge is represented in such systems is far from being comprehensible by
people, and likewise for the way in which DNNs arrive at their conclusions.

These deficiencies in DNNs are of concern for reasons of cost, safety, legal liability,
fixing problems in systems that use DNNs, and perhaps more.

By contrast, with the SPCM:

• All knowledge in the SPCM is represented transparently by SP-patterns, in structures,
some of which are likely to be familiar to people such as part-whole hierarchies,
class-inclusion hierarchies, and more (see ([6], Section 5).

• There is a comprehensive audit trail for the creation of each SPMA. The structure of
one such audit trail is shown in Figure 7.

• There is also a comprehensive audit trail for the learning of SP-grammars by the SPCM.

There is a fairly full discussion of issues relating to transparency in the representation
and processing of knowledge in [26].

Demonstrations Relating to Transparency

Figure 7 shows how the SPMA in Figure A3 was created. That figure should be
interpreted as described in its caption. It illustrates some but not all of the transparency of
the SPCM.
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ID880 ID315 ID27

ID315             ID128 ID216

ID27                           (Num PL ; NPp Vpp)

ID128               ID77 ID96

ID216                         ID87 ID2

ID77                                     ID29 ID65

ID96                                               ID35 ID4

ID87                                                          ID32 ID22

ID2                                                                    (S Num ; NP #NP VP #VP #S)

ID29                                                           ID17ID1

ID65                                                                ID14ID1

ID35                                                                    ID9ID1

ID4                                                                            (NP NPp D Dp #D N Np #N #NP)

ID32                                                            ID24ID1

ID22                                                                 (VP VPp Vr #Vr #VP)

ID1                                                        (t w o k i t t e n s p l a y)

ID14                              (N Np Nr #Nr s #N)

ID17                                          (Nr 5 k i t t e n #Nr)

ID9                     (D Dp 4 t w o #D)

ID24       (Vr 1 p l a y #Vr)

Figure 7. An audit trail for the creation of the SPMA shown in Figure A3. The line of text at the
bottom of the figure shows, on the left, the identification number for the SPMA shown in Figure A3.
To the right of that number are IDs of the two SPMAs from which the SPMA was derived. From
each of latter two IDs, there is an arrow pointing to the same ID at the beginning of a line above. As
before, this ID represents an SPMA, and to the right of that ID are two more IDs representing the
two SPMAs from which the main ID for that line was derived. The remaining lines in the figure are
the same except that, at higher levels, we begin to meet IDs that represent Old SP-patterns supplied
to the SPCM at the beginning of processing. With the identifier ‘ID1’, there are five instances in the
figure (each one shown in red), so to avoid undue clutter, only one arrow is shown. Reproduced from
Figure 6 in [26], with permission.

The partial SPMAs themselves are not shown in the figure but they are shown in the
full audit trail from which the figure was derived—which is too big to be shown here. That
full audit trail contains much more information than what is shown in Figure 7, including
measures of IC associated with each SPMA, and absolute and conditional probabilities
associated with each SPMA, calculated as described in ([3], Section 4.4).

Figure 7 is only for explanation: it is not something that users of the SPCM would
be required to use. In the full audit trail, users may trace the origin of any structure by
following relevant pointers.

In addition to audit trails for building of SPMAs, the SPCM provides a comprehensive
audit trail for all intermediate structures that are created for unsupervised learning. Even
with small examples, the audit trail is much too big to be shown here.



Foundations 2022, 2 1058

11. How to Achieve Probabilistic Reasoning That Integrates with Other Aspects
of Intelligence

Although this section (about probabilistic reasoning), and Section 12 (about common-
sense reasoning and commonsense knowledge (CSRK), are both about reasoning, they are
described separately because they are not yet well integrated.

“What’s going on now in the deep learning field is that people are building on
top of these deep learning concepts and starting to try to solve the classical AI
problems of reasoning and being able to understand, program, or plan.” Yoshua
Bengio ([1], p. 21), emphasis added.

A strength of the SPTI compared with DNNs is that, via the SPCM, several different
kinds of probabilistic reasoning can be demonstrated, without any special provision or
adaptation ([3], Section 10).

The kinds of probabilistic reasoning that can be demonstrated with the SPCM are
summarised in Section B.1.2.

Owing to the central importance of IC in the SPTI (Appendix A.1), and owing to
the intimate connection that is known to exist between IC and concepts of probability
(see ‘Algorithmic Probability Theory’ developed by Solomonoff, [27,28], ([29], Chapter 4)),
the SPTI is intrinsically probabilistic. With every SPMA created by the SPCM, including
SPMAs produced in any of the kinds of reasoning mentioned above, absolute and relative
probabilities are calculated ([3], Section 4.4).

As with the processing of NL (Section 4), a major strength of the SPTI with reasoning
is that there can be seamless integration of various aspects of intelligence and various kinds
of knowledge, in any combination (Appendix B.1.4).

Here, that kind of seamless integration would apply to the several kinds of proba-
bilistic reasoning mentioned above, and other aspects of intelligence, and varied kinds
of knowledge.

Demonstrations Relating to Probabilistic Reasoning

Examples of probabilistic reasoning by the SPCM are shown in (([3], Section 10), and
there are more in ([2], Chapter 7)). These sources provide a fairly full picture of the varied
kinds of probabilistic reasoning that may be achieved with the SPCM.

To give some of the flavour of how the SPCM can be applied to nonmonotonic rea-
soning, Figure 8 shows one of the three best SPMAs created by the SPCM with the New
SP-pattern ‘bird Tweety’ (which appears in column 0, and which may be interpreted as
‘Tweety is a bird’), and with a store of Old SP-patterns representing aspects of birds in
general and also of specific kinds of birds such as ostriches and penguins. (This SPMA is
arranged with SP-patterns in columns instead of rows, but otherwise the SPMA may be
interpreted in exactly the same way as other SPMAs shown in this paper.)

The SPMA in Figure 8 shows that Tweety is likely to be a bird that, like most birds, is
warm-blooded and has wings and feathers (column 1).

One of the other SPMAs formed at the same time (not shown) suggests that Tweety
might be an ostrich, and another shows that Tweety might be a penguin.

Taking the three SPMAs together, we may conclude that: with a relative probability
of 0.66, Tweety can fly; but it is possible that Tweety as an ostrich would not be able to
fly (p = 0.22); and it is also possible that Tweety as a penguin would not be able to fly
(p = 0.12). How these probabilities are calculated is described in ([3], Section 4.4).

If the SPCM is run again, with the New SP-pattern ‘penguin Tweety’ (meaning that
Tweety is a penguin), and with the same store of Old SP-patterns as before, the best SPMA
formed by the SPCM is shown in Figure 9. From this we can infer that Tweety would
certainly not be able to fly (p = 1.0). Likewise if the New SP-pattern is ‘ostrich Tweety’.
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0 1 2 3

Default
Bd ----------- Bd

bird --- bird
name -------------------- name

Tweety --------------------------- Tweety
#name ------------------- #name
f ------------ f

canfly
#f ----------- #f
warm-blooded
wings
feathers
$\dots$
#Bd ---------- #Bd

#Default

0 1 2 3

Figure 8. One of the three best SPMAs formed by the SPCM from the New SP-pattern shown in
column 0, ‘bird Tweety’, and a repository of Old SP-patterns describing information about birds
in general and more specific kinds of birds such as ostriches and penguins. Reproduced from ([2],
Figure 7.10).

0 1 2 3

P
penguin ------------------------- penguin

Bd ----------- Bd
bird

name --- name
Tweety -- Tweety

#name -- #name
f ------------ f

cannotfly
#f ----------- #f
warm-blooded
wings
feathers
$\dots$
#Bd ---------- #Bd

$\dots$
#P

0 1 2 3

Figure 9. The best SPMA formed by the SPCM with the New SP-pattern ‘penguin Tweety’ and with
SP-patterns in Old as described in the text. The relative probability of this SPMA is 1.0. Reproduced
from ([2], Figure 7.12).

Thus, in accordance with the concept of nonmonotonic reasoning, the SPCM makes
one set of inferences with the information that Tweety is a bird, but these inferences can be
changed when we have information that, for example, Tweety is a penguin or Tweety is
an ostrich.
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12. The Challenges of Commonsense Reasoning and Commonsense Knowledge

This section is about commonsense reasoning (CSR) and commonsense knowledge
(CSK), where the two together may be referred to as ‘CSRK’. As noted in Section 11,
although that section and this one are both about reasoning, they are described separately
because they are not yet well integrated.

“We don’t know how to build machines that have human-like common sense. We
can build machines that can have knowledge and information within domains,
but we don’t know how to do the kind of common sense we all take for granted.”
Cynthia Breazeal ([1], p. 456).

There appears to be little research on how DNNs might be applied in CSRK
research [30] (but see [31,32]). Preliminary studies suggest that the SPTI has potential
in this area [33,34].

Demonstrations Relating to Commonsense Reasoning and Commonsense Knowledge

Aspects of CSRK can be modelled with the SPCM ([34], Sections 4 to 6): how to
interpret a noun phrase like “water bird”; how, under various scenarios, to assess the
strength of evidence that a given person committed a murder; and how to interpret the
horse’s head scene in The Godfather film.

A fourth problem—how to model the process of cracking an egg into a bowl—is
beyond what can be done with the SPTI as it is now ([34], Section 9). It seems likely that
progress on that problem will depend on progress in the modelling of structures in two
dimensions ([15], Section 9.1), and three dimensions ([15], Section 9.2), and with the time
dimension as well ([15], Section 9.3).

13. How to Minimise the Risk of Accidents with Self-Driving Vehicles

“. . . the principal reason [for pessimism about the early introduction of driverless
cars for all situations is] that if you’re talking about driving in a very heavy
metropolitan location like Manhattan or Mumbai, then the AI will face a lot of
unpredictability. It’s one thing to have a driverless car in Phoenix, where the
weather is good and the population is a lot less densely packed. The problem
in Manhattan is that anything goes at any moment, nobody is particularly well-
behaved and everybody is aggressive, the chance of having unpredictable things
occur is much higher.” Gary Marcus ([1], p. 321).

A naive approach to the development of self-driving vehicles would be to teach the
vehicle’s computer in the same way that one might teach a person who is learning to drive.
This will not work unless or until the computer is equipped with human-level abilities for
generalisation, and abilities to minimise the corrupting effect of dirty data, along the lines
outlined in Section 6. Even then, it is probably best to build up the necessary knowledge via
unsupervised learning with inputs of information about driving conditions and responses
by a skilled human driver.

How those principles may be applied to the development of driverless cars is described in [35].

14. The Need for Strong Compositionality in the Structure of Knowledge

“By the end of the ’90s and through the early 2000s, neural networks were not
trendy, and very few groups were involved with them. I had a strong intu-
ition that by throwing out neural networks, we were throwing out something
really important. . . .

Part of that [intuition] was because of something that we now call composition-
ality: The ability of these systems to represent very rich information about the
data in a compositional way, where you compose many building blocks that
correspond to the neurons and the layers.” Yoshua Bengio ([1], pp. 25–26).

The neurons and layers of a DNN may be seen as building blocks for a concept, and
may thus be seen as an example of compositionality, as described in the quote above.
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But any such view of the layers in a DNN is weak, with many exceptions to ‘strong’
compositionality. In general, DNNs fail to capture the way in which we conceptualise a
complex thing like a car in terms of smaller things (engine, wheels, etc.), and these in terms
of still smaller things (pistons, valves, etc.), and so on.

In this connection, the SPTI has a striking advantage compared with DNNs. Any
SP-pattern may contain SP-symbols that serve as references to other SP-patterns, a mech-
anism which allows part-whole hierarchies and class-inclusion hierarchies to be built up
through as many levels as are required ([3], Section 9.1). At the same time, the SPMA
construct is much more versatile than a system that merely builds hierarchical structures
(see Appendices B.1 and B.2).

Demonstrations of Compositionality with the SPTI

The kind of strong compositionality which is the subject of discussion can be seen in
Figure A3:

• The word ‘t w o’ is part of the ‘determiner’ category as shown in the SP-pattern ‘D
Dp 4 t w o #D’ in row 3;

• The word ‘k i t t e n’ is the ‘root’ of a noun represented by the SP-pattern ‘Nr 5 k
i t t e n #Nr’ in row 1, and this is part of the ‘noun’ category represents by ‘N Np
Nr #Nr s #N’ in row 2;

• Both ‘D Dp 4 t w o #D’ and ‘N Np Nr #Nr s #N’ are part of the ‘noun phrase’ struc-
ture represented by the SP-pattern ‘NP NPp D Dp #D N Np #N #NP’ in row 4;

• There is a similar but simpler hierarchy for the ‘verb phrase’ category represented by
the SP-pattern ‘VP VPp Vr #Vr #VP’ in row 6;

• The noun phrase structure, ‘NP NPp D Dp #D N Np #N #NP’, and the verb phrase
structure, ‘VP VPp Vr #Vr #VP’, are the two main components of a sentence, repre-
sented by the SP-pattern ‘S Num ; NP #NP VP #VP #S’ in row 7.

Apart from part-whole hierarchies like the one just described, the SPTI also lends itself
to the representation and processing of class-inclusion hierarchies, as can be seen in ([3],
Figure 16, Section 9.1).

15. Establishing the Importance of Information Compression in AI Research

There is little about IC in Architects of Intelligence, except for some brief remarks
about autoencoders:

“Autoencoders have changed quite a bit since [the] original vision. Now, we think
of them in terms of taking raw information, like an image, and transforming it
into a more abstract space where the important, semantic aspect of it will be easier
to read. That’s the encoder part. The decoder works backwards, taking those
high-level quantities—that you don’t have to define by hand—and transforming
them into an image. That was the early deep learning work. Then a few years
later, we discovered that we didn’t need these approaches to train deep networks,
we could just change the nonlinearity.” Yoshua Bengio ([1], pp. 26–27).

This fairly relaxed view of IC in AI research, as described by an influential AI expert,
and the rather low profile of IC in a wide-ranging review of research on DNNs ([30], Sec-
tion 4.4), and in most publications about DNNs, (An exception here is [36] which describes
“a theoretical framework for approximate planning and learning in partially observed
system” (Abstract), with compression in its analysis, but with vastly more complexity than
the treatment of IC in the SPTI [2, Section 2.2].) contrasts with the central role of IC in the
SP programme of research:

1. There is good evidence that IC is fundamental in HLPC [18], and in mathematics [6].
2. IC is bedrock in the design of the SPTI ([3], Section 2.1).
3. Via the SPMA concept, IC appears to be largely responsible for the strengths and

potential of the SPTI in AI-related functions (Appendix B.1), and largely responsible
for potential benefits and applications of the SPTI in other areas (Appendix B.2).
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With regard to the first point, Marcus provides persuasive evidence in his book
Kluge [37], that the haphazard nature of natural selection produces kluges in human
thinking, meaning clumsy makeshift solutions that nevertheless work. But, at the same
time, there is compelling evidence for the importance of IC in the workings of brains and
nervous systems [18]. Probably, the two ideas are both true.

16. Establishing the Importance of a Biological Perspective in AI Research

Since people are biological entities, this section, about the importance of a biological
perspective in AI research, includes evidence from human psychology and neuroscience.

“Deep learning will do some things, but biological systems rely on hundreds of
algorithms, not just one algorithm. [AI researchers] will need hundreds more
algorithms before we can make that progress, and we cannot predict when they
will pop.” Rodney Brooks ([1], p. 427).

What Rodney Brooks describes in this quote is much like Marvin Minsky’s concept
of many diverse agents as the basis for AI [38]. It seems that both views are unfalsifiable
because, for every attempt to prove the theory wrong, a new algorithm can be added to
plug the gap. And that is likely to mean a theory with ever-decreasing merit in terms of
Ockham’s razor.

16.1. IC and the Biological Foundations of the SPTI

By contrast with the ‘many algorithms’ perspectives of Brooks and Minsky, the SP
programme of research has, from the beginning, been tightly focussed on the importance of
IC in the workings of brains and nervous systems [18] and the corresponding importance
of IC as a unifying principle in the SPTI (Appendix A.1).

Much of the evidence for the importance of IC in HLPC, presented in [18], comes from
neuroscience, psychology, and other aspects of biology. Hence, the SPTI is inspired in part
by evidence from biology.

16.2. SP-Neural and Inputs from Neuroscience

SP-Neural is a version of the SPTI couched in terms of neurons and their intercon-
nections and intercommunications [39]. It provides further evidence for a biological per-
spective in the development of the SPTI because there has been considerable input from
neuroscience in the development of SP-Neural, and in its description in [39].

17. Establishing Whether Knowledge in Brains or AI Systems Should Best Be
Represented in ‘Distributed’ or ‘Localist’ Form

“In a hologram, information about the scene is distributed across the whole
hologram, which is very different from what we’re used to. It’s very different
from a photograph, where if you cut out a piece of a photograph you lose the
information about what was in that piece of the photograph, it doesn’t just make
the whole photograph go fuzzier.” Geoffrey Hinton ([1], p. 79).

A persistent issue in AI and in theories of HLPC is whether or not knowledge in the
brain is represented in a ‘distributed’ or ‘localist’ form, and whether the same principles
should be applied in AI models. This is essentially the much-debated issue of whether
the concept of ‘my grandmother’ is represented in one place in one’s brain or whether the
concept is represented via a diffuse collection of neurons throughout the brain:

• In DNNs, knowledge is distributed in the sense that the knowledge is encoded in
the strengths of connections between many neurons across several layers of each
DNN. Since DNNs provide the most fully developed examples of AI systems with
distributed knowledge, the discussion here assumes that DNNs are representative of
such systems.

• The SPTI, in both its abstract form (Appendix A) and as SP-Neural [39], is unambigu-
ously localist.
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It seems now that the weight of evidence favours a localist view of how knowledge is
represented in the brain:

• Mike Page ([40], pp. 461–463) discusses several studies that provide direct or indirect
evidence in support of localist encoding of knowledge in the brain.

• It is true that if knowledge of one’s grandmother is contained within a neural SP-
pattern, death of that neural SP-pattern would destroy knowledge of one’s grand-
mother. But:

– As Barlow points out ([41], pp. 389–390), a small amount of replication will give
considerable protection against this kind of catastrophe.

– Any person who has suffered a stroke, or is suffering from dementia, may indeed
lose the ability to recognise close relatives or friends.

• In connection with the ‘localist’ view of brain organisation, an important question is
whether or not there are enough neurons in the human brain to store the knowledge
that a typical person, or, more to the point, an exceptionally knowledgeable person,
will have?
Arguments and calculations relating to this issue suggest that it is indeed possible
for us to store what we know in localist form, and with substantial room to spare for
multiple copies ([2], Section 11.4.9). A summary of the arguments and calculations is
in ([39], Section 4.4).
Incidentally, multiple copies of a localist representation in which each copy is localist,
or a neural SP-pattern for the representation of each concept, is not the same as the
diffuse representation of knowledge in a distributed representation.

Assuming that, in the quest for AGI, we may maximise our chances of success by
imitating the structure and workings of the brain, the case for the SPTI as a FDAGI is
strengthened by evidence that the SPTI, like the brain, stores knowledge in localist form.

18. The Learning of Structures from Raw Data

“Evolution does a lot of architecture search; it designs machines. It builds very
differently, structured machines across different species or over multiple genera-
tions. We can see this most obviously in bodies, but there’s no reason to think it’s
any different in [the way that] brains [learn].” Josh Tenenbaum ([1], p. 481).

With unsupervised learning in the SP programme of research, the aim is not merely
to learn associations between things but to learn the structures in the world. (There are
similar objectives in research on DNNs, as for example in [42].) This has been a theme
of research on the learning of a first language [14] and in the SP research (([3], Section 5),
([2], Chapter 9)).

Those publications are about the unsupervised learning of structure in one-dimensional
data. But other developments are envisaged within the SP programme of research. It is
anticipated that the SPCM will be generalised to represent and process SP-patterns in two
dimensions ([15], Section 9.1). That should provide the foundation for the unsupervised
learning of parts and sub-parts of pictures and diagrams, for classes and subclasses of such
entities, and for three-dimensional structures.

There is also potential for the learning and representation of: class hierarchies and
inheritance ([43], Section 6.6); and for the processing of parallel streams of information ([44],
Sections V-G, V-H, and V-I, and Appendix C).

Demonstrations of the Unsupervised Learning of Structures from Raw Data

The SPCM as it is now has demonstrated the unsupervised learning of word structure
and the unsupervised learning of simple English-like SP-grammars, including classes of
words and high-level sentence structure ([3], Section 5.1.1). As with the earlier work on
the learning of a first language, the learning by the SPCM is achieved without any explicit
clues to structure in the data from which it learns.
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What has been achieved already demonstrates the clear potential of the framework
for learning segmental and disjunctive (class) structures in raw data via IC which is itself
achieved via the Matching and Unification of Patterns (ICMUP). Here, unification is simply
the merging of two or more SP-patterns, or parts of such patterns, to make a single SP-
pattern, or part thereof.

This is consistent with what was earlier achieved with the MK10 and SNPR computer
models of the learning of segmental structure of language and the learning of grammars [14],
but within the entirely new framework of the SP research.

Those developments will themselves facilitate the learning of structures in three
dimensions as outlined in ([19], Sections 6.1 and 6.2). In brief, the structure of a 3D object
may be created from overlapping pictures of the object from several different angles. The
overlap between neighbouring pictures would provide for the stitching together of the
pictures, in much the same way as is done in the creation of a panoramic view of a scene by
the stitching together of overlapping pictures of the scene.

The creation of 3D representations of objects from overlapping pictures is demon-
strated by businesses that do it as a service for customers. It is also demonstrated by
the way in which 3D representations of streets in Google’s Streetview are created from
overlapping pictures.

19. The Need to Re-Balance Research towards Top-Down Strategies

This section and the ones that follow describe problems in AI that are not apparently
considered in [1] but are significant problems in AI research that the SPTI has potential
to solve.

“The central problem, in a word: current AI is narrow; it works for particular tasks
that it is programmed for, provided that what it encounters isn’t too different
from what it has experienced before. That’s fine for a board game like Go—the
rules haven’t changed in 2,500 years—but less promising in most real-world
situations. Taking AI to the next level will require us to invent machines with
substantially more flexibility. . . . To be sure, . . . narrow AI is certainly getting
better by leaps and bounds, and undoubtedly there will be more breakthroughs
in the years to come. But it’s also telling: AI could and should be about so much
more than getting your digital assistant to book a restaurant reservation.” Gary
Marcus and Ernest Davis ([45], pp. 12–14), emphasis in the original.

This quote is, in effect, a call for a top-down, breadth-first strategy in AI research,
developing a theory or theories that can be applied to a range of phenomena, not just one
or two things in a narrow area (Appendix B.6).

In this connection, the SPTI scores well. It has been developed with a unique top-down
strategy: attempting simplification and integration across an unusually broad canvass: across AI,
mainstream computing, mathematics, and HLPC.

Here are some key features of a top-down strategy in research, and their potential benefits:

1. Broad scope. Achieving generality requires that the data from which a theory is derived
should have a broad scope, like the overarching goal of the SP programme of research,
summarised above.

2. Ockham’s razor, Simplicity and Power. That broad scope is important for two reasons:

• In accordance with Ockham’s razor, a theory should be as Simple as possible
but, at the same time, it should retain as much as possible of the descriptive and
explanatory Power of the data from which the theory is derived.

• But measures of Simplicity and Power are more important when they apply to a
wide range of phenomena than when they apply only to a small piece of data.

3. If you can’t solve a problem, enlarge it. A broad scope, as above, can be challenging, but
it can also make things easier. Thus Dwight D. Eisenhower is reputed to have said:
“If you can’t solve a problem, enlarge it”, meaning that putting a problem in a broader
context may make it easier to solve. Good solutions to a problem may be hard to see
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when the problem is viewed through a keyhole, but become visible when the door
is opened.

4. Micro-theories rarely generalise well. Apart from the potential value of ‘enlarging’ a
problem (point 2 above), and broad scope (point 1), a danger of adopting a narrow
scope is that any micro-theory or theories that is developed for that narrow area are
unlikely to generalise well to a wider context—with correspondingly poor results in
terms of Simplicity and Power (see also Appendix B.6).

5. Bottom-up strategies and the fragmentation of research. The prevailing view about how to
reach AGI seems to be “. . . that we’ll get to general intelligence step by step by solving
one problem at a time.” expressed by Ray Kurzweil ([1], p. 234). And much research
in AI has been, and to a large extent still is, working with this kind of bottom-up
strategy: developing ideas in one area, and then trying to generalise them to another
area, and so on.
But it seems that in practice the research rarely gets beyond two areas, and, as a
consequence, there is much fragmentation of research (see also Appendix B.6).

20. How to Overcome the Limited Scope for Adaptation in Deep Neural Networks

The problem considered here is that, contrary to how DNNs are normally viewed,
they are relatively restricted in their scope for learning.

An apparent problem with DNNs is that, unless many DNNs are joined together [23],
each one is designed to learn only one concept, which contrasts with the way that people
learn multiple concepts, and these multiple concepts are often in hierarchies of classes
or in part-whole hierarchies. Also, learning a concept by a DNN means only learning to
recognise something like a cat or a house within a picture, with limited compositionality
compared with the SPCM (Section 14).

In the SPCM, the concept of an SP-pattern, with the concept of SPMA, provides much
greater scope for modelling the world than the relatively constrained framework of DNNs.
This is because:

• Each concept in the SPTI is represented by one SP-pattern which, as a single array of
SP-symbols, would normally be much simpler than the multiple layers of a DNN, with
multiple links between layers, normally many than in knowledge structures created
by the SPCM.

• There is no limit to the number of ways in which a given SP-pattern can be connected
to other SP-patterns within SPMAs, in much the same way that there is no limit to the
number of ways in which a given web page can be connected to other web pages.

• Together, these features of the SPTI provide much greater scope than with DNNs for
the representation and learning of many concepts and their many inter-connections.

21. How to Eliminate the Problem of Catastrophic Forgetting

“We find that the CF [catastrophic forgetting] effect occurs universally, without
exception, for deep LSTM-based [Long Short-Term Memory based] sequence
classifiers, regardless of the construction and provenance of sequences. This leads
us to conclude that LSTMs, just like DNNs [Deep Neural Networks], are fully
affected by CF, and that further research work needs to be conducted in order to
determine how to avoid this effect (which is not a goal of this study).” Monika
Schak and Alexander Gepperth [46].

Catastrophic forgetting is the way in which, when a given DNN has learned one thing
and then it learns something else, the new learning wipes out the earlier learning (see, for
example, [47]). This problem is quite different from human learning, where new learning
normally builds on earlier learning, as described in Section 8—although of course we all
have a tendency to forget some things.

The SPCM is entirely free of the problem of catastrophic forgetting. The reasons that,
in general, DNNs suffer from catastrophic forgetting and that the SPTI does not, are that:
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• In DNNs there is a single structure for the learning and storage of new knowledge, a
concept like ‘my house’ is encoded in the strengths of connections between artificial
neurons in that single structure, so that the later learning of a concept like ‘my car’ is
likely to disturb the strengths of connections for ‘my house’;

• By contrast, the SPCM has an SP-pattern for each concept in its repository of knowl-
edge, there is no limit to the number of such SP-patterns that can be stored (apart from
the limit imposed by the available storage space in the computer and associated infor-
mation storage), and, although there can be many connections between SP-patterns,
there is no interference between any one SP-pattern and any other.

However, it is possible with DNNs to sidestep the problem of catastrophic forgetting:

• As noted in Section 8, one may make a copy of a DNN that has already learned
something, and then train it on some new concept that is related to what has already
been learned. The prior knowledge may help in the learning of the new concept.

• If, for example, one wishes to train a DNN in, say, 50 new concepts, one can do it
with a giant DNN that has space allocated to each of the 50 new concepts, each with
multiple layers. Then providing that the training data for each concept is applied at
the appropriate part of the giant DNN, there should be no catastrophic forgetting [23].

Arguably, these two solutions are ugly, without the elegance of the way the SPCM
can, within the available storage space, learn multiple concepts smoothly, without any
special provision, with transfer learning where required, and with the automatic building
of networks of inter-related concepts where the data dictate it.

In addition, the proposed solutions for DNNs are likely to play havoc with calculations
of the storage space in the human brain ([2], Section 11.4.9). This is because the SPCM
requires only one SP-pattern for each concept, and provides for the sharing of structures
for efficient compression. By contrast, a DNN requires multiple layers for each concept and
the sharing of structures is likely to be absent or, at best, difficult.

22. Conclusions

This paper describes 20 significant problems in AI research, with potential solutions in
the SP Theory of Intelligence.

In view of that potential, and with other evidence of the versatility of the SPTI in
AI-related and non-AI-related applications (Appendix B), there are reasons to believe, as
noted in the Introduction, that the SPTI provides a relatively firm foundation for the development
of human-level broad AI, aka artificial general intelligence.

In addition to its being a promising FDAGI, the SPTI has potential as a foundation for
a theory of human learning, perception, and cognition (Section 1.1).

There is also potential in the SPTI as a foundation for a theory of mathematics, logic,
and computing (Section 1.1), a view which is radically different from the other ‘isms’ in
the foundations of mathematics, and radically different from current concepts in logic
and computing.

23. Software Availability

The source code and Windows executable code for the SP Computer Model is available
via links under the heading “SOURCE CODE” on this web page: tinyurl.com/3myvk878.

The software is also available as ‘SP71’, under ‘Gerry Wolff’, in Code Ocean (codeo-
cean.com/dashboard).
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Abbreviations

Abbreviations used in this paper are detailed here.
AI Artificial Intelligence
AGI Artificial General Intelligence
CSRK Commonsense Reasoning and Commonsense Knowledge
DNN Deep Neural Network
FDAGI Foundation for the Development of AGI
HLPC Human Learning, Perception, and Cognition
IC Information Compression
ICMUP Information Compression via the Matching and Unification of Patterns
NL Natural Language
SPCM SP Computer Model
SPMA SP-multiple-alignment
SPTI SP Theory of Intelligence

Appendix A. High Level View of the SPTI

The SPTI and its realisation in the SPCM is introduced here. This should be sufficient
for understanding the rest of the paper.

But if more information is needed, the SPTI is described quite fully in [3], and even
more fully in the book Unifying Computing and Cognition [2]. These and other publications
in the SP programme of research are detailed on tinyurl.com/2p88zwr3 (accessed on
2 September 2022), most of them with download links.

In this research, the SPCM gives precision to concepts in the SPTI, it has been an
invaluable means of testing ideas for the workings of the SPTI, and it is a means of
demonstrating what can be done with the system. The SPTI itself is everything in the SPCM
plus verbal descriptions and diagrams.

In broad terms, the SPTI is a brain-like system that takes in New information through
the system’s senses, compresses it, and stores it in a repository of Old information. This is
shown schematically in Figure A1.

Old
(compressed)

New
(not compressed)

Figure A1. Schematic representation of the SPTI from an ‘input’ perspective. Reproduced from
Figure 1 in [3].

https://tinyurl.com/2p88zwr3
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For any one batch of New information, compression is achieved via the detection and
elimination of redundancies within the given batch of New information, and also between
the New information and pre-established Old information.

In the SPTI, all kinds of knowledge are represented with SP-patterns, where each such
SP-pattern is an array of atomic SP-symbols in one or two dimensions. An SP-symbol is
simply a ‘mark’ that can be matched with any other SP-symbol to determine whether the
two SP-symbols are the same or different.

At present, the SPCM works only with one-dimensional SP-patterns. The addition of
SP-patterns in two dimensions should open up new possibilities as sketched in Section 18.

Appendix A.1. Information Compression and Intelligence

As indicated above, IC is central in all kinds of processing in the SPCM and in the
structuring of knowledge within the SPCM.

The motivation for giving IC such an important role in the SPTI is an accumulation of
evidence for the importance of IC in HLPC (Appendix B.4).

In broad-brush terms, all IC in the SPCM is achieved via a search for patterns that
match each other and the merging or unification of patterns that are the same. Here, partial
matches between patterns are as important as full matches.

More precisely, IC is achieved via the powerful concept of SP-multiple-alignments
(SPMAs) (Appendix A.3), and via the unsupervised learning of SP-grammars (Section 5).

There is further discussion of ICMUP in Appendix B.4.2.

Appendix A.2. Origin of the Name ‘SP’

Since people often ask, the name ‘SP’ originated like this:

• The SPTI aims to simplify and integrate observations and concepts across a broad
canvass (Section 19), which means applying IC to those observations and concepts;

• IC is a central feature of the structure and workings of the SPTI itself (Appendix A.1);
• And IC may be seen as a process that increases the Simplicity of a body of information,

I, whilst retaining as much as possible of the descriptive and explanatory Power of I.

It is intended that ‘SP’ should be treated as a name, without any need to expand the
letters in the name, as with such names as ‘IBM’ or ‘BBC’.

Appendix A.3. SP-Multiple-Alignment

The most important part of the SPCM is the software for creating SP-multiple-alignments
(SPMAs), an example of which is shown in Figure A3.

The SPMA concept is largely responsible for the strengths of the SPTI in AI-related
functions, summarised in Appendix B.1, for the potential benefits and applications of the
SPTI in other areas, summarised in Appendix B.2, and for the clear potential of the SPTI to
solve 20 significant problems in AI research, as described in this paper.

Bearing in mind that underplaying the advantages of a system is just as bad as
overselling the system’s advantages, it seems fair to say that the concept of SP-multiple-
alignment may prove to be as significant for an understanding of ‘intelligence’ as is DNA for
biological sciences. SP-multiple-alignment may prove to be the ‘double helix’ of intelligence.

Appendix A.3.1. The SPMA Concept Is Inspired by and Derived from the Bioinformatics
Concept of ‘Multiple Sequence Alignment’

The concept of SPMA is here introduced via the concept from which it was derived:
the bioinformatics concept of ‘multiple sequence alignment’, illustrated in Figure A2.
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G G A G C A G G G A G G A T G G G G A
| | | | | | | | | | | | | | | | | | |
G G | G G C C C A G G G A G G A | G G C G G G A
| | | | | | | | | | | | | | | | | | | | |

A | G A C T G C C C A G G G | G G | G C T G G A | G A
| | | | | | | | | | | | | | | | | |
G G A A | A G G G A G G A | A G G G G A
| | | | | | | | | | | | | | | | |
G G C A C A G G G A G G C G G G G A

Figure A2. A ‘good’ multiple sequence alignment amongst five DNA sequences.

In the figure, there are five DNA sequences which have been arranged alongside each
other, and then, by judicious ‘stretching’ of one or more of the sequences in a computer,
symbols that match each other across two or more sequences have been brought into line.

A ‘good’ multiple sequence alignment, like the one shown (Figure A2), is one with a
relatively large number of matching symbols from row to row.

The process of discovering a good multiple sequence alignment is normally too com-
plex to be done by exhaustive search, so heuristic methods are needed, building multiple
sequence alignments in stages and, at each stage, selecting the best partial structures for
further processing.

Appendix A.3.2. How SPMAs Differ from Multiple Sequence Alignments

An SPMA (Figure A3) differs from a multiple sequence alignment like this:

• Each row contains one SP-pattern;
• The top row is normally a single New SP-pattern, newly received from the system’s

environment. Sometimes there is more than one New SP-pattern in row 0.
• Each of the other rows contain one Old SP-pattern, drawn from a store which normally

contains many Old SP-patterns;
• A ‘good’ SPMA is one where the New SP-pattern(s) may be encoded economically in

terms of the Old SP-patterns, as explained in ([3], Section 4.1).

As with multiple sequence alignments, heuristic methods must be used in the creation
of SPMAs.

AI-related and non-AI-related strengths of the SPTI, due largely to the SPMA construct,
are summarised in Appendix B.

0 t w o k i t t e n s p l a y 0
| | | | | | | | | | | | | |

1 | | | Nr 5 k i t t e n #Nr | | | | | 1
| | | | | | | | | |

2 | | | N Np Nr #Nr s #N | | | | 2
| | | | | | | | | |

3 D Dp 4 t w o #D | | | | | | | 3
| | | | | | | | | |

4 NP NPp D Dp #D N Np #N #NP | | | | 4
| | | | | | |

5 | | | Vr 1 p l a y #Vr 5
| | | | |

6 | | | VP VPp Vr #Vr #VP 6
| | | | | |

7 S Num ; NP | #NP VP | #VP #S 7
| | | |

8 Num PL ; NPp VPp 8

Figure A3. The best SPMA created by the SPCM with a store of Old SP-patterns like those in rows
1 to 8 (representing syntactic structures, including words) and a New SP-pattern, ‘t w o k i t t
e n s p l a y’, shown in row 0, representing a sentence to be parsed. The SP-pattern in row 8 is
concerned with syntactic dependencies as described in Section 4.1.2. Adapted from Figure 1 in [20].
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Appendix A.4. Unsupervised Learning in the SPCM

Apart from the SPMA construct, the second main part of the SPCM is procedures for
the unsupervised learning of new knowledge. For any given body of New information,
unsupervised learning means the creation of one or more ‘good’ SP-grammars via IC, where
an SP-grammar is a set of Old SP-patterns that are relatively good for the economical
encoding of that New information.

Unsupervised learning is a process that searches for redundancies within the New
SP-pattern(s), and between the New SP-pattern and the repository of Old SP-patterns, and
unifies redundancies that have been found, thus achieving IC.

As with the building of multiple sequence alignments and SP-multiple-alignments, the
process of creating good SP-grammars cannot be achieved by exhaustive search. Heuristic
methods are needed, building each SP-grammar in stages and discarding all but the best
partial SP-grammar at the end of each stage.

There is more information in Section 5.

Appendix A.5. Future Developments

It is envisaged that the SPCM will be developed into an SP Machine with high levels of
parallel processing and an improved user interface. This will facilitate further developments
by researchers anywhere in the world, along the lines described in [15].

Figure A4, shows a schematic representation of how the SP Machine may be developed
and applied.

SP Theory and SP Computer Model

SP MACHINEHigh parallel
In the cloud

Open source
Good user interface

Representation of knowledge Natural language processing

Several kinds of reasoning Planning & problem solving

Information compression Unsupervised learning

Pattern recognition Information retrieval

MANY APPLICATIONS

Figure A4. Schematic representation of the development and application of the SP Machine. Repro-
duced from Figure 2 in [3].

Appendix B. Strengths of the SPTI in AI and Beyond

The strengths of the SPTI, in AI-related functions and beyond, are summarised in this
appendix. Further information may be found in ([3], Sections 5 to 12), in ([2], Chapters 5 to
9), and in other sources referenced below.

Most of the AI-related strengths of the SPTI, described in Appendix B.1, are demon-
strable with the SPCM. But the word ‘strengths’ is also applied to the potential of the SPTI
to solve problems described in the body of this paper, and in Appendices B.2 and B.4, and
to broad features of the SP research, as described in Appendices B.5 to B.7.
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Appendix B.1. AI-Related Strengths of the SPCM

What are mainly demonstrable strengths of the SPCM are summarised in this section,
with indications of the few cases where a capability is potential, not demonstrated. Many
examples of the workings of the SPCM are given in [2,3].

Appendix B.1.1. Several Kinds of Intelligent Behaviour

The SPCM has demonstrable strengths in the following aspects of intelligence: un-
supervised learning, including the discovery of segmental structures and classes of such
structures; the analysis and production of NL; pattern recognition that is robust in the face
of errors in data; pattern recognition at multiple levels of abstraction; computer vision [19];
best-match and semantic kinds of information retrieval; several kinds of reasoning (next
subsection); planning; and problem solving.

Appendix B.1.2. Several Kinds of Probabilistic Reasoning

Because of the intimate relation between IC and concepts of inference and probability
(Section 11), and owing to the fundamental role of IC in the workings of the SPTI, the
system is inherently probabilistic. Accordingly, it is relatively straightforward for the SPCM
to calculate absolute and relative probabilities for all aspects of intelligence exhibited by
the SPCM. Details of those calculations are given in ([3], Section 4.4) and ([2], Section 3.7).

Kinds of reasoning that may be exhibited by the SPCM include: one-step ‘deductive’
reasoning; chains of reasoning; abductive reasoning; reasoning with probabilistic networks
and trees; reasoning with ‘rules’; nonmonotonic reasoning and reasoning with default
values; Bayesian reasoning with ‘explaining away’; causal reasoning; reasoning that is not
supported by evidence; the inheritance of attributes in class hierarchies; and inheritance of
contexts in part-whole hierarchies (([3], Section 10), ([2], Chapter 7)).

There is also potential in the system for spatial reasoning ([44], Section IV-F.1), and for
what-if reasoning ([44], Section IV-F.2).

Appendix B.1.3. The Representation and Processing of Several Kinds of
AI-Related Knowledge

Although SP-patterns are not very expressive in themselves, they come to life in the
SPMA framework within the SPCM. Within the SPMA framework, they provide relevant
knowledge for each aspect of intelligence mentioned in Appendix B.1.1, for each kind of
reasoning mentioned in Appendix B.1.2, and more.

More specifically, they may serve in the representation and processing of such things
as: the syntax of NLs; class-inclusion hierarchies (with or without cross classification);
part-whole hierarchies; discrimination networks and trees; if-then rules; entity-relationship
structures ([20], Sections 3 and 4); relational tuples (([2], Chapter 10), Section 3), and
concepts in mathematics, logic, and computing, such as ‘function’, ‘variable’, ‘value’, ‘set’,
and ‘type definition’ (([2], Chapter 10), ([43], Section 6.6.1), ([48], Section 2)).

As previously noted (Appendix A), the addition of two-dimensional SP patterns to the
SPCM is likely to expand the capabilities of the SPTI to the representation and processing of
structures in two-dimensions and three-dimensions, and the representation of procedural
knowledge with parallel processing.

Appendix B.1.4. The Seamless Integration of Diverse Aspects of Intelligence, and Diverse
Kinds of Knowledge, in Any Combination

An important additional feature of the SPCM, alongside its versatility in aspects of
intelligence and diverse forms of reasoning, and its versatility in the representation and
processing of diverse kinds of knowledge, is that there is clear potential for the SPCM to
provide for the seamless integration of diverse aspects of intelligence and diverse forms of knowl-
edge, in any combination. This is because those several aspects of intelligence and several
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kinds of knowledge all flow from a single coherent and relatively simple source: the
SPMA framework.

It appears that this kind of seamless integration is essential in any artificial system that
aspires to human-level broad intelligence.

Figure A5 shows schematically how the SPTI, with SPMA at centre stage, exhibits
versatility and seamless integration.

SP-
multiple-

alignment

 oyr f Io ne teh lT l igP eS ne ch eT
Unsupervised learning

Analysis and production
      of natural language

Computer vision
scene analysis 
and more.

 Several kinds of reasoning:

probabilistic networks and trees; with ‘rules’;

nonmonotonic; Bayesian;

causal; inheritance of

 abductive; chains of reasoning;deductive;

  attributes; with 
potential for
more.

Seamless integration of diverse kinds of
intelligence and knowledge, in any

combination.

Pattern recognition:
robust against

  at multiple levels
 of abstraction.

errors in data;

Information

best-match
retrieval:

and ‘semantic’.

Figure A5. A schematic representation of versatility and seamless integration in the SPTI, with the
SPMA concept centre stage.

Appendix B.1.5. How to Make Generalisations without over- or under-Generalisation; and
How to Minimise the Corrupting Effect of ‘Dirty Data’

The central role of IC in the workings of the SPCM (Appendixes A.1 and B.4) provides
what appears to be a sound solution to two problems with unsupervised learning: how to
generalise beyond a body of data (I) without either over-generalisations (under-fitting) or
under-generalisations (over-fitting); and how to learn correct forms despite the fact that I
normally contains errors of various kinds, otherwise called ‘dirty data’.

The proposed solution, indebted to Ray Solomonoff [27,28], is described in ([3],
Section 5.3) and ([2], Section 2.2.12). In brief: compress I as thoroughly as possible via
unsupervised learning to yield an SP-grammar (G), and an encoding (E) of I in terms of
G. Then discard E which contains all of the dirty data or most of it, and retain G which
provides a compact description of I, including ‘correct’ generalisations from I.

Informal tests with unsupervised learning in the SPCM, and also in the MK10 and
SNPR computer models of language learning [14], suggest that these principles are sound,
including the exclusion of over- and under-generalisations, and the learning of ‘correct’
forms without corruption by ‘dirty data’.
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Appendix B.2. Other Potential Benefits and Applications of the SPTI

Apart from the foregoing distinctive features and advantages of the SPTI, it has several
other potential benefits and applications. Relevant publications are outlined below:

• Overview of potential benefits and applications. Several potential areas of application of
the SPTI are described in [43]. The ones that relate fairly directly to AI include: best-
match and semantic forms of information retrieval; the representation of knowledge,
reasoning, and the semantic web.

• The development of intelligence in autonomous robots. The SPTI opens up a radically new
approach to the development of intelligence in autonomous robots [44].

• Commonsense reasoning and commonsense knowledge. Largely because of research by
Ernest Davis and Gary Marcus (see, for example, [49]), the challenges in this area of
AI research are now better known. Preliminary work shows that the SPTI has promise
in this area [34].

• An intelligent database system. The SPTI has potential in the development of an intelli-
gent database system with several advantages compared with traditional database
systems [20].

• Medical diagnosis. The SPTI may serve as a vehicle for medical knowledge and to assist
practitioners in medical diagnosis, with potential for the automatic or semi-automatic
learning of new knowledge [50].

• NL processing. The SPTI has strengths in the processing of NL (([3], Section 8), ([2],
Chapter 5)).

• Sustainability. The SPTI has clear potential for substantial reductions in the very large
demands for energy of standard DNNs, and applications that need to manage huge
quantities of data such as those produced by the Square Kilometre Array [51]. Where
those demands are met by the burning of fossil fuels, there would be corresponding
reductions in the emissions of CO2.

• Transparency in computing. By contrast with applications with DNNs, the SPTI provides
a very full and detailed audit trail of all its processing, and all its knowledge may
be viewed. Also, there are reasons to believe that, when the system is more fully
developed, its knowledge will normally be structured in forms that are familiar such
as class-inclusion hierarchies, part-whole hierarchies, run-length coding, and more.
Strengths of the SPTI in these area are described in [26].

• Vision, both artificial and natural. The SPTI opens up a new approach to the development
of computer vision and its integration with other aspects of intelligence, and it throws
light on several aspects of natural vision: [19,52].

Appendix B.3. The Clear Potential of the SPTI to Solve 20 Significant Problems in AI Research

As described in this paper, the potential of the SPTI to solve 20 significant problems in
AI research is a substantial addition to evidence in support of the SPTI.

Appendix B.4. Evidence for the Importance of IC in HLPC Suggests That IC Should Be Central in
the SPCM

A potent idea, pioneered by Fred Attneave [53,54], Horace Barlow [55,56], and others, is
that much of the workings of brains and nervous systems may be understood as IC. This idea
has been investigated by various researchers up to the present (see, for example, [57–59]).
And the importance of IC in HLPC became central in a programme of research developing
computer models of the learning of a first language by children [14]. Evidence for the
importance of IC in HLPC is reviewed in [18].

In connection with this research and the quest for AGI, it is of interest that, as far back
as 1969, Barlow wrote:

“. . . the operations needed to find a less redundant code have a rather fascinating
similarity to the task of answering an intelligence test, finding an appropriate
scientific concept, or other exercises in the use of inductive reasoning. Thus,
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redundancy reduction may lead one towards understanding something about
the organization of memory and intelligence, as well as pattern recognition and
discrimination.” ([56], p. 210).

where “find[ing] a less redundant code” leads to “redundancy reduction” which means IC.
With regard to the goal of developing AGI:

• Evidence for the importance of IC in HLPC has provided the motivation for making
IC central in the structure and workings of the SPCM;

• In view of the same evidence, it seems clear that IC should be central in the workings
of any system that aspires to AGI;

• The central role for IC in the SPCM—mediated by the concept of SPMA (Appendix A.3)—
is largely responsible for the strengths of the SPTI (Appendix B);

• In both natural and artificial systems:

– For a given body of information, I, to be stored, IC means that a smaller store is
needed. Or for a store of a given capacity, IC facilitates the storage of a larger I
([18], Section 4);

– For a given body of information, I, to be transmitted along a given channel, IC
means an increase in the speed of transmission. Or for the transmission of I at
a given speed, IC means a reduction in the bandwidth which is needed ([18],
Section 4).

• Because of the intimate relation between IC and concepts of inference and probability
(Section 11), and because of the central role of IC in the SPTI, the SPTI is intrinsically
probabilistic.
Correspondingly, it is relatively straightforward to calculate absolute and relative
probabilities for all aspects of intelligence exhibited by the SPTI, including several
kinds of reasoning (([3], Section 4.4), ([2], Section 3.7)), in keeping with the probabilistic
nature of human inferences and reasoning.

Appendix B.4.1. A Resolution of the Apparent Paradox That IC May Achieve
Decompression as Well as Compression of Data

It is sometimes said that IC as a central feature of HLPC conflicts with the undoubted
fact that people can and do produce information as well as compress it, both in ordinary
speech or writing and also in creative areas like creative writing, painting, the composition
of music, and so on.

In that connection, an interesting feature of the SPCM is that SPMA processes for the
analysis of New information are exactly the same as may be used for the production of
information. For example, with NL, processes for the production of a sentence are, without
any qualification, the same as may be used for the analysis of the same sentence.

Since the SPCM works by compressing information, this feature of the SPCM looks,
paradoxically, like “decompression of information by compression of information”.

How the whole system works, and how this paradox may be resolved, is explained
in ([3], Section 4.5) and ([2], Section 3.8).

There is clear potential in the SPCM for the creation of entirely new structures which
may be seen as novel or creative, but not necessarily artistic. This is an aspect of the SPTI
that is waiting to be explored.

Appendix B.4.2. The Working Hypothesis That IC May Always Be Achieved via the
Matching and Unification of Patterns

A working hypothesis in the SP research is that all kinds of IC may be understood
as ICMUP.

Although this is a “working hypothesis”, there is much supporting evidence: the
powerful concept of SPMA may be understood as an example of ICMUP [60]; the SPMA
construct seems to underpin several aspects of intelligence (Appendix B.1), including sev-
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eral kinds of probabilistic reasoning (Appendix B.1.2); and much of mathematics, perhaps
all of it, may be understood in terms of ICMUP [6].

In this research, seven main variants of ICMUP are recognised ([6], Sections 5.1 to 5.7):

• Basic ICMUP. Two or more instances of any pattern may be merged or ‘unified’ to
make one instance ([6], Section 5.1).

• Chunking-with-codes. Any pattern produced by the unification of two or more instances
is termed a ‘chunk’. A ‘code’ is a relatively short identifier for a unified chunk which
may be used to represent the unified pattern in each of the locations of the original
patterns ([6], Section 5.2).

• Schema-plus-correction. A ‘schema’ is a chunk that contains one or more ‘corrections’ to
the schema. For example, a menu in a restaurant may be seen as a schema that may be
‘corrected’ by a choice of starter, a choice of main course, and a choice of pudding ([6],
Section 5.3).

• Run-length coding. In run-length coding, a pattern that repeats two or more times in
a sequence may be reduced to a single instance with some indication that it repeats,
or perhaps with some indication of when it stops, or even more precisely, with the
number of times that it repeats ([6], Section 5.4).

• Class-inclusion hierarchies. Each class in a hierarchy of classes represents a group of
entities that have the same attributes. Each level in the hierarchy inherits all the
attributes from all the classes, if any, that are above it ([6], Section 5.5).

• Part-whole hierarchies. A part-whole hierarchy is similar to a class-inclusion hierarchy
but it is a hierarchy of part-whole groupings ([6], Section 5.6).

• SP-multiple-alignment. The SPMA concept ([6], Section 5.7) is described in Appendix A.3.

The SPMA concept may be seen as a generalisation of the other six variants of ICMUP, as
demonstrated via the SPCM in [60].

This list probably does not exhaust the possible variants of ICMUP, but they are the
ones that have received most attention so far in the SP programme of research.

Appendix B.5. The SPTI Provides an Entirely Novel Perspective on the Foundations
of Mathematics

In view of evidence for the importance of IC in HLPC (Appendix B.4), and in view of
the fact that mathematics is the product of human brains and has been designed to help
human thinking, it should not be surprising to find that IC is central in the structure and
workings of mathematics.

In keeping with that line of thinking, the concept of ICMUP provides an entirely novel
perspective on the foundations of mathematics, described in the paper [6]. It is radically
different from any of the existing ‘isms’ in the foundations of mathematics. There are
potential connections with structuralism, except that structuralism has no place for IC or
ICMUP ([6], Section 4.4.4) and it differs in many other ways from the SPTI.

Appendix B.6. The Benefits of a Top-Down, Breadth-First Research Strategy with Wide Scope

Although the SP research strategy is not, in itself, a feature of the SPTI, the wide scope
of the SP research strategy, described in this appendix, is yielding breadth in the other
strengths of the SPTI and these are largely intrinsic features of the SPTI.

Allen Newell was one of the first people to draw attention to the problems of fragmen-
tation in cognitive science in his famous paper “You can’t play 20 questions with nature
and win” [61]. In that paper he exhorted researchers to tackle “a genuine slab of human
behaviour” (p. 303), thus avoiding the weaknesses of micro-theories with limited scope for
generalisation towards the description and explanation of phenomena in HLPC.

This thinking led to his book Unified Theories of Cognition [62] and a programme
of research developing the Soar cognitive architecture [63], aiming for a unified theory
of cognition.

This work chimes with Pamela McCorduck’s description of fragmentation in AI:
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“The goals once articulated with debonair intellectual verve by AI pioneers ap-
peared unreachable . . . Subfields broke off—vision, robotics, natural language
processing, machine learning, decision theory—to pursue singular goals in soli-
tary splendor, without reference to other kinds of intelligent behaviour.” ([64],
p. 417).

Later, she writes of “the rough shattering of AI into subfields . . . and these with
their own sub-subfields—that would hardly have anything to say to each other
for years to come.” ([64], p. 424).

She adds: “Worse, for a variety of reasons, not all of them scientific, each subfield
soon began settling for smaller, more modest, and measurable advances, while
the grand vision held by AI’s founding fathers, a general machine intelligence,
seemed to contract into a negligible, probably impossible dream.” ([64], p. 424).

Although this quote is from 2004, much the same may be said today. There seems to
be a widespread belief that, when a satisfactory system has been developed for one aspect
of intelligence, it will be possible gradually to combine it with other systems in a bottom-up
strategy leading to the full generality of AGI. And that belief—much the same as what
Newell criticised in [61,62]—seems always to fail.

With these ideas and observations in mind, the SPTI, as noted in Section 19, has been
developed via a top-down, breadth-first research strategy with an exceptionally wide scope,
aiming for a simplification and integration of observations and concepts across AI, mainstream
computing, mathematics, and HLPC.

The SP strategy should help to meet the concerns of Gary Marcus and Ernest Davis:
“What’s missing from AI today—and likely to stay missing, until and unless the field takes
a fresh approach—is broad (or “general”) intelligence.” ([45], p. 15).

Appendix B.7. The Benefits of a Biological Perspective in the Development of AGI

In the same way that the SP research strategy (Appendix B.6) is yielding intrinsic
strengths of the SPTI, much the same may be said about the biological perspective described
in this appendix.

Since the main objective of the SP research is to develop a firm FDAGI, it is, arguably,
clear that a biological perspective is likely to be helpful, where that perspective includes
knowledge of cognitive psychology and neuroscience—since humans are biological entities,
and since human intelligence is a biological phenomenon. More specifically, since human
intelligence is the most fully developed intelligence on the planet, a knowledge of HLPC is
likely to be beneficial in guiding research towards AGI. Without that knowledge, we are
unnecessarily blindfolded in our research.

With that regard, the SP research has benefited in three main ways:

• Earlier research developing computer models of the unsupervised learning of a first
language [14], mentioned elsewhere in this paper, has provided an inspiration and
foundation for the development of the SPTI.

• Recognition of the importance of IC in HLPC (Appendix B.4), which depends on
studies in psychology and neuroscience.

• The author of this paper, and the main driver in developing the SPTI, has a first degree
from Cambridge University in the Natural Sciences Tripos, comprising studies in
experimental psychology and other biology-related sciences.

Appendix C. Definitions of Terms

Terms used in this paper are listed here with either or both of the section or appendix.
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SP-grammar Section 5.1, Appendix A.4
SP-multiple-alignment Appendix A.3
SP-pattern Appendix A
SP-symbol Appendix A
unification Section 18, Appendix A.1

As noted in Appendix A.2, it is intended that ‘SP’ should be treated as a name, without
any need to expand the letters in the name, as with such names as ‘IBM’ or ‘BBC’.
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