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Abstract: We compare the convergence balls and the dynamical behaviors of two efficient weighted-
Newton-like equation solvers by Sharma and Arora, and Grau-Sánchez et al. First of all, the results of
ball convergence for these algorithms are established by employing generalized Lipschitz constants
and assumptions on the first derivative only. Consequently, outcomes for the radii of convergence,
measurable error distances and the existence–uniqueness areas for the solution are discussed. Then,
the complex dynamical behaviors of these solvers are compared by applying the attraction basin
tool. It is observed that the solver suggested by Grau-Sánchez et al. has bigger basins than the
method described by Sharma and Arora. Lastly, our ball analysis findings are verified on application
problems and the convergence balls are compared. It is found that the method given by Grau-Sánchez
et al. has larger convergence balls than the solver of Sharma and Arora. Hence, the solver presented
by Grau-Sánchez et al. is more suitable for practical application. The convergence analysis uses the
first derivative in contrast to the aforementioned studies, utilizing the seventh derivative not on these
methods. The developed process can be used on other methods in order to increase their applicability.

Keywords: Banach space; Fréchet derivative; basin of attraction; local convergence; convergence ball
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1. Introduction

Let us consider two Banach spaces U1 and U2. Suppose V( 6= ∅) is a subset of U1,
which is convex and open. We denote the set {BL : U1 → U2 linear and bounded operators}
by L(U1, U2). For a Fréchet derivable operator D : V ⊆ U1 → U2, define the equation

D(a) = 0. (1)

This equation regularly appears when physical, chemical and other scientific problems
are modeled mathematically and we need numerical methods to solve them. Take note
that this is a critical job since analytical solutions to these equations are occasionally
available. Therefore, nonlinear equations are usually approached by an iterative method,
through which an approximate solution can be found. Developing more accurate iterative
approaches for approximating the solution of these equations is a huge challenge in general.
The conventional Newton’s iterative approach is the most often employed technique for
this problem. Besides this, a number of algorithms have been suggested to boost the
convergence rate of the orthodox solvers such as Newton’s [1] and Chebyshev–Halley’s [2],
among others. Cordero and Torregrosa [3] proposed several variants of Newton’s solver
of second, third and fifth convergence orders based on quadrature rules of fifth order for
solving nonlinear equations. Two families of zero-finding iterative approaches to address
nonlinear equations are presented in [4] by applying Obreshkov-like techniques [5] and
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Hueso et al. [6] developed a third-order and fourth-order class of predictor–corrector
algorithms free from the second derivative to solve systems of nonlinear equations. By
composing two weighted-Newton steps, Sharma et al. [6] constructed an efficient fourth-
order weighted-Newton method to solve nonlinear systems. Cordero et al. [7] studied two
bi-parametric fourth-order families of predictor–corrector iterative solvers by generalizing
Ostrowski’s and Chun’s algorithms [8,9]. They used Newton’s solver as the predictor of
the first family, and Steffensen’s method as the predictor of the second one. For solving
systems of nonlinear equations, Sharma and Arora [10] designed Newton-like iterative
approaches of the fifth and eighth orders of convergence.

In this study, we are interested in two sixth convergence order equation solvers
proposed by Sharma and Arora [11] and Grau-Sánchez et al. [12], respectively. For a
starting point a0 ∈ V, the iterative formula designed by Sharma and Arora is written
as follows:

bn = an − D′(an)
−1D(an),

zn = bn − (3I − 2D′(an)
−1[an, bn; D])D′(an)

−1D(bn),

an+1 = zn − (3I − 2D′(an)
−1[an, bn; D])D′(an)

−1D(zn). (2)

The solver constructed by Grau-Sánchez et al. can be presented as

bn = an − D′(an)
−1D(an),

zn = bn − A−1
n D(bn),

an+1 = zn − A−1
n D(zn), (3)

where a0 ∈ V is a starter, An = 2[bn, an; D′]− D′(an), [., .; D] : V × V → L(U1, U2). For
these iterative procedures, the convergence theorems have been developed by applying
the expensive Taylor’s formula and imposing constraints on the derivative of the seventh
order. The scope of utilization of these solvers is restricted due to such convergence results
based on derivatives of higher order. To demonstrate this, we choose

D(a) =
{

a3 ln(a2) + a5 − a4, if a 6= 0
0, if a = 0

, (4)

where U1 = U2 = R and D is defined on V = [− 1
2 , 3

2 ]. Then, it is noteworthy that the
existing convergence theorems for (2) and (3) do not hold for this example, since D′′′ is un-
bounded on V. In addition, these convergence results produce no statements on ‖an − a∗‖,
the convergence ball and the precise location of a∗. The ball analysis of an iterative formula
is useful in the estimation of the radii of convergence balls and bounds on ‖an − a∗‖, and in
determining the area of uniqueness for a∗. It should be noted that the effects of ball conver-
gence are extremely beneficial because they shed light on the challenging issue of selecting
starting guesses. This motivates us to establish ball convergence of solvers (2) and (3) by
applying conditions only on D′. Our work allows computation of the convergence radii
and the estimates ‖an − a∗‖, and also provides an accurate location of a∗.

The summary of the entire document can be written as follows: Section 1 is the
introduction. The results of ball convergence for solvers (2) and (3) are established in
Section 2. Section 3 deals with the comparison of attraction basins for these algorithms. In
Section 4, numerical studies are performed. Finally, concluding remarks are written.

2. Ball Analysis

First, it is convenient for the local convergence analysis of solver (2) to develop real
parameters and functions. Let M = [0, ∞). Suppose the following:

(1) Function Γ0(h)− 1 has a least root r0 ∈ M \ {0} for some function Γ0 : M→ M that is
non-decreasing and continuous. Set M0 = [0, r0).
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(2) Function E1(h)− 1 has a least root ρ1 ∈ M0 \ {0} for some function Γ : [0, 2r0)→ M
that is non-decreasing and continuous, and E1 : M0 → M is defined as

E1(h) =

∫ 1
0 Γ((1− λ)h) dλ

1− Γ0(h)
.

(3) Function Γ0(E1(h)h)− 1 has a least root r1 ∈ M0 \ {0}.
Set r2 = min{r0, r1} and M1 = [0, r2).

(4) Function E2(h)− 1 has a least root ρ2 ∈ M1 \ {0} for some functions Γ1 : M1 → M,
Γ2 : M1 ×M1 → M that is non-decreasing and continuous, with function E2 : M1 →
M defined as

E2(h) =

[
E1(E1(h)) +

(Γ0(h) + Γ0(E1(h)h))
∫ 1

0 Γ1(λE1(h)h) dλ

(1− Γ0(h))(1− Γ0(E1(h)h))

+2
(Γ0(h) + Γ2(h, E1(h)h))

∫ 1
0 Γ1(λE1(h)h) dλ

(1− Γ0(h))2

]
E1(h).

(5) Function Γ0(E2(h)h)− 1 has a least root r3 ∈ M1 \ {0}.
Set r4 = min{r2, r3} and M2 = [0, r4).

(6) Function E3(h)− 1 has a least root ρ3 ∈ M2 \ {0}, with E3 : M2 → M defined as

E3(h) =

[
E1(E2(h)h) +

(Γ0(h) + Γ0(E2(h)h))
∫ 1

0 Γ1(λE2(h)h) dλ

(1− Γ0(h))(1− Γ0(E2(h)h))

+2
(Γ0(h) + Γ2(h, E1(h)h))

∫ 1
0 Γ1(λE2(h)h) dλ

(1− Γ0(h))2

]
E2(h).

Define parameter
ρ = min{ρj}, j = 1, 2, 3. (5)

It shall be shown that ρ is a convergence radius for solver (2). By S(a∗, µ), we denote the
closure of ball S(a∗, µ) with center a∗ ∈ U1 and of radius µ > 0. We use the conditions (C)
in the ball convergence of solver (2) provided that functions “Γ” are as defined previously
and a∗ is a simple root of D. Suppose the following:

(C1) For all a ∈ V
‖D′(a∗)−1(D′(a∗)− D′(a))‖ ≤ Γ0(‖a∗ − a‖).

Set V0 = V ∩ S(a∗, r0).
(C2) For all a, b ∈ V0

‖D′(a∗)−1(D′(a)− D′(b))‖ ≤ Γ(‖a− b‖),
‖D′(a∗)−1D′(a)‖ ≤ Γ1(‖a− a∗‖)

and

‖D′(a∗)−1([a, b; D]− D′(a∗))‖ ≤ Γ2(‖a− a∗‖, ‖b− a∗‖).

(C3) S(a∗, ρ̃) ⊂ D for some ρ̃ > 0 to be determined later.
(C4) There exists ρ∗ ≥ ρ̃, satisfying

∫ 1

0
Γ0(λρ∗) dλ < 1.

Set V1 = V ∩ S(a∗, ρ∗).
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Next, the ball convergence of solver (2) is presented.

Theorem 1. Suppose that the conditions (C) hold. Then, iteration {an} generated by solver with
ρ̃ = ρ is well defined in S(a∗, ρ); remains in S(a∗, ρ) for all n = 0, 1, 2, . . .; and lim

n→∞
an = a∗.

Moreover, the following assertions hold:

‖bn − a∗‖ ≤ E1(‖an − a∗‖)‖an − a∗‖ ≤ ‖an − a∗‖ < ρ, (6)

‖zn − a∗‖ ≤ E2(‖an − a∗‖)‖an − a∗‖ ≤ ‖an − a∗‖ (7)

and
‖an+1 − a∗‖ ≤ E3(‖an − a∗‖)‖an − a∗‖ ≤ ‖an − a∗‖, (8)

where the functions Ej and the radius ρ were given previously. Furthermore, the only root of D in
the set V1 is a∗.

Proof. Assertions (6)–(8) are shown using induction on m. Let u ∈ S(a∗, ρ) \ {a∗}. Then,
using (5) and (C1), we obtain

‖D′(a∗)−1(D′(u)− D′(a∗))‖ ≤ Γ0(‖u− a∗‖) ≤ Γ0(ρ) < 1. (9)

It then follows by (9), and the lemma due to Banach on linear invertible operators [4,13]
that D′(u)−1 ∈ L(U2, U1) and

‖D′(u)−1D′(a∗)‖ ≤
1

1− Γ0(‖u− a∗‖)
. (10)

Notice that u = a0, b0, z0, a1 exist and we can write by (C2) the first substep of solver (2)
for n = 0:

‖b0 − a∗‖

=

∥∥∥∥∥(D′(a0)
−1D′(a∗))×

(∫ 1

0
D′(a∗)−1(D′(a∗ + λ(a0 − a∗))− D′(a0)) dλ (a0 − a∗)

)∥∥∥∥∥
≤
∫ 1

0 Γ((1− λ)‖a0 − a∗‖) dλ

1− Γ0(‖a0 − a∗‖)
‖a0 − a∗‖

≤ E1(‖a0 − a∗‖)‖a0 − a∗‖ ≤ ‖a0 − a∗‖ < ρ,

showing b0 ∈ S(a∗, ρ) and (6) for n = 0.
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Furthermore, we have from (C1), (C2) and the second substep of solver (2) for n = 0:

‖z0 − a∗‖
= ‖b0 − a∗ − D′(b0)

−1D(b0) + (D′(b0)
−1 − D′(a0)

−1)D(b0)

− 2(I − D′(a0)
−1[a0, b0; D])D′(a0)

−1D(b0)‖
= ‖b0 − a∗ − D′(b0)

−1D(b0) + D′(b0)
−1(D′(a0)− D′(b0))D′(a0)

−1D(b0)

− 2D′(a0)
−1(D′(a0)− [a0, b0; D])D′(a0)

−1D(b0)‖

≤
[

E1(‖b0 − a∗‖) +
(Γ0(‖a0 − a∗‖) + Γ0(‖b0 − a∗‖))

∫ 1
0 Γ1(λ‖b0 − a∗‖) dλ

(1− Γ0(‖a0 − a∗‖))(1− Γ0(‖b0 − a∗‖))

+ 2
(Γ0(‖a0 − a∗‖) + Γ2(‖a0 − a∗‖, ‖b0 − a∗‖))

∫ 1
0 Γ1(λ‖b0 − a∗‖) dλ

(1− Γ0(‖a0 − a∗‖))2

]
‖b0 − a∗‖

≤ E2(‖a0 − a∗‖)‖a0 − a∗‖ ≤ ‖a0 − a∗‖,

showing z0 ∈ S(a∗, ρ) and (7) for n = 0.

Similarly, we have from (C1), (C2) and the third substep of solver (2) for n = 0:

‖a1 − a∗‖
= ‖z0 − a∗ − D′(z0)

−1D(z0) + (D′(z0)
−1 − D′(a0)

−1)D(z0)

− 2(I − D′(a0)
−1[a0, b0; D])D′(a0)

−1D(z0)‖
= ‖z0 − a∗ − D′(z0)

−1D(z0) + D′(z0)
−1(D′(a0)− D′(z0))D′(a0)

−1D(z0)

− 2D′(a0)
−1(D′(a0)− [a0, b0; D])D′(a0)

−1D(z0)‖

≤
[

E1(‖z0 − a∗‖) +
(Γ0(‖a0 − a∗‖) + Γ0(‖z0 − a∗‖))

∫ 1
0 Γ1(λ‖z0 − a∗‖) dλ

(1− Γ0(‖a0 − a∗‖))(1− Γ0(‖z0 − a∗‖))

+ 2
(Γ0(‖a0 − a∗‖) + Γ2(‖a0 − a∗‖, ‖b0 − a∗‖))

∫ 1
0 Γ1(λ‖z0 − a∗‖) dλ

(1− Γ0(‖a0 − a∗‖))2

]
‖z0 − a∗‖

≤ E3(‖a0 − a∗‖)‖a0 − a∗‖ ≤ ‖a0 − a∗‖,

showing a1 ∈ S(a∗, ρ) and (8) for n = 0. Simply exchange a0, b0, z0, a1 by am, bm, zm, am+1,
respectively, in the previous calculations to complete the induction for (6)–(8). It then
follows from the estimation

‖am+1 − a∗‖ ≤ δ‖am − a∗‖ < ρ,

where δ = E3(‖a0 − a∗‖) ∈ [0, 1) that am+1 ∈ S(a∗, ρ) and lim
m→∞

am = a∗.

Set T =
∫ 1

0 D′(a∗ + λ(q− a∗)) dλ for some q ∈ V1 with D(q) = 0. Then, in view of
(C1) and (C4), we obtain

‖D′(a∗)−1(T − D′(a∗))‖ ≤
∫ 1

0
Γ0(λ‖q− a∗‖) dλ

≤
∫ 1

0
Γ0(λρ∗) dλ < 1,

so, we conclude a∗ = q from the invertibility of T and the identity 0 = D(q)− D(a∗) =
T(q− a∗).

Next, we develop the ball convergence analysis of solver (3) analogously. Define

E1 = E1,
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E2(h) =
[

E1(E1(h)h) +
(2Γ2(E1(h)h, h) + Γ0(h) + Γ0(E1(h)h))

∫ 1
0 Γ1(λE1(h)h) dλ

(1− Γ0(E1(h)h))(1− p(h))

]
E1(h),

p(h) = 2Γ2(E1(h)h, h) + Γ0(h),

and

E3(h) =
[

E1(E2(h)h) +
(2Γ2(E1(h)h, h) + Γ0(h) + Γ0(E2(h)h))

∫ 1
0 Γ1(λE2(h)h) dλ

(1− Γ0(E2(h)h))(1− p(h))

]
E2(h).

Suppose functions Ej(h)− 1 have least root in M0 \ {0} denoted by ρ1, ρ2, ρ3, respectively.
Set ρ = min{ρj}; j = 1, 2, 3; and ρ̃ = ρ in conditions (C).
The definitions of functions Ej are motivated by the estimates:

‖bn − a∗‖ ≤ E1(‖an − a∗‖)‖an − a∗‖
= E1(‖an − a∗‖)‖an − a∗‖ ≤ ‖an − a∗‖ < ρ,

‖zn − a∗‖
= ‖bn − a∗ − D′(bn)

−1D(bn) + (D′(bn)
−1 − (2[bn, an; D]− D′(an))

−1)D(bn)‖

= ‖bn − a∗ − D′(bn)
−1D(bn)− D′(bn)

−1
[
2([bn, an; D]− D′(a∗))

+ (D′(a∗)− D′(an)) + (D′(a∗)− D′(bn))
]
(2[bn, an; D]− D′(an))

−1D(bn)‖

≤
[

E1(‖bn − a∗‖)

+
1

(1− Γ0(‖bn − a∗‖))(1− p(‖an − a∗‖))
×
(

2Γ2(‖bn − a∗‖, ‖an − a∗‖)

+ Γ0(‖an − a∗‖) + Γ0(‖bn − a∗‖)
) ∫ 1

0
Γ1(λ‖bn − a∗‖) dλ

]
‖bn − a∗‖

≤ E2(‖an − a∗‖)‖an − a∗‖ ≤ ‖an − a∗‖,

and similarly,

‖an+1 − a∗‖
= ‖zn − a∗ − D′(zn)

−1D(zn)

+ D′(zn)
−1(2[bn, an; D]− D′(an)− D′(zn))(2[bn, an; D]− D′(an))

−1D(zn)‖

≤
[

E1(‖zn − a∗‖)

+
1

(1− Γ0(‖zn − a∗‖))(1− p(‖an − a∗‖))
×
(

2Γ2(‖bn − a∗‖, ‖an − a∗‖)

+ Γ0(‖an − a∗‖) + Γ0(‖zn − a∗‖)
) ∫ 1

0
Γ1(λ‖zn − a∗‖) dλ

]
‖zn − a∗‖

≤ E3(‖an − a∗‖)‖an − a∗‖ ≤ ‖an − a∗‖.

Hence, we arrive at the ball convergence result for solver (3).

Theorem 2. Suppose that the conditions (C) hold for ρ̃ = ρ. Then, the conclusions of Theorem 1
hold for solver (3) with ρ, Ej replaced by ρ, Ej, respectively.
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Remark 1. The continuity condition

‖D′(a∗)−1(D′(a)− D′(b))‖ ≤ Γ(‖a− b‖), for all a, b ∈ V

is used in existing works on higher-order iterative algorithms instead of the assumption.
‖D′(a∗)−1(D′(a)−D′(b))‖ ≤ Γ(‖a− b‖), for all a, b ∈ V0. However, then, since V0 ⊆ V,

we obtain
Γ(h) ≤ Γ(h), for all h ∈ [0, 2r0).

This is a significant result because all earlier findings can be rewritten in terms of Γ since
an ∈ V0, which is a more accurate location of an. This expands the radius of the convergence ball,
tightens the upper error distances ‖an − a∗‖ and helps in providing a better location of a∗. It is
worth considering the example D(a) = ea − 1 for V = S(0, 1). Then, we obtain

Γ0(h) = (e− 1)h < Γ(h) = e
1

e−1 h < Γ(h) = eh,

and using Rheinboldt or Traub [13,14] (for Γ0 = Γ = Γ), we obtain RTR = 0.242529; using
previous studies by Argyros [15,16] (for Γ = Γ), RE = 0.324947; and with our proposed analysis,
ρ1 = ρ1 = 0.382692, so

RTR < RE < ρ1 = ρ1.

3. Attraction Basins Comparison

We compare the complex dynamical behaviors of solvers (2) and (3) by applying the
basin of attraction tool. For solving equations in C, the methods (2) and (3) can be presented
as follows:

bn = an −
D(an)

D′(an)

zn = bn −
(

2D(bn) + D(an)

D(an)

)
D(bn)

D′(an)

an+1 = zn −
(

2D(bn) + D(an)

D(an)

)
D(zn)

D′(an)
(11)

bn = an −
D(an)

D′(an)

zn = bn −
(

D(an)

D(an)− 2D(bn)

)
D(bn)

D′(an)

an+1 = zn −
(

D(an)

D(an)− 2D(bn)

)
D(zn)

D′(an)
(12)

Let the sequence {zj}∞
j=0 stand for the sequence of iterates produced by an iterative

algorithm starting from z0 ∈ C. The set of points {z0 ∈ C : zj → z∗ as j→ ∞} constructs
the attraction basin related to a zero z∗ of O(z), where O indicates a second or higher degree
polynomial with complex coefficients. The area B = [−4, 4] × [−4, 4] on C is used with
a grid of 500× 500 points to create attraction basins. Every point z0 ∈ B is regarded as a
starting estimation, and solvers (11) and (12) are applied to seven different test functions.
The point z0 remains in the basin of a zero z∗ of a test function if lim

j→∞
zj = z∗. We paint

the starter z0 using a specific color associated with z∗. Based on the number of iterations,
we assign the light to dark colors for each initial guess z0. If z0 ∈ B is not a member
of the attraction basin of any zero of the test polynomial, it is displayed in black color.
If ‖zj − z∗‖ < 10−6, then we stop the iteration procedure. Otherwise, we terminate the
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process after 400 iterations. The test polynomials are selected from [8,17,18]. The fractal
pictures are constructed with the help of MATLAB 2019a.

Firstly, we select a second-degree polynomial O1(z) = z2 − 1 to show the attraction
basins for solvers (11) and (12) in Figure 1a and 1b, respectively. In these figures, magenta
and yellow regions denote the attraction basins of the zeros 1 and −1, respectively, of
O1(z). Figure 2a and 2b represent the attraction basins for solvers (11) and (12), respectively,
related to the zeros of O2(z) = z3 − 1. In these diagrams, the basins of − 1

2 + 0.866025i,
1 and − 1

2 − 0.866025i are displayed in magenta, yellow and cyan, respectively. Next, a
fourth-degree polynomial O3(z) = z4 − 1 is chosen to demonstrate the attraction basins for
solvers (11) and (12) in Figure 3a and 3b, respectively. The basins of the solutions −1, −i,
1 and i of O3(z) = 0 are, respectively, displayed in blue, green, red and yellow regions in
these figures. Furthermore, we use a fifth-degree polynomial O4(z) = z5 − 1 to construct
the basins for solvers (11) and (12) in Figure 4a and 4b, respectively. In these pictures,
yellow, magenta, blue, green and red colors are applied to represent the attraction basins
of the zeros 0.309016− 0.951056i, −0.809016 + 0.587785i, 1, −0.809016− 0.587785i and
0.309016 + 0.951056i, respectively, of O4(z). Finally, the sixth-degree complex polynomials
O5(z) = z6 − 1, O6(z) = z6 + z− 1 and O7(z) = z6 − 0.5z5 + 11

4 (1 + i)z4 − 1
4 (19 + 3i)z3 +

1
4 (11 + i)z2 − 1

4 (19 + 3i)z + 3
2 − 3i are taken. Figure 5a and 5b provide the attraction basins

for solvers (11) and (12) related to the zeros −1, 1, −0.500000 − 0.866025i, 0.500000 +
0.866025i, 0.500000− 0.866025i and −0.500000 + 0.866025i of O5(z) in red, green, magenta,
blue, yellow and cyan colors, respectively. Then, O6(z) is selected to illustrate the basins
for solvers (11) and (12) in Figure 6a and 6b, respectively. In these diagrams, red, green,
magenta, blue, yellow and cyan colors are applied to display the basins associated with
the solutions −1.134724, 0.778089, 0.629372− 0.735755i, 0.629372 + 0.735755i, −0.451055−
1.002364i and −0.451055 + 1.002364i of O6(z) = 0, respectively. In Figure 7a and 7b, the
basins for solvers (11) and (12) related to the roots 1− i, − 1

2 −
i
2 , − 3

2 i, 1, i and −1 + 2i of
O7(z) = 0 are painted in blue, yellow, green, magenta, cyan and red, respectively.

Based on the diagrams, we arrive at the conclusion that solver (12) has larger basins
in comparison with solver (11). On the boundary points, solver (12) exhibits less chaotic
behavior than (11). Moreover, the fractal pictures (Figures 3a, 4a, 5a, 6a and 7a) of formula
(11) contain big black zones that demonstrate no convergence to the zeros of the corre-
sponding polynomials. Therefore, we conclude that solver (12) is more numerically stable
than solver (11). Hence, solver (12) is more preferable over solver (11) for practical use.
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Figure 1. Comparison of attraction basins associated with second-degree polynomial O1(z) = z2 − 1.
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Figure 2. Comparison of attraction basins associated with third-degree polynomial O2(z) = z3 − 1.
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Figure 3. Comparison of attraction basins associated with fourth-degree polynomial O3(z) = z4 − 1.
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Figure 4. Comparison of attraction basins associated with fifth-degree polynomial O4(z) = z5 − 1.
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Figure 5. Comparison of attraction basins associated with sixth-degree polynomial O5(z) = z6 − 1.
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Figure 6. Comparison of attraction basins associated with sixth-degree polynomial O6(z) = z6 − z + 1.
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Figure 7. Comparison of attraction basins associated with sixth degree polynomial O7(z) = z6 −
0.5z5 + 11

4 (1 + i)z4 − 1
4 (19 + 3i)z3 + 1

4 (11 + i)z2 − 1
4 (19 + 3i)z + 3

2 − 3i.
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4. Numerical Examples

We apply the proposed techniques to estimate the convergence radii of iterative
algorithms (2) and (3).

Example 1 ([15]). Let U1 = U2 = R3 and V = S(0, 1). Consider D on V for a = (a1, a2, a3)
t as

D(a) = (ea1 − 1,
e− 1

2
a2

2 + a2, a3)
t

We have a∗ = (0, 0, 0)t. Then, D′(a∗) = I, the identity operator. Let

D = (D1, D2, D3)
T ,

where
D1(h) = eh − 1, D2(h) =

e− 1
2

h2 + h, and D3(h) = h.

In turn, we can write for h∗ = 0,

D′1(h)− D′1(h∗) = eh − 1 = h +
h2

2!
+ · · ·+ hn

n!
+ · · ·

=

(
1 +

h
2!

+ · · ·+ hn−1

n!
+ · · ·

)
(h− h∗),

So,

‖D′1(h∗)−1(D′1(h)− D′1(h∗))‖ = |D′1(h∗)−1(D′1(h)− D′1(h∗))|

≤
(

1 +
1
2!

+ · · ·+ 1
n!

+ · · ·
)
|h− h∗|

= (e− 1)|h− h∗|, since |h| < 1.

Moreover, we have

|D′2(h∗)−1(D′2(h)− D′2(h∗))| = |(e− 1)h + 1− I| = (e− 1)|h− h∗|

and
|D′3(h∗)−1(D′3(h)− D′3(h∗))| = 0.

Hence, we can choose Γ0(h) = (e− 1)h. Then, the condition (C1) is validated. The equation
Γ0(h)− 1 = 0 gives (e− 1)h− 1 = 0; so,

r0 =
1

e− 1
and V0 = S(0, 1) ∩ S

(
0,

1
e− 1

)
= S

(
0,

1
e− 1

)
.

Concerning the third condition in (C2), recall that the divided difference is usually defined by

[b, h; D] =
1
2
(D′(b) + D′(h)),

or

[b, h; D] =
∫ 1

0
D′(h + θ(b− h))dθ.

In either case, the left-hand side of the third condition gives

‖D′(h∗)−1([h, b; D]− D′(h∗))‖ ≤
1
2
‖D′(h∗)−1(D′(h)− D′(h∗))‖

+
1
2
‖D′(h∗)−1(D′(b)− D′(h∗))‖.
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Therefore, we can choose

Γ2(h, s) =
e− 1

2
(h + s).

Hence, by these choices of the functions Γ, Γ1 and Γ2, the conditions (C2) are validated for this
example. Similarly, for the first condition in (C2), notice that D′1(h∗) = 1,

D′1(h2)− D′1(h1) = eh2 − eh1 = eh3(h2 − h1)

for some h3 between h1 and h2 with |h3| ≤ 1
e−1 . It follows that

‖D′(h∗)−1(D′(b)− D′(h))‖ ≤ e
1

e−1 |b− h|.

Thus, the condition (C2) is verified for Γ(h) = e
1

e−1 h. In order to validate the second condition
in (C2), notice that

‖D′(h∗)−1D′(h)‖ = ‖D′(h∗)−1(D′(h)− D′(h∗) + D′(h∗))‖
≤ ‖D′(h∗)−1D′(h∗)‖+ ‖D′(h∗)−1(D′(h)− D′(h∗))‖
= 1 + Γ0(‖h− h∗‖).

However, 1 + Γ0(‖h− h∗‖) ≤ 1 + (e− 1)|h| ≤ 2, since |h| ≤ 1
e−1 . Hence, if we choose

Γ1(h) = 2, the second condition is (C2) is validated. Using proposed theorems, we obtain ρ and ρ.
These values are given in Table 1.

Table 1. Comparison of convergence radii for Example 1.

Method (2) Method (3)

ρ1 = 0.382692 ρ1 = 0.382692
ρ2 = 0.173524 ρ2 = 0.176270
ρ3 = 0.125226 ρ3 = 0.141600
ρ = 0.125226 ρ = 0.141600

Example 2 ([1]). Let us consider U1 = U2 = C[0, 1] and V = S(0, 1). Define D on V by

D(a)(v) = a(v)− 5
∫ 1

0
vy a(y)3 dy,

where a(v) ∈ C[0, 1]. It follows by this definition that the Fréchet derivative is given as

D′(a[u])(v) = u(v)− 15
∫ 1

0
Vya(y)2u(y)dy for each u ∈ V.

It follows by this definition that D′(a∗) = I. If we substitute the last two formulas on the
left-hand side of condition (C1) and use the max-norm on V, we see that

‖D′(a∗)−1(D′(a)− D(a∗))‖ ≤ Γ0(‖a− a∗‖),

provided that Γ0(h) = 7.5h; so, r0 = 1
7.5 = 2

15 and V0 = S
(
a∗, 2

15
)
. Similarly, the first condition

in (C2) gives
‖D′(a∗)−1(D′(b)− D′(a))‖ ≤ Γ(‖b− a‖)

provided that Γ(h) = 15h. Then, according to the work in Exercise 1, we can choose Γ1(h) = 2 and
Γ2(h, s) = 7.5

2 (h + s) = 15
4 (h + s). The convergence radii ρ and ρ are obtained using the suggested

theorems and presented in Table 2.



Foundations 2022, 2 1043

Table 2. Comparison of convergence radii for Example 2.

Method (2) Method (3)

ρ1 = 0.066667 ρ1 = 0.066667
ρ2 = 0.030318 ρ2 = 0.032019
ρ3 = 0.022658 ρ3 = 0.026150
ρ = 0.022658 ρ = 0.026150

Example 3 ([16]). Let us consider U1 = U2 = C[0, 1] and V = S(0, 1). Define the nonlinear
integral equation as

D(a)(v) = a(v)−
∫ 1

0
F(v, y)

a(y)2

2
dy,

where a(v) ∈ C[0, 1] and F(v, y) is given on [0, 1]× [0, 1] as

F(v, y) =
{

(1− v)y, if y ≤ v
(1− y)v, if v ≤ y

.

We have a∗ = 0. By repeating the work in Example 2 and using the max-norm, we see that
‖F‖ ≤ 1

8 . Therefore, we can choose Γ0(h) = Γ(h) = 0.125h, Γ1(h) = 2 and Γ2(h, s) = h+s
16 . We

apply the suggested results to compute ρ and ρ (Table 3).

Table 3. Comparison of convergence radii for Example 3.

Method (2) Method (3)

ρ1 = 5.333333 ρ1 = 5.333333
ρ2 = 2.339380 ρ2 = 2.399363
ρ3 = 1.655689 ρ3 = 1.898871
ρ = 1.655689 ρ = 1.898871

5. Conclusions

The convergence balls as well as the dynamical behaviors of two efficient weighted-Newton-
like equation solvers are compared. The ball convergence outcomes of methods (2) and (3) are
produced by considering the generalized Lipschitz continuity of the first derivative only. Then,
the complex dynamical behaviors of these algorithms are compared by employing the attraction
basin tool. It is noticed that solver (3) has bigger basins than method (2). Lastly, our analytical
findings are verified on application problems. It is found that method (3) has larger convergence
balls than solver (2). Hence, solver (3) is better than method (2) for practical application. Our
approach can be used to extend other methods [2,17–20] in a similar fashion. This will be the
topic of our future research.
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