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Abstract: We propose the semi-local convergence of two derivative-free, competing methods of order
six to address non-linear equations. The sufficient convergence criteria are the same, making a direct
comparison between them possible. The existing convergence technique uses the standard Taylor
series approach, which requires derivatives up to order seven. The novelty and originality of our
work lies in the fact that in contrast to previous research works, our convergence theorems only
demand the first derivative. In addition, formulas for determining the region of uniqueness for
solution, convergence radii, and error estimations are suggested. Such results cannot be found in
works relying on the seventh derivatives. As a consequence, we are able to broaden the utility of these
productive methods. The confirmation of our convergence findings through application problems
brings this research to a close.
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1. Introduction

Let B denote a normed linear space that is complete. Suppose that D ⊆ B is a non-null,
open, and convex set. Non-linear equations of the following type:

F(x) = 0, (1)

where T : D ⊆ B→ B is derivable as per Fréchet, may be used to simulate a wide range of
complex scientific and engineering issues [1–5]. Mathematicians have long struggled to
overcome non-linearity. These equations are very difficult to solve analytically. Because
of this, the employment of iterative methods to reach a conclusion is common among
scientists and researchers. Newton’s method is a popular iterative method for dealing with
non-linear equations, but it is only of convergence order two. Many novel, higher-order
iterative strategies for dealing with non-linear equations have been discovered in recent
years and are currently being used [6–10]. However, the theorems on the convergence
of these methods in most of these publications were derived by applying high-order
derivatives. Furthermore, no results have been discussed regarding the error distances,
radii of convergence, or the region in which the solution was the only one.

In research articles on iterative methods, it is crucial to determine the region where
convergence is possible. Most of the time, the convergence zone is rather small. It is
required to broaden the convergence domain without making any extra assumptions.
Likewise, while investigating the convergence of iterative methods, exact error distances
must be estimated. Taking these points into consideration, we developed convergence
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theorems for two methods, GM6 (2) and SM6 (3), which were proposed in [11] and [9],
respectively. Let

un = xn + F(xn),

vn = xn − F(xn),

and [un, vn; F] is the divided difference of order one [1,4].

yn = xn − [un, vn; F]−1F(xn),

zn = yn −M−1
n F(yn),

xn+1 = zn −M−1
n F(zn),

Mn = 2[yn, xn; F]− [un, vn; F], (2)

yn = xn − [un, vn; F]−1F(xn),

zn = yn − (3I − 2[un, vn; F]−1[yn, xn; F])[un, vn; F]−1F(yn),

xn+1 = zn − (3I − 2[un, vn; F]−1[yn, xn; F])[un, vn; F]−1F(zn). (3)

The convergence in these methods [9,11] is based on derivatives of F up to order seven and
only offers the convergence rate. As a consequence, the applicability of these methods is
limited. To emphasize this, we define F on D = [− 1

2 , 3
2 ] with the following equation:

F(x) =
{

x3 ln(x2) + x5 − x4, if x 6= 0
0, if x = 0

. (4)

Next, it is easy to notice that due to the unboundedness of F′′′, the results from the conver-
gence of GM6 [11] and SM6 [9] do not stand true for this elementary example. Moreover,
these articles do not provide any formula for approximating the error ||xn − x∗||, the con-
vergence region, or the uniqueness and accurate location of the root x∗. This encourages us
to develop the ball convergence theorems and hence compare the convergence domains of
GM6 and SM6 by considering assumptions only on [·, ·; F]. Our research provides impor-
tant formulas for the estimation of ||xn − x∗|| and the convergence radii. This study also
discusses an exact location and the uniqueness of x∗.

It is worth noting that the articles in [9,11] did not provide such formulas and locations
either. The originality and novelty of our work derived from this fact. The same advantages
can be obtained if our methodology is applied to other single or multi-step methods
using the inverses of divided differences or derivatives along the same lines [11–13]. In
particular, our work in [1] used derivatives of order one. Therefore, it cannot be used
to solve equations that contain non-differentiable operators. We have provided such an
example in the numerical Section 4 (see Example 3).

The other contents of this material can be summarized as follows: In Section 2, we
develop two scalar sequences that are proved as majorizing sequences for methods (2)
and (3). Section 3 discusses the semi-local convergence properties of the methods under
consideration ((2) and (3)). The numerical testing of convergence outcomes is described
in Section 4. A discussion is given in Section 5, while concluding remarks are provided in
Section 6.

2. Majorizing Sequences

Two scalar sequences are generated, which are shown to be majorizing for method (2)
and method (3). Let s0 ≥ 0 and s ≥ 0 be given parameters. Set T = [0, ∞).
Suppose the following:
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There exist functions h1 : T → R, h3 : T → R, ψ0 : T × T → R, which are continuous
and non-decreasing such that for h2(t) = h1(t)t + s0 and h4(t) = h3(t)t + s0, the following
equation:

ψ0(h2(t), h4(t))− 1 = 0

has a least solution denoted by ρ0 ∈ T−{0}. Set T0 = [0, ρ0). Let ψ : T0× T0× T0× T0 → R
be a continuous and non-decreasing function. Moreover, define the first scalar sequence
{an} with the following equation:

a0 = 0, b0 = s,

pn = ψ(an, bn, h2(an), h4(an))(bn − an),

qn = pn + ψ0(h2(an), h4(an)),

cn = bn +
pn(bn − an)

1− qn
,

λn = (1 + ψ0(cn, bn))(cn − bn) + pn,

an+1 = cn +
λn

1− qn
,

µn+1 = (1 + ψ0(an, an+1))(an+1 − an) + (1 + ψ0(h2(an), h4(an))(bn − an),

and bn+1 = an+1 +
µn+1

1− ψ0(h2(an+1), h4(an+1))
.

(5)

The second scalar sequence is also denoted by {an} and is defined by

σn =
1

1− ψ0(h2(an), h4(an))

[
1 + 2

ψ(an, bn, h2(an), h4(an))

1− ψ0(h2(an), h4(an))

]
pn,

cn = bn +
σn pn

1− qn
,

an+1 = cn + σnλn,

bn+1 = an+1 +
µn+1

1− ψ0(h2(an+1), h4(an+1))
.

(6)

The functions ψ0 and ψ are assumed to be symmetric without loss of generality. Next, a
common convergence result is given. The limit point for each of them is called a∗, although
it is generally not the same.

Lemma 1. Suppose that for each n = 0, 1, 2, · · ·

qn < 1, ψ0(an, bn) < 1, and an < τ (7)

for some τ > 0. Then, the sequence generated by formula (5) (or formula (6)) is bounded from above
by τ, non-decreasing and convergent to each upper-bound (least) a∗ such that a∗ ∈ [s, τ].

Proof. Definition (5) of sequence {an} (or sequence {an} given by formula (6)) and condi-
tion (7) immediately imply the result.

Remark 1. The parameter τ can be possibly chosen as τ < ρ0. However, it can also be chosen to
simply satisfy condition (7), thus forcing the convergence for formula (5) or (6).

The notation U(x, α), U[x, α] stands for the open and closed balls in B, with a center
x ∈ D and a radius α > 0.

3. Semi-Local Convergence

The common conditions connected to the parameters and functions of the previous
section are described below.



Foundations 2022, 2 1025

Suppose the following:

(H1) There exists x0 ∈ D such that x0 + F(x0), x0 − F(x0) ∈ D, [u0, v0; F]−1F′(x0)
−1 ∈

L(B, B), ‖[u0, v0; F]−1F(x0)‖ ≤ s, and ‖F(x0)‖ ≤ s0.

(H2) ‖F′(x0)
−1([u1, u2; F]− F′(x0))‖ ≤ ψ0(‖u1 − x0‖, ‖u2 − x0‖),

‖I − [u1, x0; F]‖ ≤ h1(‖u1 − x0‖),
‖I + [u2, x0; F]‖ ≤ h3(‖u2 − x0‖) for all u1, u2 ∈ D.
Set D0 = D ∩U(x0, ρ0).

(H3) ‖F′(x0)
−1([u3, u4; F] − [u5, u6; F])‖ ≤ ψ(‖u3 − x0‖, ‖u4 − x0‖, ‖u5 − x0‖, ‖u6 − x0‖)

for all u3, u4, u5, u6 ∈ D0.

(H4) Condition (7) holds.

(H5) U[x0, a∗1 ] ⊂ D, where a∗1 = max{a∗, h2(a∗), h4(a∗)}.
Next, the semi-local convergence is presented for method (2).

Theorem 1. Suppose that conditions (H1)–(H5) hold. Then, the sequence {xn} starting at x0 ∈ D
and given by method (2) (or method (3)) is well-defined, remains in U(x0, a∗), and is convergent to
some x∗ ∈ U[x0, a∗] satisfying F(x∗) = 0. Moreover, the following assertion holds for all n ≥ 0:

‖x∗ − xn‖ ≤ a∗ − an. (8)

Proof. Mathematical induction is employed to show that

‖ym − xm‖ ≤ bm − am, (9)

‖zm − ym‖ ≤ cm − bm, (10)

and
‖xm+1 − zm‖ ≤ am+1 − cm. (11)

Estimate (9) holds if m = 0, since according to condition (H1),

‖y0 − x0‖ = ‖[u0, v0; F]−1F(x0)‖ ≤ s = s− 0 = b0 − a0 < a∗,

and the iterate y0 ∈ U(x0, a∗). We need the following estimates:

‖vm − x0‖ = ‖xm − x0 − F(xm) + F(x0)− F(x0)‖
= ‖(I − [xm, x0; F])(xm − x0) + F(x0)‖
≤ ‖I − [xm, x0; F]‖‖xm − x0‖+ ‖F(x0)‖
≤ h1(‖xm − x0‖)‖xm − x0‖+ s0

= h2(‖xm − x0‖) ≤ a∗1 .

Similarly, we obtain the equation below:

‖um − x0‖ ≤ ‖I + [xm, x0; F]‖‖xm − x0‖+ ‖F(x0)‖
≤ h3(‖xm − x0‖)‖xm − x0‖+ s0

= h4(‖xm − x0‖) ≤ a∗1 .

Let um, vm ∈ U(x0, a∗). By applying condition (H2), we obtain the following equation:

‖F′(x0)
−1([um, vm; F]− F′(x0))‖ ≤ ψ0(‖um − x0‖, ‖vm − x0‖)

≤ ψ0(h2(am), h4(am)) < 1.
(12)
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Then, the perturbation Lemma on linear operators attributed to Banach [4] asserts that
[um, vm; F]−1 ∈ L(B, B) and

‖[um, vm; F]−1F′(x0)‖ ≤
1

1− ψ0(h2(am), h4(am))
. (13)

Similarly, we have

‖F′(x0)
−1(Mm − F′(x0))‖ ≤ ‖F′(x0)

−1([ym, xm; F]− [um, vm; F])‖+ ‖F′(x0)
−1([ym, xm; F]− F′(x0))‖

≤ ψ(‖xm − x0‖, ‖ym − x0‖, ‖vm − x0‖, ‖wm − x0‖) + ψ0(‖xm − x0‖, ‖ym − x0‖)
= q̄m ≤ qm.

(14)

Moreover, according to the first sub-step of method (2), we can write the following equation:

F(ym) = F(ym)− F(xm)− [um, vm; F](ym − xm)

= ([ym, xm; F]− [um, vm; F])(ym − xm),

so that

‖F′(x0)
−1F(ym)‖ ≤ ψ(‖xm − x0‖, ‖ym − x0‖, ‖vm − x0‖, ‖wm − x0‖)‖ym − xm‖

= p̄m ≤ pm.
(15)

Consequently, with the second sub-step, we have

‖zm − ym‖ ≤
p̄m

1− q̄m

≤ pm

1− qm
= cm − bm

and

‖zm − x0‖ ≤ ‖zm − ym‖+ ‖ym − x0‖
≤ cm − bm + bm = cm < a∗.

That is, (10) holds and the iterate zm ∈ U(x0, a∗).
In view of the identity F(zm) = F(zm)− F(ym) + F(ym) = [zm, ym; F](zm − ym) + F(ym),
(15), and (H2), we can obtain the equation below:

‖F′(x0)
−1F(zm)‖ ≤ (1 + ψ0(‖zm − x0‖, ‖ym − x0‖))‖zm − ym‖+ p̄m

= λ̄m ≤ λm.
(16)

Therefore, with the third sub-step of methods (2) and (16), we obtain the following:

‖xm+1 − zm‖ ≤ ‖M−1
m F′(x0)‖‖F′(x0)

−1F(zm)‖

≤ λ̄m

1− q̄m
≤ λm

1− qm
= am+1 − cm

and ‖xm+1 − x0‖ ≤ ‖xm+1 − zm‖+ ‖zm − x0‖
≤ am+1 − cm + cm = am+1 < a∗.

It thus follows that estimate (11) holds, and that the iterate xm+1 ∈ U(x0, a∗).
Moreover, the first sub-step of method (2) gives the following equation:

F(xm+1) = F(xm+1)− F(xm)− [um, vm; F](ym − xm)

= [xm+1, xm; F](xm+1 − xm)− [um, vm; F](ym − xm),
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hence,

‖F′(xo)
−1F(xm+1)‖ ≤ (1 + ψ0(‖xm+1 − x0‖, ‖xm − x0‖))‖xm+1 − xm‖

+ (1 + ψ0(‖um − x0‖, ‖vm − x0‖))‖ym − xm‖
= µ̄m+1 ≤ µm+1.

(17)

Furthermore, with (17) and (13), we obtain

‖ym+1 − xm+1‖ ≤ ‖[um+1, vm+1; F]−1F′(x0)‖‖F′(x0)
−1F(xm+1)‖

≤ µ̄m+1

1− ψ0(h2(am+1), h4(am+1))

≤ µm+1

1− ψ0(h2(am+1), h4(am+1))
= bm+1 − am+1

and ‖ym+1 − x0‖ ≤ ‖ym+1 − xm+1‖+ ‖xm+1 − x0‖
≤ bm+1 − am+1 − am+1 = bm+1 < a∗.

Thus, the induction for estimates (9)–(11) is finished.
According to Lemma (1), the sequence {am} is complete and convergent. It then follows
from estimates (8)–(11) that the sequence {xm} is also convergent in the Banach space B.
Hence, the sequence {xm} is convergent for some x∗ ∈ U[x0, a∗]. Then, using the continuity
of the operator F and (17), we deduce that

F(a∗) = 0 if m→ ∞.

Finally, from the estimate below:

‖xm+j − xm‖ ≤ am+j − am for all j = 1, 2, . . . ,

we can obtain estimate (8) if j→ ∞.

The uniqueness of the ball is discussed in the next result.

Proposition 1. Suppose the following:

(1) There exists a solution ξ ∈ U(x0, ρ1) for some ρ1 > 0.

(2) Condition (H2) holds on the ball U(x0, ρ1).

(3) There exists ρ2 > ρ1 such that

ψ0(ρ1, ρ2) < 1. (18)

Set D2 = D ∩U[x0, ρ2].

Then, the equation F(x) = 0 is uniquely solvable by a∗ in the region D2.

Proof. Let ξ1 ∈ D2 with F(ξ1) = 0. Define the linear operator G = [ξ, ξ1; F] = [ξ +
F(ξ), ξ1 + F(ξ1); F]. It then follows from (H2) and (18) that

‖F′(x0)
−1(G− F′(x0))‖ ≤ ψ0(‖ξ − x0‖, ‖ξ1 − x0‖)

≤ ψ0(ρ1, ρ2) < 1.

Hence, we conclude that ξ = ξ1, since the linear operator G is invertible, and G(ξ − ξ1) =
F(ξ)− F(ξ1) = 0− 0 = 0.

Remark 2.

(1) If all the conditions of Theorem 1 hold, then we can set ρ1 = a∗.
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(2) The parameter ρ0 given in closed form can replace a∗ in condition (H5).

Concerning the proof of Theorem 1, when method (3) is used instead, we notice the
following:

‖zm − ym‖ = ‖
(

I + 2[um, vm; F]−1([um, vm; F]− [ym, xm; F])
)
[um, vm; F]−1F(ym)‖

≤ 1
1− ψ0(‖um − x0‖, ‖vm − x0‖)

(1 + 2
ψ(‖xm − x0‖, ‖ym − y0‖, ‖vm − v0‖, ‖um − u0‖

1− ψ0(‖um − x0‖, ‖vm − x0‖
) p̄m

≤ σ̄m p̄m ≤ am+1 − cm

and similarly,

‖xm+1 − zm‖ ≤ σ̄mλ̄m

≤ σmλm ≤ am+1 − cm,

where ‖ym+1 − xm+1‖ ≤ bm+1 − am+1, as in method (2).
The rest is omitted as it is identical to the proof of Theorem 1.

4. Numerical Examples

Example 1. Let B = R3, D = U[0, 1]. Define the function F on D for x = (x1, x2, x3)
T with the

following equation:

F(x) = F(x1, x2, x3) = (ex1 − 1,
e− 1

2
x2

2 + x2, x3)
T

We have x∗ = (0, 0, 0)T . The divided difference is given by [x, y; F] =
∫ 1

0 F′(y + θ(x− y))dθ for
all x, y ∈ D, with x 6= y. Moreover, by this definition, it follows that for x0 = (0.1, 0.1, 0.1)T ,
the (H) conditions are satisfied provided that ψ0(s, t) = 1

2 (e− 1)(s + t), ψ(s, t) = 1
2 e(s + t) and

τ = ρ0 = 1
e−1 . The iterates are as given in Table 1.

Table 1. Error estimates for Example (1).

Methods ‖x1− x∗‖ ‖x2− x∗‖ ‖x3− x∗‖ ‖x4− x∗‖

Method (2) (GM6) 3.333 ∗ 10−5 4.85711 ∗ 10−8 4.65495 ∗ 10−25 3.60678 ∗ 10−127

Method (3) (SM6) 2.65222 ∗ 10−5 9.93835 ∗ 10−9 2.75132 ∗ 10−29 1.23853 ∗ 10−152

Then, we can see that methods (2) and (3) converge to x∗, and that the method (SM6) is faster
in this example.

Example 2. Let B = R5, D = U[0, 1] and consider the system of five equations defined by

∑5
j=1,j 6=i xj − exi = 0, 1 ≤ i ≤ 5,

where x∗ = (0.20388835470224016 . . . , 0.20388835470224016 . . . , 0.20388835470224016 . . . ,
0.20388835470224016 . . . , 0.20388835470224016 . . .)T .

Choose x0 = (0.3, 0.3, 0.3, 0.3, 0.3)T . The divided difference is given by [x, y; F] =
∫ 1

0 F′(y +
θ(x− y))dθ for all x, y ∈ D, with x 6= y. Then, the error estimates are as given in Table 2.

Table 2. Error estimates for Example (2).

Methods ‖x1− x∗‖ ‖x2− x∗‖ ‖x3− x∗‖ ‖x4− x∗‖

Method (2) (GM6) 7.4587996 ∗ 10−3 1.67162 ∗ 10−9 2.11783 ∗ 10−49 8.75714 ∗ 10−289

Method (3) (SM6) 5.99747 ∗ 10−3 3.6518 ∗ 10−10 1.86099 ∗ 10−53 3.25959 ∗ 10−313

Hence, we can conclude that methods (2) and (3) converge to x∗.
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Example 3. Let B = (R2, ‖.‖∞). Let us consider the following non-linear system:

y2 + |x− 1| − 1
4
= 0

x + |y| − 3
2
= 0.

Let ‖u‖∞ = ‖(u1, u2)‖∞ = max{|u1|, |u2|} for u = (u1, u2) ∈ R2. The operator F = (F1, F2)
connected to this system is defined by the following equation:

F1(u1, u2) = u2
2 + |u1 − 1| − 1

4
and

F2(u1, u2) = u1 + |u2| −
3
2

.

Clearly, operator F is not differentiable. Hence, the methods containing the derivative cannot be used
to solve this system [1,6]. We then use [u, v; F] ∈ M2×2 ∈ R, which is the set of 2× 2 matrices in
R, as follows:

[u, v; F]k,1 =
Fk(v1, v2)− Fk(u1, v2)

v1 − u1

[u, v; F]k,2 =
Fk(u1, v2)− Fk(u1, u2)

v2 − u2

provided that v1 6= u1 and v2 6= u2. We subsequently pick the initial point to be (0.8,−0.3). Then,
after two iterations, both methods (2) and (3) give the solution x∗ = (1,− 1

2 ).

Example 4. Consider the non-linear equation F(x) = x3− 20 defined on B = R, where D = U[2, 1].
We obtain x∗ = 2.714417616594906572. Take x0 = 2.7. The divided difference is given by
[x, y; F] =

∫ 1
0 F′(y + θ(x− y))dθ for all x, y ∈ D, with x 6= y. Then, the error estimates are as

given in Table 3.

Table 3. Error estimates for Example (4).

Methods ‖x1− x∗‖ ‖x2− x∗‖ ‖x3− x∗‖ ‖x4− x∗‖

Method (2) (GM6) 4.62347 ∗ 10−3 5.09219 ∗ 10−6 9.08917 ∗ 10−24 2.93927 ∗ 10−130

Method (3) (SM6) 3.65222 ∗ 10−3 1.01023 ∗ 10−6 4.524756 ∗ 10−28 3.65299 ∗ 10−156

Hence, we can conclude that methods (2) and (3) converge to x∗.

5. Discussion

The semi-local convergence analysis of high convergence order methods has also
been discussed in [1]. However, this was only performed for two-step methods under
hypotheses on F

′′
and using the method of recurrent functions. In the present paper,

we dealt with three-step methods under weaker hypotheses, only on F′ and under more
general conditions. In addition, it must be noted that the second Fréchet derivative used
in [1] did not appear in the methods of the present paper nor in the methods used in [1].
Hence, we also extended the applicability of these two-step methods in [1] as well as
the three-step methods in the present paper. It is also worth noting that the technique
developed in the present paper may be applied in the solutions of high-order boundary
value problems of the form given in references [14–17].

6. Conclusions

A comparison was made between the convergence balls of two derivative-free equation
solvers that are similar in efficiency. The ball convergence of GM6 and SM6 solely required
a generalized Lipschitz continuity. Finally, our analytical conclusions were validated
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against real-world application challenges. Our technique was demonstrated with the use of
methods (2) and (3) as examples. However, the technique does not really depend on these
methods. Therefore, it can be used on other single and multi-step methods using inverses
of divided differences of order one or derivatives along the same lines [6,8,9,12]. This will
be the topic of our future research.
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