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Abstract: The present study is focused on revealing a characteristic kink of the neutron shell closure
N = 126 across the Hg-isotopic chain within the relativistic mean-field (RMF) approach with the IOPB-
I, DD-ME2, DD-PC1 and NL3 parameter sets. The RMF densities are converted to their spherical
equivalence via the Wood–Saxon approximation and used as input within the parametrization
procedure of the coherent density fluctuation model (CDFM). The nuclear matter symmetry energy
is calculated using the Brückner energy density functional, and its surface, as well as volume
components, are evaluated within Danielwicz’s liquid drop prescription. In addition, a comparison
between Brückner and relativistic energy density functionals using the NL3 parameter set is shown as
a representative case. The binding energy, charge distribution radius and symmetry energy are used
as indicators of the isotopic shift in both ground and isomeric states. We have found the presence
of a kink at the shell/sub-shell closure at N = 126 for neutron-rich 206Hg. The formation of the kink
is traceable to the early filling of the 1i11/2 orbitals rather than 2g9/2, due to the large spin-orbit
splitting. As such, the link between the occupational probability and the magicity of nuclei over the
Hg-isotopic chain is established.

Keywords: surface properties; symmetry energy; isospin asymmetry, Hg-isotopes; single particle
energy; occupation probability; relativistic energy density functional; isotopic shift

1. Introduction

One of the prevailing interests in nuclear physics is to unravel the nuclear structure
to explore the collective properties in the neighbourhood of magic numbers as well as the
atomic transitions of rare-earth nuclei [1–4]. The nuclear isotopic shift emerges as one of
the viable tools which serve as a premise for testing nuclear theories [5–7]. An earlier study
has revealed that the measurement of isotopic shift can provide helpful information on the
charge radius difference between isomeric states of various nuclei [8]. The isotopic shift
which relates to the changes in charge radius, ∆〈R2

ch〉, can also be expressed with reference
to a change of the deformation squared, ∆〈β2〉. In addition to the root-mean-square
radius, several comprehensive experimental details on the nuclear charge distribution are
limited to stable isotopes from the electron scattering experiment. Until now, renewed
experimental effort with sophisticated facilities such as high-precision laser at ISOLDE
(CERN) [9], Intensity Heavy ion Accelerator Facility (HIAF) [10] and Gamow–Teller giant
resonance (GTR) at RIKEN [11] are still being directed towards the measurement of nuclear
charge radii.
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On the theoretical front, nuclear models are usually employed for the treatment of
isotopic shifts in heavy systems [12]. The primitive non-relativistic energy density functionals
(NR-EDFs) were found to be incapable of producing isotopic shift with experimental exacti-
tude for certain nuclei [13]. Alternatively, the description of NR-EDFs can be improved either
by incorporating gradient terms in pairing interactions or by adding a density-dependent
term in spin-orbit interactions. On the other hand, the relativistic mean-field (RMF) theories
have been used in Refs. [14–16] to predict isotopic shift in charge radii near experimentally
measured values. The charge distribution and finite mass of the nucleus has a considerable
influence on the atomic spectra. As such, the spectra lines associated with different isotopes
manifest a little shift in energy [17]. In other words, the isotopic shift is usually occasioned by
certain deviations (from systematic trend) resulting from the domination of the quantum shell
effect over the charge radius [15,18]. Moreover, the charge radius, single-particle energies
and occupation are other benchmarks for the isotopic shifts.

The newly measured 207,208Hg isotopes from ISOLDE (CERN) [9] which reveal that
isotopic shift can be observed below the shell closure Z = 82 motivate us and open the
direction into the present study. In comparison with the mean-field approaches, the authors
demonstrated that isotopic shift in the neighbourhood of the neutron shell closure N = 126
can find a good description in the mean-field level. Recently, the emergence of single-
particle energy levels at shell and sub-shell closures (in the vicinity of magic numbers)
has been traced to the presence of isotopic shift [15,19]. Hence, the Shell Model [20]
which underscores the concept of magicity is adopted for the treatment of nuclear isotopic
shift [15]. The analysis is carried out within the relativistic mean-field framework (for
DD-PC1 [21], DD-ME2 [22], IOPB-I [23] and NL3 [24] parameter sets) which is generally
appropriate for heavy spherical-deformed nuclei [25]. The spherical shape results from
the closed-shell configuration, while the deformed shape emerges from the breaking of
the magic shell. Nonetheless, the energy spacing of the positive parity states of some
Hg-isotopes are marked with certain irregularities, especially at high spin states [26,27].

In the present study, it is of interest to examine the emergence of isotopic shift over
the Hg-isotopic chain and to relate such to the single-particle energy levels at or around the
neutron magic number N = 126 within the relativistic mean-field (RMF) approach using
the DD-PC1 [21], DD-ME2 [22], IOPB-I [23] and NL3 [24] parameter sets. The ground-
state features such as binding energy (BE), root mean square (rms) charge radius (Rch),
single-particle energies and the shell occupation probability are used as shift indicators
for the considered Hg isotopes within neutron number 95 ≤ N ≤ 134 at both ground
and isomeric states. The surface property such as symmetry energy is estimated using the
Brückner energy density functional, and its volume and surface contributions are deduced
by employing Danielwicz’s liquid drop prescription. A detailed description of the RMF
model, as well as the procedures, are taken to fit the energy density functional E(ρ) to
obtain an analytical expression in coordinate space using the Brückner energy density
functionals are outlined in Section 2. The subsequent part of this section is devoted to
the coherent density fluctuation model (CDFM) which is employed to study the surface
properties. The discussions on the obtained results are given in Section 3, and Section 4
summarises the inferences drawn from the study.

2. Relativistic Mean Field Approach

The conventional non-linear relativistic mean-field Lagrangian density is constructed
from the interacting nucleons with the interchange of the σ, ω and ρ mesons. As an ex-
tension of the previous version, the self-and cross-couplings of the σ, ω and ρ mesons are
introduced into the Lagrangian, called “the effective field theory motivated relativistic
mean-field formalism” [23,28–31]. As a result of the cross-coupling within the participating
mesons, the variation of the neutron-skin thickness in heavy-mass nuclei such as 208Pb
becomes feasible. It is worth noting that the self-coupling of the σ mesons sways a minimiz-
ing effect on the nuclear matter incompressibility [28,32,33]. The energy density functional
used here describes the interactions between the nucleon and various mesons like σ, ω, ρ
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and δ. Various self and cross-couplings terms are also taken into account. Further details
can be found in Ref. [23].

The parameters DD-PC1 [21], DD-ME2 [22], IOPB-I [23] and NL3 [24] are obtained by
assuming that a uniform field is created by the exchange of mesons, in which the oscillations
of nucleons in a periodic motion are considered as simple harmonic. The equations of
motion for the fields are obtained using the classical variational principle resulting in a
closed set of equations which are deduced self-consistently [23] and whose scalar and
vector densities are simplified as,

ρs(r) = ∑
α

ϕ†
α(r)βϕα(r), (1)

ρv(r) = ∑
α

ϕ†
α(r)ϕα(r), (2)

respectively, are extrapolated from the converged solutions within the spherical harmonics.
The energy density is improvised to investigate the bulk properties of close-shell nuclei in
the super-heavy region. As such, ground state observables binding energy (B.E), charge
radii and rms radii, etc., are estimated. The spherical densities are used as inputs within
the CDFM to obtain the weight function |F(x)|2, which is a crucial quantity for calculating
the symmetry energy of a finite nucleus (SA).

2.1. Spherical Equivalent Density Using Wood–Saxon Fitting

The geometrical relation r2 = x2 + y2 + z2 is employed for the calculation of the
spherical equivalent density as a function of the radial coordinate r. However, the acquired
densities remain unaltered during this procedure. Instead, the r⊥ and z values combine
and yield an average r for each density. The Wood–Saxon expression for the fitting of such
densities is given as

ρ(r) = ρ0/(1 + exp[(r− R)/a)], (3)

where r⊥ and z represent the cylindrical co-ordinates of the radial vector R [34].

2.2. Brückner’s Prescription and Symmetry Energy

Consider an isotropic and infinite nuclear matter whose energy density expression for
the Brückner functional is given as [35,36]:

E(ρ)nucl. = AV0(x) + VC −VCx, (4)

where

V0(x) = 37.53
[
(1 + α)5/3 + (1− α)5/3]ρ0(x)2/3

+b1ρ0(x) + b2ρ0(x)4/3 + b3ρ0(x)5/3

+α2[b4ρ0(x) + b5ρ0(x)4/3 + b6ρ0(x)5/3
]
. (5)

Here, b1 = −741.28, b2 = 1179.89, b3 = −467.54, b4 = 148.26, b5 = 372.84,
b6 = −769.57 and α =

ρn−ρp
ρ are the asymmetry parameters where, ρ = ρn + ρp in

Ref. [19] and therein. The protons possess Coulomb energy VC = 3
5

Z2e2

x and Coulomb
exchange energy VCx = 0.7386Ze2(3Z/4πx3)1/3 in each flucton. The conversion from
the NM quantities, Equation (4), from momentum (ρ−) to coordinate (r−) space in local
density approximation (LDA) is a central part of our calculation. The NM symmetry energy
parameter SNM is estimated from the standard expression [23,35,37]:

SNM =
1
2

∂2(E/ρ)

∂α2

∣∣∣
α=0

= 41.7ρ0(x)2/3 + b4ρ0(x) + b5ρ0(x)4/3 + b6ρ0(x)5/3, (6)
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at local density. The calculated nuclear densities of Hg nuclei from RMF are used as input
in the CDFM approach as discussed in the subsequent sub-section.

2.3. The Coherent Density Fluctuations Model

The Coherent Density Fluctuations Model (CDFM) [38] deals with the variations in
momentum and density distribution. This model provides a simple approach to investi-
gating the surface property such as symmetry energy of finite nuclei. Within the CDFM
formalism, the NM tool SNM from Equation (8) is utilized to calculate its value for the
finite nucleus [38–41]. More comprehensive derivations can be found in Refs. [39,41–44].
The |F(x)|2 for a given density ρ (r) is expressed as,

|F(x)|2 = −
(

1
ρ0(x)

dρ(r)
dr

)
r=x

, (7)

with
∫ ∞

0 dx|F(x)|2 = 1. The finite nuclear symmetry energy SA is computed by weighting
the respective infinite nuclear matter quantity using the CDFM, which yields [41,42,44–46]

SA =
∫ ∞

0
dx |F(x)|2 SNM(ρ(x)), (8)

Equation (8) denotes the surface weighted average of the respective NM quantity at
local density for finite nuclei.

The volume and surface components of symmetry energy SA for finite nuclei in
Danielewicz’s prescription are written as [16],

SA =
SV

1 + SS
SV

A−1/3
=

SV

1 + A−1/3/κ
. (9)

where the ratio κ ≡ SV

SS is defined as [16,47]:

κ =
3

Rρ0

∫ ∞

0
dx|F(x)|2xρ0(x)

((
ρ0

ρ(x)

)γ

− 1
)

. (10)

In Equation (10), the value of γ = 0.3 follows Ref. [48]. A new approach was recently
employed by Gaidarov et al. to calculate the SV and SS which entails the use of the
non-relativistic densities within the weight function [49].

3. Results and Discussions

The ground state (GS) and isomeric state (IS) properties are calculated and used
as indicators/indexes to determine the isotopic shift in the present study. The available
experimental data are compared with the ground state properties such as the binding energy
and nuclear charge radius Rch while those of the isomeric states are analysed separately.
The Wood–Saxon fitting (Section 2.1) is used to obtain the spherical equivalent densities of
the Hg-isotopes. The obtained spherical equivalent densities are further used to calculate
the weight function |F(x)|2 [Equation (7)] which is a key input for the estimation of the
NM parameter symmetry energy. The symmetry energy is estimated by using the Brückner
functional as well as Danielwicz’s prescription within the framework of CDFM formalism.
The results are presented in Figures 1–9. The well-known three-point method [16] and a
standard deviation method are employed for the calculation of the shift over the isotope
chain for each of the investigated quantities. It is given as [16],

4knO(Z, N) ≡ 1
2
[O(Z, N + k)− 2O(Z, N) +O(Z, N − k)]. (11)
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Here, O represents the estimated value of the quantity, and k = 2 refers to the curva-
ture/kink parameter. The standard deviation method at a certain neutron number N is
explained as [15],

〈∆R2
ch〉

A = 〈R2
ch〉

A − 〈R2
ch〉

i, (12)

where i symbolizes the mass of each Hg-nucleus having neutron number N = 126. Using
the estimated Rch values, the isotopic shift 〈∆R2

ch〉
A is obtained from Equations (11) and (12)

for IOPB-I, NL3, DD-ME2 and DD-PC1 parameter sets.

3.1. Shift in Binding Energy and Charge Radius

The binding energies (BE) and nuclear charge distribution radius (Rch) are determined
for both the intrinsic ground and intrinsic isomeric states using the RMF (IOPB-I, NL3)
as well as the density-dependent DD-ME2 and DD-PC1 parameter sets in the considered
Hg-isotopic chain. The BE and Rch help in providing valuable information about the
shell/sub-shell closures in the isotopic chain. In Figure 1, nearly all the theoretically
predicted results are very consistent with the experimental data. In the first and second
panels, the ground state BE and Rch are presented. Both quantities (BE and Rch) are
increasing with neutron numbers along the isotopic chain. The abrupt rise in Rch between
N = 100 and 110 is consistent with the experimental measurement with a slight difference
in their values. This rise can be attributed to a shape transition of the corresponding
nucleus [50]. The upper panel of Figure 2, shows the deviation of the calculated binding
energies from the experimental data as a function of neutron number. The deviations of the
considered forces are found within the range of −3.8 to 5.2 MeV, and the least deviation
indicates the credibility of the parameters. Relatively, the NL3 (purple triangles) appears
to be more reliable and consistent. A similar trend is noticed with some fluctuations in
magnitude. The shift in the binding energies and charge distribution radii are given in the
middle and lower panels, respectively. Each of the parameter sets predicts a conspicuous
downward kink at neutron number N = 126. The shift for BE is calculated by the three-
point method, Equation (11), and the shift for Rch is determined by the standard deviation
method, Equation (12). In addition, the extracted experimental data of isotopic shift at
N = 126 from the work of Goodacre et al. [9] is given for comparison. The experimental
data by Goodacre et al. are in good agreement with all the force parameters. In both
shifts, one can observe the kinks at neutron number N = 126. In addition, there are certain
discrepancies in the isotopic trend because of the effect of magic shell neutron number
N = 126, which is common in mean-field calculations.

Similarly, the BE and Rch of the isomeric states are displayed in Figure 3. In this
study, we performed the deformed calculations with different initial deformations having
fixed the harmonic oscillator shell as NF = 12 & NB = 20. The maximum energy state
corresponds to the ground state, and the second-highest state next to the ground state
is called the isomeric configuration. These isomeric states are different from the excited
states employing their lifetime and configurations. From the figure, an obvious difference
is noticed in all predictions compared with those of the ground state in Figure 1. Here, BE
marginal deviates from the normal uniform trend at N = 118. Likewise, certain discrepancies
(more pronounced than those of the ground state) are visible for Rch, accompanied by a
relatively large variation in IOPB-I predictions at higher N (=118–135). The shifts in the
third and fourth panels also show that the IOPB-I and DD-PC1 predictions are characterised
by anomalous kinks and large variation, respectively. The NL3 set maintains the same
trend as the IOPB-I parameter although with a small difference in magnitude.
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Figure 1. (Color online) The binding energy (BE) in MeV and charge distribution radius (Rch) in fm
are shown for the ground state of Hg-isotopes along with the available experimental data [51,52].

-4

-2

0

2

4

6

B
E

E
x
p

t.
 -

 B
E

C
a
l.
 (

M
eV

)

-4

-3

-2

-1

0

1

∆
B

E
 (

M
eV

)

IOPB-I
DD-ME2
DD-PC1
NL3
Expt.

100 110 120 130
-2

-1.5

-1

-0.5

0

0.5

∆
R

ch

2
 (

fm
2
)

Goodacre et. al

Hg (GS)

N

Figure 2. (Color online) The binding energy deviation (BEExpt.-BECal.), the isotopic shifts of binding
energy (BE) and charge distribution radius (Rch) in fm are shown in the upper, middle and lower
panels respectively for the ground state of Hg-isotopes. The available experimental data are given for
comparison [51,52]. The predictions by Goodacre et al. [9] for the isotopic shift at N = 126 are also
given for comparison. The energies are in MeV and radius in fm.
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along with their respective shifts (∆BE, ∆R2

ch) for the isomeric state of Hg-isotopes. The energies in
MeV and radius in fm.

3.2. Symmetry Energy and Its Shift

Several ways are available to examine the characteristics of finite nuclei as they relate
to their iso-spin and density-dependent NM quantities which include the symmetry energy
and other derivatives. Here, the CDFM approach as well as the Brückner’s energy density
functional in Section 2.2 are employed along with the volume and surface contributions to
the symmetry energy. The symmetry energy SA of a finite nucleus is obtained from the NM
symmetry energy by taking Brückner’s energy density functional Equation (6) approach.
Elaborate details are given in Refs. [19,53] which involve the folding of the density and
weight function. In other words, the symmetry energy of infinite nuclear matter SNM is
combined with the weight function |F(x)|2 to determine the symmetry energy of the finite
nucleus in Equation (8). The notable values of |F(x)|2 (its peak value) are found in the
range corresponding to the surface region of the density. As such, these quantities are
referred to as surface properties.

The estimated finite nuclei surface SS and volume SV components of the symmetry
energy, the total symmetry energy SA itself as well as its shift ∆SA for both ground state (GS)
and isomeric state (IS) are shown in Figures 4 and 5, respectively, as a function of the neutron
number using the IOPB-I, DD-ME2 and DD-PC1 parameter sets over the Hg-isotopic chain.
In Figure 4, we observed the change in magnitude of the above-described quantities for
Hg-isotopic series with neutron number N. In other words, a similar variation is noticed
in all the observables SS, SV , SA and ∆SA, manifesting high undulations/fluctuations at
80 ≤ N ≤ 110 which become lesser with the increase in N. Using Brückner’s prescription,
no clear peak in SA is found at the magic closed-shell N = 126. In Figure 4, we have also
presented the volume and surface contribution of symmetry energy (SV , SS) as a function
of neutron number N. SV and SS follow the trend with some fluctuations, accompanied
by the symmetry energy SA which exhibits some difference in magnitude. The volume
contributions of symmetry energy SV have a higher magnitude as compared to the surface
contribution symmetry energy SS. However, when the three-point method (Equation (11))
is used to obtain the isotopic shift of Hg-isotopes, no peak is found at N = 126, as illustrated
in Figure 4. A similar procedure is repeated for the isomeric states as shown in Figure 5
and we find the same observation.
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for IOPB-I, DD-ME2 and DD-PC1 parameter sets are shown along with the shift corresponding to the
total symmetry energy (∆SA) for the ground state of Hg-isotopes.
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Figure 5. (Color online) Same as Figure 4, but for the existing isomeric states of Hg-isotopes.

Since the conventional Brückner energy density functional (B-EDF) fails in Figure 4 to
reveal a conspicuous peak in the symmetry energy at N = 126, indicating the presence of a
closed shell/sub-shell as presented in Ref. [9]. We therefore employ the effective theory mo-
tivated relativistic energy density functional (E-RMF) which has been recently shown [54]
to resolve the Coester band problem [55–57]. Here, we have shown the calculations of
symmetry energy SA for the ground states of Hg-isotopic series with NL3 set [24] as a
representative case. Figure 6 shows a relative comparison between the prediction of the
B-EDF and E-RMF using the NL3 parameter set. Unlike the B-EDF, a notable peak is formed
along with the symmetry energy SA Hg-isotopic chain at N = 126 as well as its isotopic
shift ∆SA. In addition to the fluctuations, the component SV and SS combines to give SA as
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explained earlier. The same is obtained in Figure 7 for the isomeric states of the Hg-isotopic
series. Here also, the conventional Brückner energy density functional fails to produce the
peak at N = 126, which is smoothly obtained by the newly developed relativistic energy
density functional. In addition to these, we noticed a conspicuous peak at N = 111 for the
B-EDF, which is very little in magnitude in the case of thenE-RMF energy density functional.
In addition, the same scenario (observed earlier for the ground state) comes into play in
the study of isotopic shift. Thus, these results further assert the experimental findings of
Goodacre et al. [9,58], where it was demonstrated that the aforementioned observables are
predominantly governed by the relative energies as well as the orbital occupation.
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(NL3) parameter set.
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3.3. Single Particle Energy and Its Occupancy

The neutron single-particle energy spectra (εn) are calculated for the newly developed
IOPB-I, widely used NL3 and the density-dependent DD-ME2 and DD-PC1 sets for 206Hg
nuclei. The neutron Nilson orbitals [Nn3Λ]Ωπ [59] are presented near the Fermi surface for
206Hg and displayed in Figure 8. In Figure 9, the neutron orbital occupation probabilities
obtained from the IOPB-I, NL3, DD-ME2 and DD-PC1 parameter sets, corresponding to
the neutron number N = 126, are presented for some selected Hg-isotopes. In addition,
the filling of the valence orbital in the neutron magic, N = 126 for Hg is noticed. For instance,
the 2g9/2 & 1i11/2 orbitals are taken as the reference orbitals of the 206Hg isotope for
observation. All the parameter sets predict a relatively large occupation of the 1i11/2 for the
isotopes beyond 206Hg. This fact suggests the cause for the emergence of an isotopic shift.
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It has been recently demonstrated (in Refs. [9,15,16] and references therein) that
the isotopic shift in the nuclear charge radii has a propensity to be strongly influenced
by the orbital-filling/occupation probability. In contrast with the traditional electronic
configuration, the occurrence of an isotopic shift at N = 126 arises due to the early occupation
of 1i11/2 orbital than 2g9/2. In the nuclear system, it has been observed that large spin-orbit
splitting is responsible for the earlier filling of the higher spin orbitals. In the case of
the atomic system, an opposite trend in the filling of the electrons which arises from the
small spin-orbit interaction among the electronic orbitals is noticed. From the nuclear
matter viewpoint, it is obvious that nuclear symmetry energy tends to increase the overlap
between neighbouring orbitals and the overall density. Such an effect will be increased if
the overlap between those wave functions is maximum [15,60]. Thus, this investigation
reveals the correlation between the occupation probability and magicity as well as the
isotopic shift of different observables in terms of the magic neutron number.

4. Conclusions

In this study, the systematic theoretical analysis of the Hg-isotopic chain is presented.
The peaks in several observables over the isotope chain of Hg-nuclei are observed. The emer-
gence of kink along the isotope chain of a nucleus has a keen correlation with the pres-
ence of a closed shell/sub-shell. The ground-state properties such as the BE, rms radius
and single-particle energies are computed for the isotope chain of Hg-nuclei using rela-
tivistic mean-field formalism. Then, the RMF densities are converted to their respective
spherical equivalent densities by Wood–Saxon approximations. These converted densities
which are also clear indicators of the magicity of nuclei that lie away from the β-stability
line [42–44,53], are used within the Coherent Density Fluctuation Model (CDFM) to deter-
mine the symmetry energy [43]. Again, the shift in symmetry energy for Hg-isotopes are
determined for all the parameter sets. In addition, the surface and volume contributions of
symmetry energy by Danielwicz’s liquid drop prescription are estimated. This procedure
is repeated for the isomeric states of Hg-isotopes.

We have established the shell/sub-shell closure at N = 126 for neutron-rich 206Hg
using the newly derived relativistic energy density functional. The pronounced peaks
at N = 126 in the shift of binding energy and charge distribution radius of Hg-isotopes
indicate the shell closures property. Again, the early filling of the higher spin orbitals due
to the large spin-orbit splitting is the primary basis for the appearance of kinks at the magic
numbers. Here, in 206Hg, the 1i11/2 orbital is filled earlier than the 2g9/2 orbital. Hence,
this establishes a connection between occupation probability and the magic numbers in the
isotope chain for an atomic nucleus. We therefore conclude that to reveal the shell/sub-shell
closures across the whole isotope chain, the shift of various structural observables is a
crucial quantity that cannot be undermined. The relativistic energy density functional for
IOPB-I, DD-ME2, and DD-PC1 sets are not developed yet; nonetheless, we have performed
a systematic study for symmetry energy with the relativistic energy density functional of
the NL3 set, which is already derived in Ref. [54]. Again, we have observed a notable peak
at N = 126, in the case of symmetry energy as well as in its shift for the newly developed
E-RMF energy density functional instead of tghe conventional Brückner’s energy density
functional for the NL3 set. One of the drawbacks may be the use of Brückner’s EDF in the
conversion of the energy density functional from the momentum space to the coordinate
space in the local density approximation. In a recent study, Kumar et al. [54] pointed out
that the present Brückner’s energy density functional is unable to resolve the Coester band
problem [55,56] and could be a reason for the failure of the prediction of the proper peak
at magic number [54]. Furthermore, the construction of the relativistic energy density
functional for IOPB-I, and the density-dependant DD-ME2 and DD-PC1 parameter sets
are in progress. This could be the reason behind the non-appearance of peaks. Careful
consideration of relativistic energy density functional [54] over Brückner’s EDF could
produce an appropriate magnitude in symmetry energy and with the peak in the isotopic
shift. To avoid unnecessary repetition, uncertainties in binding energies arising from the
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polarization effects in the pairing channel are not included in this work. Such effects can be
found in Refs. [9,58].
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