
Citation: Argyros, C.I.; Argyros, I.K.;

Regmi, S.; John, J.A.; Jayaraman, J.

Semi-Local Convergence of a Seventh

Order Method with One Parameter

for Solving Non-Linear Equations.

Foundations 2022, 2, 827–838.

https://doi.org/10.3390/

foundations2040056

Academic Editor: António Lopes

Received: 16 August 2022

Accepted: 18 September 2022

Published: 21 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Semi-Local Convergence of a Seventh Order Method with One
Parameter for Solving Non-Linear Equations
Christopher I. Argyros 1, Ioannis K. Argyros 1,* , Samundra Regmi 2 , Jinny Ann John 3

and Jayakumar Jayaraman 3

1 Department of Computing and Mathematical Sciences, Cameron University, Lawton, OK 73505, USA
2 Department of Mathematics, University of Houston, Houston, TX 77204, USA
3 Department of Mathematics, Puducherry Technological University, Pondicherry 605014, India
* Correspondence: iargyros@cameron.edu

Abstract: The semi-local convergence is presented for a one parameter seventh order method to
obtain solutions of Banach space valued nonlinear models. Existing works utilized hypotheses up to
the eighth derivative to prove the local convergence. But these high order derivatives are not on the
method and they may not exist. Hence, the earlier results can only apply to solve equations containing
operators that are at least eight times differentiable although this method may converge. That is why,
we only apply the first derivative in our convergence result. Therefore, the results on calculable error
estimates, convergence radius and uniqueness region for the solution are derived in contrast to the
earlier proposals dealing with the less challenging local convergence case. Hence, we enlarge the
applicability of these methods. The methodology used does not depend on the method and it is
very general. Therefore, it can be used to extend other methods in an analogous way. Finally, some
numerical tests are performed at the end of the text, where the convergence conditions are fulfilled.
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1. Introduction

Let U and V be Banach spaces, and B be a non-empty, convex and open subset of U.
Suppose F : B ⊆ U → V is derivable in the Fréchet sense. The ultimate aim is to produce a
solution u∗ for the equation

F(u) = 0. (1)

A plethora of highly challenging scientific and engineering problems can be modeled as
nonlinear equations in the form (1) [1–4]. Overcoming this nonlinearity has long been
a significant problem in mathematics. Purely analytical answers to these equations are
difficult to provide. Because of this, scientists and researchers often apply the strategy
of iterative algorithms to obtain the required solution. Among iterative procedures, the
approach given by Newton is widely used to address (1). During the last several years, a lot
of new higher order iterative techniques have been developed and are being implemented
to deal with nonlinear equations [5–9]. In most of these research works, convergence
theorems of iterative schemes have been established using conditions on derivatives of
higher order. Additionally, these studies provide no conclusions on the convergence radii,
error distances and existence-uniqueness regions for the solution. The study of semi-local
analysis of an iterative formula allows to estimate the convergence balls, bounds on error
and uniqueness region for a solution. The results of local convergence of efficient iterative
procedures have been deduced in [6–18]. In these works, important results containing
convergence radii, measurements on error estimates and expanded utility of these iterative
approaches have been given. Outcomes of local analysis are valuable because they illustrate
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the complexity of selecting initial points. Most recently, Liu et al. [7] established a local
convergence theorem for a class of sixth and seventh convergence order iterative methods
defined on the real line by considering assumptions on the first derivative of F and Lipschitz
parameters. These methods are defined for n = 0, 1, 2, ..., by

sn = un − F′(un)
−1F(un),

zn = sn − τ
F(un) + F(sn)

F′(un)
− (1− τ)F′(un)

−1F(un)
F(un)

F(un)− F(sn)
,

un+1 = zn −
F(zn)

[zn, sn; F] + [zn, un, un; F](zn − sn)
,

(2)

where u0 is a starting guess, τ ∈ R and [., .; F] is the first order divided difference, and

[zn, sn; F] = [sn, zn; F] =
F(zn)− F(sn)

zn − sn
,

[zn, un; F] = [un, zn; F] =
F(zn)− F(un)

zn − un
,

[zn, un, un; F] =
[zn, un; F]− F′(un)

zn − un
.

The authors also obtained the error bounds and radii of convergence based on their pro-
posed theorem. They concluded that this family has the largest convergence radius for
τ = 0 in comparison with the other members (for τ = −2, τ = −1.5, τ = 0.5 and τ = 2.5).

In this document, we offer the semi-local convergence result for a one parameter
seventh convergence order iterative method discussed by Amiri et al. [10] to address
problem (1). This method is presented for α 6= 0 as follows:

yn = xn − F′(xn)
−1F(xn),

zn = yn −
1
α

F′(xn)
−1F(yn),

vn = zn − F′(xn)
−1((2− 1

α
− α)F(yn) + αF(zn)),

xn+1 = vn − H(mn)F′(zn)
−1F(vn),

(3)

where x0 is a starting estimation, Qn = (2− 1
α − α)F(yn) + αF(zn), mn = I − 1

α F′(xn)−1

[yn, zn; F], H(t) = (1− 1
α )I + α(t − (1− 1

α )I) + 1
2 (−α + 6α2)(t − (1− 1

α )I)2, α > 0 and
[., .; F] : B× B → L(U, V) is a divided difference of order one. It is shown to be of order
seven utilizing eighth order Fréchet derivative of F [5,8–12,18]. The usage of these solvers
is restricted due to such hypotheses on derivatives of higher order.

Let us choose the following motivational problem, where U = V = R and the function
T is defined on B = [− 1

2 , 3
2 ] by

T(u) =
{

u3 ln(u2) + u5 − u4, if u 6= 0
0, if u = 0

. (4)

The definition of T gives that T′′′(u) = 6 ln u + 60u2 − 24u + 22. Hence, we arrive at the
conclusion that the convergence theorem for the method (3) suggested by [10] does not
apply for this example although the method may converge. This is because the third
derivative T′′′ is unbounded on B. Besides, no results on the convergence domain, bounds
on error and uniqueness results were established in the existing article by [10]. However, we
propose the semi-local convergence theorem for this method (3) in the more general Banach
space case by considering a set of assumptions only on F′. In particular, ω-continuity of the
first Fréchet derivative is employed to enhance the utility of these methods.

It is worth noticing that our approach does not depend on method (3). Therefore, due to
its generality it can be used on other methods using inverses of linear operators [5–7,9–18].
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Other computational pit-falls of high convergence order methods have been reported by
Sen et al. [4]. In particular, they illustrated that the computational complexity of high-order
methods can be higher than the second-order Newton method. The family of methods
(3) can be applied to solve: oxygen diffusion problems in cylindrically shaped sections of
tissue [1,3] and melting problems [2].

The outline of this document can be described as: A majorizing sequence is developed
to prove the semi-local convergence of method (3) in Section 2. The Semi-local convergence
of the considered method (3) is established in Section 3. In Section 4, Numerical experiments
are described. Conclusions are also presented in Section 5.

2. Convergence for the Majorizing Sequence

A scalar sequence is developed that is shown to be majorizing for the method (3) in
the next section. Set M0 = [0, ∞).
Suppose:

(i) There exists a function ω0 with Dom(ω0) = M0 and Range(ω0) = R which is contin-
uous and non-decreasing such that the equation

ω0(u)− 1 = 0

has a smallest solution ρ0 ∈ M0 − {0}. Set M = [0, ρ0).

(ii) There exist functions ω, ψ with Dom(ω) = M, Dom(ψ) = M×M×M whose range
is R which are continuous and non-decreasing.

It is convenient to define parameters l, s and p by

l = 1− 1
α

, s =
α(6α− 1)

2
and p =

6α− 1
2α

The notation S(x, ξ), S[x, ξ] stands for the open and closed ball in U with center x and of
radius ξ > 0.

Let ∆ ≥ 0 be a given parameter. Moreover, define the sequence {an} for all n = 0, 1, 2, ...
by
a0 = 0, b0 = ∆,

cn = bn +

∫ 1
0 ω((1− θ)bn)dθ(bn − an)

|α|(1−ω0(an))
,

qn = |2− 1
α
|
∫ 1

0
ω((1− θ)(bn − an))dθ(bn − an)

+ |α|
(

1 +
∫ 1

0
ω0(bn + θ(cn − bn))dθ

)
(cn − bn),

dn = cn +
qn

1−ω0(an)
,

αn =

(
1 +

∫ 1

0
ω0(bn + θ(dn − bn))dθ

)
(dn − bn) +

∫ 1

0
ω((1− θ)(bn − an))dθ(bn − an),

γn =
ψ(an, bn, cn)

1−ω0(an)
,

hn = |l|+ γn + |p|γ2
n,

an+1 = dn +
αnhn

1−ω0(cn)
,

λn+1 =
∫ 1

0
ω((1− θ)(an+1 − an))dθ(an+1 − an) + (1 + ω0(an))(an+1 − bn)

and bn+1 = an+1 +
λn+1

1−ω0(an+1)
.

(5)

A general convergence result follows for the sequence {an}.
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Lemma 1. Suppose there exists ρ > ρ0 such that for all n = 0, 1, 2, . . .

ω0(an) < 1 (6)

and
an < ρ. (7)

Then, the sequence {an} is convergent to some a∗ ∈ [η, ρ] such that an ≤ bn ≤ cn ≤ dn ≤ an+1 ≤ ρ.

Proof. It follows by the definition of {an} and the conditions (6) and (7) that this sequence
is bounded from above by ρ and non-decreasing. Hence, it is convergent to its unique least
upper bound a∗.

Remark 1. If the function ω0 is strictly increasing, then set

ρ = ω−1
0 (1). (8)

In this case the condition (6) becomes

an < ρ. (9)

3. Convergence for the Method (3)

The semi-local convergence is based on the majorizing sequence {an} and the follow-
ing conditions.
Suppose:

(A1) There exists a point x0 ∈ B and a parameter ∆ ≥ 0 such that F′(x0)
−1 ∈ L(V, U) and

‖F′(x0)
−1F(x0)‖ ≤ ∆.

(A2) ‖F′(x0)
−1(F′(u)− F′(x0))‖ ≤ ω0(‖u− x0‖) for all u ∈ B. Set B0 = S(x0, ρ0) ∩ B.

(A3) ‖F′(x0)
−1(F′(u2)− F′(u1))‖ ≤ ω(‖u2 − u1‖) and

‖F′(x0)
−1([u1, u2; F] − F′(u3))‖ ≤ ψ(‖u1 − x0‖, ‖u2 − x0‖, ‖u3 − x0‖) for all u1, u2,

u3 ∈ B0.

(A4) The conditions (6) and (7) hold.

(A5) S[x0, a∗] ⊂ B.

Next, the main semi-local convergence result is presented under the conditions (A1)–
(A5) and using {an} as the majorizing sequence for method (3).

Theorem 1. Suppose that the conditions (A1)–(A5) hold. Then, the sequence {xn} produced by
the method (3) and starting at x0 ∈ B is convergent to a solution u∗ of the equation F(u) = 0
such that

‖xn − u∗‖ ≤ a∗ − an, (10)

where the sequence {an} is given by the formula (5).

Proof. Induction is employed to show

‖yk − xk‖ ≤ bk − ak, (11)

‖zk − yk‖ ≤ ck − bk (12)

‖vk − zk‖ ≤ dk − ck (13)

and
‖xk+1 − vk‖ ≤ ak+1 − dk. (14)
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The assertion (11) holds true for k = 0, since by the condition (A1)

‖y0 − x0‖ = ‖F′(x0)
−1F(x0)‖ ≤ ∆ = b0 − a0 = b0 < a∗.

Hence, the iterates y0, z0, v0, x1 are well defined and y0 ∈ S(x0, a∗). Let u ∈ S(x0, a∗). It
then follows from the conditions (A1), (A2) and (6) that

‖F′(x0)
−1(F′(u)− F′(x0))‖ ≤ ω0(‖u− x0‖) ≤ ω0(a∗) < 1.

Thus, the Banach perturbation lemma [15] asserts that F′(u)−1 ∈ L(V, U) and

‖F′(u)−1F′(x0)‖ ≤
1

1−ω0(‖u− x0‖)
. (15)

Suppose that the assertions hold for all integer values smaller than k.
The first substep of method (3) gives the identity

F(yk) = F(yk)− F(xk)− F′(xk)(yk − xk)

=
∫ 1

0
(F′(xk + θ(yk − xk))dθ − F′(xk))(yk − xk).

Then, it follows by the condition (A3), (15) (for u = xk), (5) and the second sub-step of the
method (3),

‖zk − yk‖ =
1
|α| ‖F

′(xk)
−1F(yk)‖

≤ 1
|α| ‖F

′(xk)
−1F′(x0)‖‖F′(x0)

−1F(yk)‖

≤
∫ 1

0 ω((1− θ)‖yk − xk‖)dθ‖yk − xk‖
|α|(1−ω0(‖xk − x0‖))

≤
∫ 1

0 ω((1− θ)(bk − ak))dθ(bk − ak)

|α|(1−ω0(ak))

= ck − bk

and ‖zk − x0‖ ≤ ‖zk − yk‖+ ‖yk − x0‖
≤ ck − bk + bk

= ck < a∗.

Therefore, the assertions (12) holds and the iterate zk ∈ S(x0, a∗).
Similarly, the identity

F(zk)− F(yk) =
∫ 1

0
F′(yk + θ(zk − yk))dθ(zk − yk)

=
∫ 1

0
(F′(yk + θ(zk − yk))dθ − F′(x0))(zk − yk) + F′(x0)(zk − yk)

gives

‖F′(x0)
−1Qk‖ = ‖(2−

1
α
)F′(x0)

−1(F(yk) + α(F(zk)− F(yk)))‖

≤ |2− 1
α
|
∫ 1

0
ω((1− θ)‖yk − xk‖)dθ‖yk − xk‖

+ |α|(1 +
∫ 1

0
ω0(‖yk − x0‖+ θ‖zk − yk‖)dθ‖zk − yk‖

= q̄k ≤ qk.

(16)
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Thus, it follows

‖vk − zk‖ ≤ ‖F′(xk)
−1F′(x0)‖‖F′(x0)

−1Qk‖

≤ q̄k
1−ω0(ak)

≤ qk
1−ω0(ak)

= dk − ck

and

‖vk − x0‖ ≤ ‖vk − zk‖+ ‖zk − x0‖
≤ dk − ck + ck

= dk < a∗.

Hence, the iterate vk ∈ S(x0, a∗) and the assertion (13) holds.
Then, the identity F(vk) = F(vk)− F(yk) + F(yk) gives similarly

‖F′(x0)
−1F(vk)‖ ≤ (1 +

∫ 1

0
ω0(‖yk − x0‖+ θ‖vk − yk‖)dθ)‖vk − yk‖

+
∫ 1

0
ω((1− θ)‖yk − xk‖)dθ‖yk − xk‖

≤ ᾱk ≤ αk.

(17)

Moreover, it can be written

mk = (I − 1
α
)I +

1
α
(I − F′(xk)

−1[yk, zk; F])

= l I +
1
α

F′(xk)
−1(F′(xk)− [yk, zk; F]),

mk − l =
1
α

γ̄k,

so

H(mk) = l I + α(
1
α

γ̄k) + s(
1
α

γ̄k)
2

= l I + γ̄k + pγ̄k
2

(18)

by the definition of the parameters l and p. Consequently, by the estimate (18), the second
condition in (A3), (5), it is obtained

‖H(mk)‖ ≤ |l|+ ‖γ̄k‖+ |p|‖γ̄k‖2

≤ |l|+ γk + |p|γk
2 = hk,

where we also used

γ̄k = ‖F′(xk)
−1(F′(xk)− [yk, zk; F])‖

≤ ψ(‖xk − x0‖, ‖yk − x0‖, ‖zk − x0‖)
1−ω0(‖xk − x0‖

≤ ψ(ak, bk, ck)

1−ω0(ak)
= γk.

Then, by the fourth sub-step of the method (3), (17), (15) (for u = zk) and (5),

‖xk+1 − vk‖ ≤ ‖H(mk)‖‖F′(zk)
−1F′(x0)‖‖F′(x0)

−1F(vk)‖

≤ hkαk
1−ω0(ck)

= ak+1 − dk
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and

‖xk − x0‖ ≤ ‖xk+1 − vk‖+ ‖vk − x0‖
≤ ak+1 − dk + dk = ak+1 < a∗.

Therefore, the iterate xk+1 ∈ S(x0, a∗) and the estimate (14) holds. The first sub-step of
method (3) gives

F(xk+1) = F(xk+1)− F(xk)− F′(xk)(yk − xk)

= F(xk+1)− F(xk)− F′(xk)(xk+1 − xk) + F′(xk)(xk+1 − yk)

leading to

‖F′(x0)
−1F(xk+1)‖ ≤

∫ 1

0
‖F′(x0)

−1(F′(xk + θ(xk+1 − xk))dθ − F′(xk))(xk+1 − xk)

+ F′(x0)
−1(F′(xk)− F(x0))(xk+1 − yk) + F′(x0)

−1F′(x0)(xk+1 − yk)‖

≤
∫ 1

0
ω((1− θ)‖xk+1 − xk‖)dθ‖xk+1 − xk‖

+ (1 + ω0(‖xk − x0‖))‖xk+1 − yk‖

≤
∫ 1

0
ω((1− θ)(ak+1 − ak))dθ(ak+1 − ak) + (1 + ω0(ak))(ak+1 − bk)

= λ̄k+1,

(19)

so

‖yk+1 − xk+1‖ ≤ ‖F′(xk+1)
−1F′(x0)‖‖F′(x0)

−1F(xk+1)‖

≤ λ̄k+1
1−ω0(‖xk+1 − x0‖)

≤ λk+1
1−ω0(ak+1)

= bk+1 − ak+1

and ‖yk+1 − x0‖ ≤ ‖yk+1 − xk+1‖+ ‖xk+1 − x0‖
≤ bk+1 − ak+1 + ak+1 = bk+1 < a∗.

That is the induction for the assertions (11)–(14) is terminated. The condition (A4) implies
that the sequence {ak} is complete. Consequently, by (11)–(14) the sequence {xk} is also
complete and convergent to some u∗ ∈ S[x0, a∗] (since the ball S[x0, a∗] is a closed set).
Furthermore, by the continuity of the operator F and if k → ∞ in (19), we deduce that
F(u∗) = 0. Finally, for i ≥ 0 the estimate

‖xk+i − xk‖ ≤ ak+i − ak

shows the assertion (10) by letting i→ ∞.

Next, the uniqueness of the convergence region is determined.

Proposition 1. Suppose:
There exists a solution µ ∈ S(x0, ρ1) for some ρ1 > 0; condition (A2) holds on the ball S(x0, ρ1)
and there exists ρ2 ≥ ρ1 such that ∫ 1

0
ω0(θρ2)dθ < 1. (20)

Set B1 = S[x0, ρ1] ∩ B. Then, the Equation (1) is uniquely solvable by µ in the region B1.
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Proof. Suppose that there exists µ0 ∈ B1 with F(µ0) = 0. Define the linear operator
G =

∫ 1
0 F′(µ + θ(µ0 − µ))(µ0 − µ)dθ.

Then, by the application of the conditions (A2) and (20) it follows that

‖F′(x0)
−1(G− F′(x0))‖ ≤

∫ 1

0
ω0(θ‖µ0 − µ‖)dθ∫ 1

0
ω0(θρ2)dθ < 1.

Therefore, the operator is invertible and µ0 − µ = G−1(F(µ0)− F(µ)) = G−1(0− 0) = 0.
Therefore, we conclude that µ = µ0.

Remark 2. (a) The parameter ρ0 given by the condition (i) of the Lemma 1 in closed form can
replace a∗ in the condition (A4).

(b) Proposition 1 is not using all the conditions of the Theorem 1. But if this is the case, then set
ρ1 = a∗ or ρ1 = ρ0.

(c) The second condition in (A3) involving the function ψ can be dropped as follows: Suppose that
there exists a function ψ0 : M×M → R continuous and non-decreasing such that for all
y, z ∈ B0

‖F′(x0)
−1([y, z; F]− F′(x0))‖ ≤ ψ0(‖y− x0‖, ‖z− x0‖).

Then, in view of the estimate

‖F′(x0)
−1(F′(x)− [y, z; F]‖ ≤ ‖F′(x0)

−1(F′(x)− F′(x0))‖+ ‖F′(x0)
−1([y, z; F]− F′(x0))‖,

the function ψ can be defined by

ψ(t1, t2, t3) = ω0(t1) + ψ0(t2, t3) for all t1, t2, t3 ∈ [0, ρ0).

Moreover, if the divided difference is defined by

[y, z; F] =
∫ 1

0
F′(z + θ(y− z))dθ,

then, the function ψ can be defined by

ψ(t1, t2, t3) = ω0(t1) +
1
2
(ψ0(t2) + ψ0(t3)), (21)

since ψ0(t2, t3) =
1
2 (w0(t2) + ω0(t3)). In fact, (21) is the choice for the function ψ used in

the examples.

4. Numerical Examples

Example 1. Let B = S(x0, 1− a) for some a ∈ [0, 1). Define the cubic polynomial

F(u) = u3 − a.

If one chooses x0 = 1 and defines [δ1, δ2; F] = F(δ2)−F(δ1)
δ2−δ1

for δ1 6= δ2, then the conditions
(A1)–(A2) are verified for ∆ = 1−a

3 , ω0(t) = (3 − a)t, ρ = ρ0 = 1
3−a , B0 = S(x0, 1

3−a ),
ω(t) = 2(1 + 1

3−a ) and ψ(t1, t2, t3) = (3− a)(t1 +
1
2 (t2 + t3)). Choose a = 0.95. Tables 1–3

verifies condition (6) and (7) for α = 0.75, 1, 1.25 respectively.
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Estimates for ω0(an) and an.

Table 1. α = 0.75.

n 0 1 2 3 4 5 6 7 8

ω0(an) 0 0.0380825 0.0438734 0.0446644 0.04477 0.0447841 0.044786 0.0447862 0.0447862
an 0 0.0185768 0.0214017 0.0217875 0.021839 0.0218459 0.0218468 0.0218469 0.0218469

Here, a∗ = 0.0218469.

Table 2. α = 1.

n 0 1 2 3 4 5 6 7

ω0(an) 0 0.0368743 0.0409929 0.0413345 0.0413615 0.0413636 0.0413638 0.0413638
an 0 0.0179875 0.0199966 0.0201632 0.0201764 0.0201774 0.0201775 0.0201775

a∗ = 0.0201775.

Table 3. α = 1.25.

n 0 1 2 3 4 5 6 7

ω0(an) 0 0.0376078 0.042654 0.0431496 0.0431953 0.0431994 0.0431998 0.0431998
an 0 0.0183453 0.0208068 0.0210486 0.0210709 0.0210729 0.0210731 0.0210731

a∗ = 0.0210731.

Hence, we can conclude that (6) and (7) holds, so (A4) holds. Therefore, all the conditions
(A1)–(A5) holds and hence by Theorem 1, the sequence {xn} generated by the method (3) converges
to a solution u∗ of the equation F(u) = 0 in S[x0, a∗].

Example 2. The utility of our results in the real world can be successfully established by considering
the quartic equation for fractional conversion which represents the fraction of the nitrogen-hydrogen
feed that gets converted to ammonia. At 500 ◦C and 250 atm, this equation can be formulated as

F(u) = u4 − 7.79075u3 + 14.7445u2 + 2.511u− 1.674.

Let B = (0.3, 0.4) and choose x0 = 0.3. Define [δ1, δ2; F] = F(δ2)−F(δ1)
δ2−δ1

, for δ1 6= δ2. Then, the
conditions (A1)–(A2) are valid if

‖F′(x0)
−1F(x0)‖ = 0.0217956 = ∆,

ω0 = ω = 1.56036, ρ0 = 0.640877, B0 = S[x0, ρ] ∩ B and ψ(t1, t2, t3) = ω0(t1) +
1
2 (ω0(t2) +

ω0(t3)). Tables 4–6 verifies the conditions (6) and (7) of Lemma 1.
Estimates for ω0(an) and an.

Table 4. α = 0.75.

n 0 1 2 3 4 5 6 7

ω0(an) 0 0.0366798 0.0404137 0.040727 0.0407527 0.0407548 0.0407549 0.0407549
an 0 0.0235073 0.0259002 0.026101 0.0261175 0.0261188 0.0261189 0.0261189

a∗ = 0.0261189.

Table 5. α = 1.

n 0 1 2 3 4 5 6 7

ω0(an) 0 0.0358561 0.0385603 0.0387014 0.0387085 0.0387089 0.0387089 0.0387089
an 0 0.0229794 0.0247124 0.0248029 0.0248074 0.0248076 0.0248077 0.0248077

a∗ = 0.0248077.
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Table 6. α = 1.25.

n 0 1 2 3 4 5 6 7

ω0(an) 0 0.0363564 0.0396474 0.0398455 0.0398568 0.0398574 0.0398575 0.0398575
an 0 0.0233 0.0254091 0.0255361 0.0255433 0.0255437 0.0255438 0.0255438

a∗ = 0.0255438.

Hence, we can conclude that condition (A4) holds and therefore all the conditions of Theorem 1
are fulfilled. Hence, the sequence {xn} generated by the method (3) converges to a solution u∗ of
equation the F(u) = 0 in S[x0, a∗].

Example 3. Next, we reconsider the motivational example from the introduction part of this
study. Choose x0 = 0.9955. [δ1, δ2; F] is a divided difference of order one and defined as
[δ1, δ2; F] = F(δ2)−F(δ1)

δ2−δ1
, for δ1 6= δ2. Conditions (A1) and (A2) are verified for

‖F′(x0)
−1F(x0)‖ = 0.00456182 = ∆,

ω0 = 12.8089, ρ0 = 0.0780704, B0 = S(x0, ρ0) ∩ B, ω = 1.12091 and ψ(t1, t2, t3) = ω0(t1) +
1
2 (ω0(t2) + ω0(t3)). Tables 7–9 verifies the conditions (6) and (7) of Lemma 1 for α = 0.75, 1 and
1.25 respectively.

Estimates for ω0(an) and an.

Table 7. α = 0.75.

n 0 1 2 3 4 5

ω0(an) 0 0.0591554 0.0600971 0.0601084 0.0601086 0.0601086
an 0 0.0046183 0.00469182 0.00469271 0.00469272 0.00469272

a∗ = 0.00469272.

Table 8. α = 1.

n 0 1 2 3 4

ω0(an) 0 0.0589339 0.0596338 0.0596393 0.0596394
an 0 0.00460101 0.00465565 0.00465609 0.00465609

a∗ = 0.00465609.

Table 9. α = 1.25.

n 0 1 2 3 4 5

ω0(an) 0 0.059072 0.0599212 0.0599287 0.0599287 0.0599287
an 0 0.00461179 0.00467809 0.00467867 0.00467868 0.00467868

a∗ = 0.00467868.

From Tables 7–9, we can easily verify that condition (A4) holds. Therefore, all the assumptions
(A1)–(A5) of Theorem 1 are satisfied and hence, we can conclude that the sequence {xn} generated
by the method (3) converges to a solution u∗ of the equation F(u) = 0 in S[x0, a∗].

5. Conclusions

The semi-local convergence theorem for method (3) is established by applying general-
ized Lipschitz condition only on the first derivative. As a result, estimates on convergence
balls, measurable error distances and the existence-uniqueness regions for the solution
are deduced. At the end, the suggested theoretical outcomes are verified on application
problems. It is found that method (3) has the smallest convergence radius for α = 1. As,
the value of α drifts away from one, the convergence radii of the balls increases. This
approach is so general and independent of the method that it can be employed on other
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high convergence order methods including multi-point ones. That will be our future focus.
In particular, we will also provide necessary conditions for the semi-local convergence of
old and new single and multi-step high convergence order methods.
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