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Abstract: Considering that a fair coin has two sides and a cylindrical edge, the probability that it
would fall on its edge is calculated, yielding the probability of heads or tails of less than 50%. In this
first part, the theoretical models for a static case and for five dynamic cases, without rebounds, show
that there is a small probability that the coin does not fall on its head or tail, depending on the initial
toss conditions, the coin geometry and conditions of the coin and landing surfaces. It is found that
the probability that a 50 Eurocent coin thrown from a normal height with common initial velocity
conditions and appropriate surface conditions will end up on its edge is in the order of one against
several thousand. In the second part of the paper, the dynamic model with rebounds is investigated.
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1. Introduction

To toss a coin is the simplest of experiments in probability and statistics. Students
usually learn that there is a 50–50% chance that it falls on either side. Repeat this simple
experiment with a fair coin a sufficient number of times and the result should show that,
on average, half of the tosses yield heads and half yield tails. However, is it really so, even
with a fair coin? A coin is a flat cylinder made of some metallic alloy. It has, of course, two
sides, but it also has a small cylindrical surface, the edge.

In the first part of this paper, we calculate the probability that a coin would fall on
its edge, yielding the probability of heads or tails of less than 50%. Several models are
considered: a simple static model and five dynamic models, without rebounds. Depending
on the initial toss conditions, the coin geometry and conditions of the coin and landing
surfaces, there is a small probability that the coin does not fall on its head or tail.

The mechanical model equations are derived from classical textbooks [1,2].
In the second part of the paper [3], the dynamic model with rebounds is investigated,

yielding a more realistic model.

2. Static Model

Let us consider a flat cylindrical coin, perfectly circular and homogeneous with a basis
diameter d much larger than its height h. From the center of mass at the coin mid-height,
the height is seen under an angle α. The coin is placed on a perfectly smooth horizontal
surface, with the coin edge making an angle θ with the horizontal surface (see Figure 1).

Clearly, the coin will fall on the right side if

α

2
≤ θ ≤ π

2
(1)

Note that the position θ = α
2 is an unstable equilibrium position. Theoretically, the

coin will fall if there is even the slightest perturbation to the right, but as we consider a
static model here, i.e., without any dynamics or perturbations, the coin should theoretically
stay in equilibrium for this position θ = α

2 .

Foundations 2022, 2, 547–560. https://doi.org/10.3390/foundations2030037 https://www.mdpi.com/journal/foundations

https://doi.org/10.3390/foundations2030037
https://doi.org/10.3390/foundations2030037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foundations
https://www.mdpi.com
https://orcid.org/0000-0003-4884-3827
https://doi.org/10.3390/foundations2030037
https://www.mdpi.com/journal/foundations
https://www.mdpi.com/article/10.3390/foundations2030037?type=check_update&version=2


Foundations 2022, 2 548Foundations 2022, 2, FOR PEER REVIEW 2 
 

 

α 

 

d 

θ 

h 

 

Figure 1. Static model of a coin on its edge. 
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For a 50 Eurocent coin, � ≈  23.5 mm, ℎ ≈  2 mm, yielding (ℎ/�)  ≈  0.085, which 

gives a probability �edge  in the order of 5%. This means that approximately one out of 

twenty tosses should end with the coin on its edge, which is clearly too many.  

This static model is obviously not adequate to describe a real situation and must be 

refined. It shows, however, that the probability of a coin falling on its edge is not nil. 
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and the probability that it will stay on its edge is

Pedge = 1− Pside =
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πd
(4)

Another way to see it is to calculate the probability Pedge as the ratio of all values of θ,
yielding the coin to stay on its edge in the range θmin to θmax to all possible values of θ in
the range −π/2 to π/2, yielding

Pedge =

(
θmax − θmin
π
2 −

(
−π

2
) ) =

(
α
2 −

(
− α

2
)

π

)
=

α

π
≈ 2h

πd
(5)

For a 50 Eurocent coin, d ≈ 23.5 mm, h ≈ 2 mm, yielding (h/d) ≈ 0.085, which
gives a probability Pedge in the order of 5%. This means that approximately one out of
twenty tosses should end with the coin on its edge, which is clearly too many.

This static model is obviously not adequate to describe a real situation and must be
refined. It shows, however, that the probability of a coin falling on its edge is not nil.

3. Dynamic Model
3.1. General Model and Equations

In addition to the hypothesis of a fair coin, i.e., a homogeneous flat circular cylinder of
mass m, one considers the following hypotheses (with bold characters denoting vectors):

- the coin is thrown manually from an initial height H with a velocity v0 under an angle
β on a horizontal surface, and an initial angular velocity ω0; for a manual throw, the
minimum and maximum possible values are considered to be

d < H < 2 m ; 0 < v0 < 5 m/s;−π

2
< β < π/2 ; 0 < ω0 < 10π rad/s (6)

where v0 and ω0 are the norms of the vectors v0 and ω0;

- the coin rotation axis is horizontal and passes through the coin center of mass at all
times during the fall until impacting the landing surface;
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- the coin angular velocity after impact is along a (yet) undefined instantaneous axis of
rotation that stays horizontal at all times;

- the atmosphere is windless, without any disturbance, and the air friction is negligible;
- the landing surface is a perfectly horizontal, plane, solid and immovable surface;
- in the first approach, one considers that there is no rebound of the coin; the rebound

case is addressed in the second part of the paper [3].

One considers further a referential frame with its origin at the impact point on the
landing surface, its Z axis perpendicular to the landing surface and directed downward, its
X and Y axes in the horizontal plane of the landing surface, with X pointing in the direction
of the throw (see Figure 2).
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Figure 2. Dynamic model of a coin throw with a clockwise initial rotation. 
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Figure 2. Dynamic model of a coin throw with a clockwise initial rotation.

The velocity vectors of the coin center of mass before and after impact are noted as,
respectively, v and u, and the coin angular velocity vectors before and after impact are
noted as, respectively, ωb and ωa. Since the landing surface is immovable and with ⊗
denoting the vector product, the equations of impact are [1]

m u = m v + R (7)

Ia ωa = Ib ωb + ρ ⊗ R (8)

where R is the impulse of the impact, having components N and T respectively, normal to
and along the surface at the point of contact; Ia and Ib are the moments of inertia of m at the
coin center of mass with respect to the instantaneous axis of rotation immediately after and
before impact; and ρ is the distance vector from the impact point to the coin center of mass.

The components of the coin velocities before impact are obviously

v =

(
v0 cos β, 0,

√
v2

0 sin2β + 2gH
)

(9)

ωb = (0 , (±ω0), 0) (10)

since the initial rotation can be in either direction. The coin moment of inertia before impact is

Ib =
m
4

(
h2

3
+

d2

4

)
(11)

with respect to the instantaneous horizontal axis of rotation passing through the coin center
of mass.
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The components of the distance vector are (see Figure 3)

ρ =
(

ρ sin(θ − α

2
), 0, ρ cos(θ − α

2
)
)

(12)

with ρ =
√

h2+d2

2 and where, from here onward, θ is the angle from the downward vertical
to the mid-plane parallel to the coin sides counted positively in the counterclockwise
direction.
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Note that to be exact, the height H from which the coin falls should be less, as the
coin’s center of mass never touches the landing surface. The height H should be replaced
by
(

H − ρ cos(θ − α
2
)
), but as ρ cos(θ − α

2 ) is much smaller than H for any value of θ at
impact, one can simplify the problem by considering H only.

With the hypothesis that the angular velocity after impact is along a horizontal instan-
taneous axis of rotation, one also has

ωa = (0 , (±ωa), 0) (13)

Equations (7) and (8) reduce then to

along X: m ux = m v0 cos β − T (14)

along Y: Ia (±ωa) = Ib (±ω0)− N ρx − T ρz (15)

along Z: m uz = m
√

v2
0 sin2 β + 2gH + N (16)

An additional condition is given by the nature of the impacting bodies and their
surfaces. Four cases can be classically considered:

(1) both bodies are inelastic and perfectly rough,
(2) both bodies are inelastic and perfectly smooth,
(3) both bodies are elastic and perfectly smooth,
(4) both bodies are elastic and partially rough.

3.2. Inelastic and Perfectly Rough Bodies

In the first case, if the bodies are inelastic and perfectly rough, the particles of the coin
and of the landing surface do not separate after collision, and their relative velocity is nil,
giving the condition

u + ωa ⊗ ρ = 0 (17)

yielding
along X: ux = −(±ωa ) ρz (18)

along Z: uz = (±ωa ) ρx (19)
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which, with Equations (14) and (16), allow us to find the tangential and normal components
of the impulse at impact

T = m (v0 cos β + (±ωa ) ρz) (20)

N = m ((±ωa ) ρx −
√

v2
0 sin2 β + 2gH (21)

The replacement in (15) yields the angular velocity after impact

(±ωa) =
κ(±ω0)− v0 cosβ cos(θ − α

2 ) +
√

v2
0 sin2 β + 2gH sin(θ − α

2 )

κa + ρ
(22)

where

κ = κb =
Ib

ρm
=

(
h2

3 + d2

4

)
2
√

h2 + d2
and κa =

Ia

ρm
(23)

For the coin to stay on its edge, the angular velocity after impact ωa must become nil,
while |θ| < α

2 . Solving Equation (22) ωa = 0 for the variable θ and using the formulae for
the half-angle yield

θ =
α

2
− 2arctan


√

v2
0 sin2 β + 2gH ±

√
v2

0 + 2gH − κ2ω2
0

v0 cos β + κ(±ω0)

 (24)

or θ =
α

2
− 2arctan


1±

√√√√1−
(

κ(±ω0)√
v2

0 sin2 β+2gH

)2

+

(
v0 cos β√

v2
0 sin2 β+2gH

)2

κ(±ω0)+v0 cos β√
v2

0 sin2 β+2gH

 (25)

with the resolution condition
v2

0 + 2gH ≥ κ2ω2
0 (26)

The condition |θ| < α
2 yields successively

− α

2
< θ <

α

2
(27)

0 <


√

v2
0 sin2 β + 2gH ±

√
v2

0 + 2gH − κ2ω2
0

v0 cos β + κ(±ω0)

 < tan
(α

2

)
=

h
d

(28)

meaning that the argument of the arctan function in relations (24) or (25) must be positive
and smaller than h/d.

For the positive condition, the numerator and the denominator must be of the same
sign. Considering the negative sign in front of the second root in the numerator of (24):

- for both numerator and denominator to be positive, the first root must be greater than
the second, yielding

v2
0 cos2 β < κ2ω2

0 (29)

and the denominator must be such that

v0 cos β + κ(±ω0) > 0 (30)
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which is true only for a positive sign in front of ω0, i.e., an initial coin counterclockwise
rotation, as for a negative sign in front of ω0, i.e., an initial coin clockwise rotation, one
must have in addition

v0 cos β > κω0 (31)

which contradicts condition (29);

- for both numerator and denominator to be negative, the first root must be smaller
than the second, yielding

v2
0 cos2 β > κ2ω2

0 (32)

and the denominator must be such that

v0 cos β + κ(±ω0) < 0 (33)

which is only possible for a negative sign in front of ω0, i.e., an initial coin clockwise
rotation, and for

v0 cos β < κω0 (34)

which contradicts condition (32).
Considering the positive sign in front of the second root in the numerator of (24), the

denominator must be positive, which is true either for a positive sign in front of ω0, i.e., an
initial coin counterclockwise rotation, or for a negative sign in front of ω0, i.e., an initial
coin clockwise rotation, in addition to

v0 cos β > κω0 (35)

However, the solution, in this case, yields too large a value of θ, as the right-hand part
of the double inequality of condition (28) is not fulfilled.

In conclusion, for this first case, the only possible solution is given by an initial coin
counterclockwise rotation with the condition (29), which coupled with condition (26), yields

0 <

√
κ2ω2

0 − v2
0 cos2 β√

v2
0 sin2 β + 2gH

≤ 1 (36)

For the right part of the condition (28), considering a positive sign in front of ω0, it yields∣∣∣∣∣∣
κω0 −

(
d2−h2

d2+h2

)
v0 cos β√

v2
0 sin2 β + 2gH

∣∣∣∣∣∣ < 2hd
h2 + d2 (37)

where vertical bars denote the absolute value. These two conditions constrain the vertical
velocity

√
v2

0 sin2 β + 2gH of the falling coin.
Within the above conditions, the maximum and minimum values of θ are

θmax =
α

2
− arctan


√

v2
0 sin2 β + 2gH −

√
v2

0 + 2gH − κ2ω2
0

v0 cos β + κω0


min

(38)

θmin =
α

2
− arctan


√

v2
0 sin2 β + 2gH −

√
v2

0 + 2gH − κ2ω2
0

v0 cos β + κω0


max

(39)



Foundations 2022, 2 553

The probability that the coin will end on its edge is thus

Pedge =
(

θmax −θmin
π

)
= 2

π

(
arctan

(√
v2

0 sin2 β+2gH−
√

v2
0+2gH−κ2ω2

0
v0 cos β+κω0

)
max

−arctan

(√
v2

0 sin2 β+2gH−
√

v2
0+2gH−κ2ω2

0
v0 cos β+κω0

)
min

) (40)

The maximum value of this probability will occur for the largest value of θmax and the
smallest value of θmin. Considering that θ is bound by α/2 and −α/2 (27), θmax = α/2
and θmin = −α/2, which would yield the same value of the maximum probability as for
the static case (5). However, one still has to verify that the values of θmax and θmin can be
achieved within the ranges (6) of the four initial parameters H, v0, β and ω0.

For θmax = α/2 to occur, the argument of the arctan function in Equation (38)
must be nil, i.e., for the limiting case where ω0 min = 0 and either v0 min = 0 and
− π/2 ≤ β ≤ π/2, or β = ±π/2 and v0 taking any value, with H taking any value.

For θmin = −α/2, the arctan function in Equation (39) must be equal to or larger than
−α/2, which in most cases is not possible within the conditions (36) and (37). In fact, the
argument of the arctan function in θmin (39) is maximum for ω0 max, v0 min and Hmin, with
β taking any value between −π/2 and π/2, yielding

θmin =
α

2
− arctan


√

v2
0 min sin2 β + 2gHmin −

√
v2

0 min + 2gHmin − κ2ω2
0 max

v0 min cos β + κω0 max


max

(41)

yielding for the ranges of values (6) with v0 min = 0 and Hmin = d,

θmin =
α

2
− arctan

 √
2gd

κω0max

1−

√
1−

κ2ω2
0max

2gd

 (42)

The maximum probability that the falling coin stays on its edge at impact then becomes
slightly less than in the static case, namely

Pedge max =

(
θmax − θmin

π

)
max

=
2
π

arctan

 √
2gd

κω0max

1−

√
1−

κ2ω2
0max

2gd

 (43)

For the values given in Equation (6) for a 50 Eurocent coin, relation (43) yields a
probability Pedge max = 0.04366 or nearly 1 throw every 23 that ends with the coin on
its edge.

For more common and practical values, let us consider a series of vertical throws
up or down (i.e., β = ±π/2) from a height H = 1.5 m with the initial coin velocities
ranging from 1 to 5 m/s and initial rotation ranging from 0.5 to 5 turns/s. The probability
that the coin will end on its edge is then Pedge = 4.96 × 10−3 or approximately 1 throw
every 202. For another series of throws with β = π/4, H = 1.5 m and the initial coin
velocities ranging from 0.01 to 0.1 m/s and initial rotation ranging from 0.5 to 5 turns/s,
Pedge = 1.17 × 10−3 or approximately 1 throw every 856.

3.3. Inelastic and Perfectly Smooth Bodies

In the second case, if the bodies are inelastic and perfectly smooth, at the moment
of impact, the X and Y components of the relative velocity of the coin contact point with
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respect to the landing surface are unaltered, while the Z component is reduced to zero [1],
giving the condition (with • denoting the scalar product):

(u − v) − (u − v) • z = 0 (44)

(u + ωa ⊗ ρ) • z = 0 (45)

where z is the unit vector following the Z axis, z = (0, 0, 1), yielding

along X: ux = vx = v0 cos β (46)

along Z: uz = (±ωa) ρx = (±ωa)ρ sin(θ − α

2
) (47)

Replacing these last two relations in Equations (14) and (16) yield

T = 0 (48)

N = m
(
(±ωa)ρ sin(θ − α

2

)
−
√

v2
0 sin2 β + 2gH) (49)

indicating that the impulse lies only in the normal direction to the surface. The replacement
in Equation (15) yields

(±ωa) =
κ(±ω0) +

√
v2

0 sin2 β + 2gH sin(θ − α
2 )

κa + ρ sin2(θ − α
2 )

(50)

For the coin to stay on its edge, the angular velocity after impact ωa must become nil,
while |θ| < α/2. Solving Equation (50) ωa = 0 for the variable θ yields

θ =
α

2
− arcsin

 κ(±ω0)√
v2

0 sin2 β + 2gH

 (51)

under the condition that the denominator in Equation (50) is different from zero, which is
always the case, as all terms are positive. For the condition |θ| < α

2 to hold, the argument
of the arcsin function in Equation (51) must be, first, positive, which is the case only for
a positive sign in front of ω0, i.e., an initial coin counterclockwise rotation, and second,
smaller than sin α, yielding for a positive sign in front of ω0

κω0√
v2

0 sin2 β + 2gH
<

(
2hd

h2 + d2

)
(52)

If this condition holds, the probability that the coin will end on its edge is then

Pedge =
(

θmax −θmin
π

)
= 1

π

(
arcsin

(
κω0√

v2
0 sin2 β+2gH

)
max

−arcsin

(
κω0√

v2
0 sin2 β+2gH

)
min

) (53)

The maximum probability will occur for θmax = α/2 for the limiting case where
ω0 min = 0 and v0, H and β taking any value (−π/2 ≤ β ≤ π/2), and for the argument
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of the arcsin function in θmin being maximum, i.e., for ω0 max, Hmin and either v0 min and
−π/2 ≤ β ≤ π/2, or β = 0 and v0 taking any value, yielding

Pedge max =

(
θmax − θmin

π

)
max

=
1
π

arcsin

(
κω0 max√

2gHmin

)
(54)

which, for the values given in Equation (6) for a 50 Eurocent coin, yields a probability
Pedge max = 0.04366 or nearly 1 throw every 23 that ends with the coin on its edge, like in the
previous case.

Throwing the coin vertically, upward or downward, i.e., β = ±π/2, from an initial
height H = 1.5 m with the initial coin velocities ranging from 1 to 5 m/s and initial rotation
ranging from 0.5 to 5 turns/s yields the same result as in the first case above. For a series of
throws with initial conditions β = π/4, H = 1.5 m and v0 ranging from 0.1 to 5 m/s and
ω0 varying between 0.5 and 5 turn/s, Pedge = 4.99 × 10−3 or approximately 1 throw every
200 will deliver the coin on its edge.

3.4. Elastic and Perfectly Smooth Bodies

In the third case, if the bodies are elastic and perfectly smooth, at the moment of
greatest compression at impact, the Z component of the relative velocity of the coin contact
point with respect to the landing surface is reduced to zero, while the X and Y components
are unaltered. The magnitude of the normal impulse can be computed as in the second
case, multiplying it by (1 + e) where e is the coefficient of restitution.

This yields, from Equation (49),

N = m
(

1 + e)
(
(±ωa)ρ sin(θ − α

2

)
−
√

v2
0 sin2 β + 2gH

)
(55)

with T still being nil. The replacement in Equation (15) yields

(±ωa) =
κ(±ω0) + (1 + e)

√
v2

0 sin2 β + 2gH sin(θ − α
2 )

κa + (1 + e)ρ sin2(θ − α
2 )

(56)

As above, for the coin to stay on its edge, the angular velocity after impact ωa must
become nil, while |θ| < α

2 . Solving Equation (56) ωa = 0 for the variable θ yields

θ =
α

2
− arcsin

 κω0

(1 + e)
√

v2
0 sin2 β + 2gH

 (57)

where the positive sign in front of ω0, i.e., an initial coin counterclockwise rotation, was
chosen to guarantee that the first part of the condition |θ| < α

2 holds, while the second
part yields

κω0√
v2

0 sin2 β + 2gH
< (1 + e)

(
2hd

h2 + d2

)
(58)

Under this condition, the probability that the coin will end on its edge is then

Pedge =
1
π

arcsin

 κω0

(1 + e)
√

v2
0 sin2 β + 2gH


max

− arcsin

 κω0

(1 + e)
√

v2
0 sin2 β + 2gH


min

 (59)
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As in the previous case, the maximum probability will occur for θmax = α/2 and for
the maximum value of the argument of the arcsin function in θmin, yielding

Pedge max =

(
θmax − θmin

π

)
max

=
1
π

arcsin

(
κω0 max

(1 + e)
√

2gHmin

)
(60)

The coefficient of restitution e obviously depends on the nature of the surface of both
bodies and can take values [2] from 0.2 for lead on lead to 0.95 for glass on glass, with
approximately 0.55 for steel on steel, yielding values of (1 + e) ranging approximately from
1.2 to slightly less than 2.

Assuming a coefficient of restitution e = 0.5, i.e., both the coin and the landing surface
being made of steel alloy, for a 50 Eurocent coin and the values given in (6), Equation (60)
yields a probability Pedge max = 0.02905 or nearly 1 throw every 34 that ends with the coin
on its edge.

Throwing the coin vertically, upward or downward, i.e., β = ±π/2, from an initial
height H = 1.5 m with the initial coin velocities ranging from 1 to 5 m/s and initial rotation
ranging from 0.5 to 5 turns/s yields Pedge = 3.304 × 10−3 or approximately 1 throw every
303 will end with the coin on its edge, i.e., less than in the first two cases.

For a series of throws of a 50 Eurocent coin with initial conditions β = π/4,
H = 1.5 m and v0 ranging from 0.1 to 5 m/s and ω0 varying between 0.5 and 5 turns/s,
Pedge = 3.33 × 10−3 or approximately 1 throw every 300 will deliver the coin on its edge.

3.5. Elastic and Partially Rough Bodies

Contrary to the first three idealized cases, this fourth case depicts reality more closely
because the partially rough character of both surfaces in contact will cause slippage to
occur. For simplicity, the following two assumptions are made:

- the slip is always in the same direction;
- the frictional impulse has a magnitude µN, where µ is the coefficient of friction and a

direction opposite to the relative motion of the point of contact on the landing surface.

The normal impulse is still calculated as in the third case.
This yields, from Equation (55),

N = m (1 + e)
(
(±ωa)ρ sin(θ − α

2

)
−
√

v2
0 sin2 β + 2gH

)
(61)

T = m µ

(
1 + e)

(
(±ωa )ρ sin(θ − α

2

)
−
√

v2
0 sin2 β + 2gH

)
(62)

The replacement in Equation (15) yields

(±ωa) =
κ(±ω0) + (1 + e)

√
v2

0 sin2 β + 2gH
(
µ cos(θ − α

2 ) + sin(θ − α
2 )
)

κa + (1 + e)ρ sin(θ − α
2 )
(
µ cos(θ − α

2 ) + sin(θ − α
2 )
) (63)

As above, for the coin to stay on its edge, the angular velocity after impact ωa must be
nil, while |θ| < α

2 . Solving Equation (63) ωa = 0 for the variable θ yields

θ =
α

2
− 2arctan


1±

√√√√1 + µ2 −
(

κ(±ω0)

(1+e)
√

v2
0 sin2 β+2gH

)2

κ(±ω0)

(1+e)
√

v2
0 sin2 β+2gH

− µ

 (64)
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under the condition that the denominator of Equation (63) is different from zero, i.e., for

θ 6= α

2
− arctan

µ(1 + e)±
√

µ2(1 + e)2 − 4 κa
ρ

(
κa
ρ + 1

)
2
(
(1 + e) + κa

ρ

)
 (65)

To verify condition (65), one must evaluate in κa (23) the coin moment of inertia Ia
after impact, which depends on the position of the instantaneous rotation axis after impact.
Under the hypothesis that the coin rotation axis after impact stays horizontal along the Y
direction, its position can be assumed between two extreme cases. The first corresponds to
the coin rotation axis after impact being identical to the one before impact, namely along
the horizontal axis passing through the coin center of mass, i.e., Ia = Ib and κa = κ. The
second case corresponds to the coin rotation horizontal axis after impact passing through
the coin contact point with the landing surface, yielding

κa =
Ia

ρm
=

(
4h2

3 + 5d2

4

)
2
√

h2 + d2
(66)

These two extreme cases can be extended to other positions of the instantaneous axis of
rotation, e.g., outside the coin at a distance from the coin center several times the diameter
of the coin, which would increase the values of parameters k1 and k2. For the sake of
argument, we limit ourselves to the two positions indicated.

Condition (65) then yields

θ 6= α

2
− arctan

µ(1 + e)±
√

µ2(1 + e)2 − 4
(

k1h2+k2d2

h2+d2

)(
(1+k1)h2+(1+k2)d2

h2+d2

)
2
(
(1 + e) + k1h2+k2d2

h2+d2

)
 (67)

where k1 and k2 take the values, respectively, k1= 1/3 and k2= 1/4 in the first case (Ia = Ib)
and k1= 4/3 and k2= 5/4 in the second case (66).

For θ to be real in Equation (64), the condition for the radical in the numerator reads

κ(±ω0)√
v2

0 sin2 β + 2gH
≤ (1 + e)

√
1 + µ2 (68)

For the condition |θ| < α
2 to hold, the argument of the arctan function in Equation (64)

must be positive and smaller than h/d. For the positive condition, the numerator and the
denominator must be of the same sign. Considering the negative sign in front of the root in
the numerator of Equation (64):

- both the numerator and denominator are positive if

(1 + e)µ <
κ(±ω0)√

v2
0 sin2 β + 2gH

(69)

that, combined with condition (68), yields

(1 + e)µ <
κ(±ω0)√

v2
0 sin2 β + 2gH

≤ (1 + e)
√

1 + µ2 (70)

which is true only for a positive sign in front of ω0, i.e., an initial coin counterclockwise rotation;

- both the numerator and denominator are negative if
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κ(±ω0)√
v2

0 sin2 β + 2gH
< (1 + e)µ (71)

which includes condition (68) and is true either for a positive sign in front of ω0, i.e., an
initial coin counterclockwise rotation, and with values of ω0 complying with condition (71),
or for all values of ω0 for a negative sign, i.e., an initial coin clockwise rotation.

For the positive sign in front of the root in the numerator of Equation (64), the denomi-
nator must be positive, which is true if condition (69) holds, meaning that the positive sign
in front of ω0 must be chosen, i.e., an initial coin counterclockwise rotation. However, the
solution, in this case, yields too large a value of θ.

The other part of the condition, i.e., the argument of the arctan in Equation (64) smaller
than h/d, as in condition (28), yields

− if µ <
h
d

: (1 + e)µ <
κω0√

v2
0 sin2 β + 2gH

< (1 + e)

(
2hd− µ

(
d2 − h2)

h2 + d2

)
(72)

− if µ =
h
d

:
κω0√

v2
0 sin2 β + 2gH

= (1 + e)
h
d

(73)

− if µ >
h
d

: (1 + e)

(
2hd− µ

(
d2 − h2)

h2 + d2

)
<

κω0√
v2

0 sin2 β + 2gH
< (1 + e)µ (74)

These three conditions include condition (68), as the right part of (68) is always greater
than the right parts of conditions (72) to (74).

Summarizing the conditions for this case:

- if µ < h
d , then condition (72) includes condition (70) and ω0 must be positive, i.e., an

initial coin counterclockwise rotation;
- if µ = h

d , then condition (73) is the limiting case of conditions (70) and (71), and ω0 is
positive, i.e., an initial coin counterclockwise rotation;

- if h
d < µ < 2hd

d2−h2 , then condition (74) includes condition (71) and ω0 is positive, i.e.,
an initial coin counterclockwise rotation;

- if µ > 2hd
d2−h2 , then condition (74) includes Equation (71) and ω0 can be either positive

or negative, i.e., an initial coin counterclockwise rotation or clockwise rotation.

Discussing the probabilities as in the first case and depending on the above conditions,
the probability that the coin will end on its edge is

Pedge = 2
π

arctan


1−

√√√√1+µ2−
(

κ(±ω0)

(1+e)
√

v2
0 sin2 β+2gH

)2

κ(±ω0)

(1+e)
√

v2
0 sin2 β+2gH

−µ


max

−arctan


1−

√√√√1+µ2−
(

κ(±ω0)

(1+e)
√

v2
0 sin2 β+2gH

)2

κ(±ω0)

(1+e)
√

v2
0 sin2 β+2gH

−µ


min


(75)

The maximum probability will occur first, for θmax = α/2 for the limiting case where

κ(±ω0)√
v2

0 sin2 β + 2gH
≈ (1 + e)µ (76)

with the approximate equal sign taken to recall that the exact equality is not allowed by
conditions (69) or (71), and second, for the argument of the arctan function in θmin being
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maximum, i.e., for ω0 max, Hmin and either v0 min and −π/2 ≤ β ≤ π/2, or β = 0 and v0
taking any value, yielding

Pedge max =

(
θmax − θmin

π

)
max

=
2
π

arctan


1−

√
1 + µ2 −

(
κ(±ω0 max)

(1+e)
√

2gHmin

)2

κ(±ω0 max)

(1+e)
√

2gHmin
− µ

 (77)

The coefficient of friction µ depends on the nature of the surface of both bodies and
can take values from 0.05 to 0.2 for steel on steel depending on whether the surfaces are
wet or dry, or up to 0.6 for steel on wood.

Assuming, for a 50 Eurocent coin, coefficients of restitution e = 0.5 and of friction
µ = 0.05, i.e., both the coin and the landing surface being made of a steel alloy with wet
surfaces, the case µ < h

d applies and with the values Equation (6), Equation (77) yields
a probability Pedge max = 0.04492 or nearly 1 throw every 22 that ends with the coin on
its edge.

For more common values, condition (72) restricts drastically the choice of values of
the coin’s initial rotation velocities with respect to the coin’s vertical velocity at impact. For
the above values of coefficients e and µ, condition (72) yields

0.075 <

 κω0√
v2

0 sin2 β + 2gH

 < 0.1796 (78)

with κ = 2.955 × 10−3 m, which leaves a relatively limited range of values for the four
initial parameters. This shows that a coin ending on its edge is a very rare event in reality.

Nevertheless, if one extends the ranges (6) of the allowed initial conditions, throwing
the coin either horizontally (β = 0) with any initial velocity v0 or vertically (β = −π/2)
with a nil initial velocity, from initial heights between 5 and 10 cm and with initial rotation
velocities between 6 and 12 turns/s yields a probability Pedge = 9.916 × 10−3 or 1 throw
approximately every 100 that would end with the coin on its edge.

From a normal initial height H = 1.5 m, tossing the coin upward at 45◦ (β = π/4)
with an initial rotation of 33 turns/s with initial velocities ranging from 0.1 to 1 m/s leads
to a probability Pedge = 1.993 × 10−4 or 1 throw every 5017 ending with the coin on its edge.

For larger values of the friction coefficient, i.e., µ ≈ 0.1, the friction quickly becomes too
important, and the coin cannot come to a vertical position after impact; it falls immediately
on one of its sides.

For all the above values, the term under the root sign in condition (67) is negative,
yielding imaginary values for the argument of the arctan function, which shows that
condition (67) is fulfilled for all practical values of θ.

4. Conclusions

The five theoretical models developed in this paper show that there is a non-nil
probability that a falling coin will not end up on one of its sides but on its edge, with
decreasing probabilities for models describing reality from closer up. It is interesting to
note that the probabilities calculated in all the above case models are independent of the
coin mass but strongly depend on several other factors, mainly the coin vertical velocity
before impact, which depends on the initial height H and the initial angle β of the throw. It
appears that increasing the initial height decreases the probability that the coin will end
on its edge, while increasing the initial rotation will increase this probability. Depending
on the characteristics of the surface, throwing the coin vertically seems to decrease the
probability of the coin ending on its edge. The role of friction is obviously important; if the
surface conditions are such as to increase the friction coefficient µ above a certain value
depending on the models, the coin can no longer stop on its edge and will inevitably fall
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on one side. For a series of throws from an average height with common velocity values
and appropriate surface conditions, the probability that a 50 Eurocent coin ends up on its
edge is calculated to be in the order of one against several thousand.

Coin geometry is also an important factor. A 25 US Dollar cent coin has a thinner edge
(approximately d ≈ 1.5 mm), which would decrease all the above-calculated probabilities,
although these would stay in the same order of magnitude.

However, these theoretical models are just what they are: theoretical models. To verify
these different theoretical models, real experiments would be needed with a coin-throwing
machine that could be designed and built in a way to deliver coin throws with exactly
similar initial conditions. This could be envisaged as a continuation of this theoretical work.

Furthermore, all effects cannot be taken completely into account, e.g., the coin may
spin around its symmetry axis, the coin may not be exactly “fair” (i.e., with a perfectly
homogeneous mass distribution), surface conditions of the coin and the landing surface may
not be optimal, as assumed above, etc. In addition, not all dynamic effects have been taken
into account. Among these, a dynamic instability due to vibration inside the body of the
coin is caused by the impact of the coin edge side with the landing surface. This instability
might be sufficient to destabilize a configuration that was found sufficiently stable in the
theoretical models above and consequently decreases even further the probability of a coin
landing on its edge. The destabilizing effect of this instability will be investigated further
in a subsequent paper.

Therefore, to throw a coin in the air and let it fall will usually end up with the coin on
one of its sides. Nevertheless, the probability that the coin ends on its edge is not nil, even
in reality.

In the second part of the paper, the case of rebounds is investigated, and it shows that the
probability of a coin landing on its edge is even smaller than in the case without rebounds.
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