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Abstract: The significant feature of this paper is that the semi-local convergence of high order methods
for solving nonlinear equations defined on abstract spaces has not been studied extensively as done
for the local convergence by a plethora of authors which is certainly a more interesting case. A
process is developed based on majorizing sequences and the notion of restricted Lipschitz condition
to provide a semi-local convergence analysis for the third convergent order Noor–Waseem method.
Due to the generality of our technique, it can be used on other high order methods. The convergence
analysis is enhanced. Numerical applications complete are used to test the convergence criteria.
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1. Introduction

In this article we are concerned with the task of finding a solution χ∗ for the nonlinear
equation

G(x) = 0, (1)

where G : B ⊆ T1 → T2 is a differentiable nonlinear operator in the sense of Fréchet, T1
and T2 stand for Banach spaces and B 6= ∅ is an open set. A plethora of applications
from applied as well as theoretical disciplines can be reduced to determining the point
χ∗ ∈ B, but this task is very difficult in general. Moreover, the closed form of χ∗ is
hard to find unless in special cases. This forces researchers and practitioners to resort
to iterative approximations to χ∗. A plethora of such approximations can be found in
the literature [1–5]. Among those the most useful are the high convergence order ones.
We noticed that many local convergence results exist for these methods relying Taylor
expansions and derivatives of order at least one higher than the order of the method. As an
example consider the third order Noor–Waseem method [6] defined by x0 ∈ Ω,

yt = xt − [G′(xt)]
−1G(xt),

xt+1 = xt − 4[At]
−1G(xt), t = 0, 1, 2, · · · , (2)

where At = 3G′
(

2xt+yt
3

)
+ G′(yt).

The existence of derivatives up to fourth order has been assumed although derivatives
of order two and above do not appear on method. Moreover, method (2) may converge
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even if derivatives other than the first do not exist. Consider the academic and motivational
example for T1 = T2 = < and B = [−0.5, 1.5] by solving the nonlinear equation

ϕ(u) = 0,

where function ϕ is defined as

ϕ(u) =

{
u3log(u2) + u5 − u4, if u 6= 0
0, if u = 0.

Then, we see that χ∗ = 1 ∈ B and the third derivative is

ϕ′′′(u) = 6logu2 + 60u2 − 24u + 22.

Notice that the third derivative of function ϕ is unbounded on B. Therefore, conver-
gence is not assured by the results in [6]. There are no uniqueness of χ∗ results or error
bounds on ||xt − x∗||, ||yt − xt||, ||xt+1 − yt|| that can be computed. The same observations
can be made for the local results of other methods [4,6–9]. Hence, there is a need to de-
velop results using conditions only on the first derivative that appears on these methods.
These results should also provide the uniqueness of χ∗ and the error bounds in advance.
Moreover, they should be given for the more interesting semi-local convergence case. It
turns out that these objectives can be achieved not only for (2) but for other methods too
in a similar way. This is the novelty and motivation of our article. That is to expand the
applicability under weaker conditions for these methods. It turns out that our error bounds
are more accurate, and our convergence criteria hold even when the equivalent hypotheses
in the preceding references are violated.

The remainder of this paper is organized as follows: Majorizing sequences for method (2)
are introduced and studied in Section 2. The semi-local convergence is given in Section 3 for
method (2). Numerical applications appear in Section 4. Concluding remarks in Section 5
complete this article.

2. Majorizing Sequences

A recall of the definition of a mozorizing sequence is needed.

Definition 1. A nonnegative sequence {vt} is called majorizing for a sequence {wt} in a Banach
space T if for all t = 0, 1, 2, · · ·

‖wt+1 − wt‖ ≤ vt+1 − vt. (3)

Scalar sequences are developed that majorize method (2). Let κ0 > 0, κ > 0, κ1 > 0 and t ≥ 0 be
given constants. Define sequence {ut} by u0 = 0, v0 = Ω

ut+1 = vt +
2κ(vt − ut)2

1− κ0
6 (ut + 2vt)

,

vt+1 = ut+1 +
κ(ut+1 − ut)2 + 2κ1(ut+1 − vt)

2(1− κ0ut+1)
. (4)

Next, we present convergence criteria for sequence {ut}.

Lemma 1. Suppose that for all t = 0, 1, 2, · · · ,

κ0(ut + 2vt) < 6 and κ0ut+1 < 1. (5)

Then, sequence {ut} is non-decreasing, bounded from above by 1
κ0

and converges to its unique least
upper bound u∗ ∈ [0, 1

κ0
].
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Proof. It follows by (4) and (5) that

0 ≤ ut ≤ vt ≤ ut+1 <
1
κ0

,

so, we conclude that limt→∞ ut = u∗.

Stronger convergence criteria than (4) can be given but which are easier to verify as
follows:

Define recurrent polynomials on the interval [0, 1) by

p(1)t (u) = 2κut−1Ω +
κ0

6
(3(1 + u + · · ·+ ut)Ω + 2utΩ)− 1,

p(2)t (u) = 16κ3u3t−1Ω3 + 8κ2u2t−1Ω2 + κ2ut−1Ω

+2κ0(1 + u + · · ·+ ut+1)Ω− 2,

q1(u) = 2κu− 2κ +
κ0

6
(5u2 − 2u),

q(2)t (u) = 16κ3u2t+3Ω2 − 16κ3u2tΩ2 + 8κ2ut+2Ω

−8κ2utΩ + κ2u− κ2 + 2κ0u3,

and

q2(u) = 16κ3u5Ω2 − 16κ3u2Ω2 + 8κ2u3Ω− 8κ2uΩ + κ2u− κ2 + 2κ0u3,

where κ2 = (1 + 8κ1)κ. Set also p2(u) = p(2)1 (u). Notice that q1(0) = −2κ, q1(1) = κ0
2 ,

q2(0) = −κ2 and q2(1) = 2κ0. Hence, polynomials q1 and q2 have zeros in the interval (0, 1).
Denote by α and v the smallest such zeros, respectively. These polynomials are connected.

Lemma 2. The following items hold

(i) p(1)t+1(u) = p(1)t (u) + q1(u)u(t−1)Ω.

In particular, p(1)t+1(u) = p(1)t (u) at u = α.

(ii) q(2)t+1(u) ≤ q(2)t (u).

In particular, q(2)t (u) ≤ q2(u) at u = v.

and
(iii) p(2)t+1(u) = p(2)t (u) + q(2)t (u)u(t−1)Ω ≤ p(2)t (u) + q2(u)u(t−1)Ω.

In particular, p(2)t+1(u) ≤ p(u)t (u) at u = v.

Then, sequence {ut} is non-decreasing, bounded from above by 1
κ0

and converges to its unique least
upper bound u∗ ∈ [0, 1

κ0
].

Proof. By the definition of these polynomials we have in turn:

(i) p(1)t+1(u) = p(1)t+1(u)− p(1)t (u) + p(1)t (u)

= 2κutΩ +
κ0

6
(3(1 + u + · · ·+ ut)Ω + 2ut+1Ω)− 1

−2κut−1Ω− κ0

6
(3(1 + u + · · ·+ ut)Ω + 2utΩ) + 1 + p(1)t (u)

= p(1)t (u) + q1(u)ut−1Ω,
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so,

p(1)t+1(α) = p(1)t (α) + q1(α)α
(t−1)Ω, since q1(α) = 0.

(ii) q(2)t+1(u)− q(1)t (u) = 16κ3u2t+3Ω2 − 16κ3u2tΩ2 + 8κ2ut+2Ω− 8κ2utΩ

= 16κ3u2tΩ2(u− 1) + 8κ2utΩ(u2 − 1)

= 16u3u2tΩ2(u− 1)(u2 + u + 1) + 8κ2Ω(u− 1)(u + 1)ut ≤ 0.

(iii) p(2)t+1(u) = 16κ3u3t+2Ω3 + 8κ2u2t+1Ω2

+ κ2utΩ + 2κ0(1 + u + · · ·+ ut+2)Ω− 16κ3u3t−1Ω3

− 8κ2u2t−1Ω2 − κ2ut−1Ω− 2κ0(1 + u + · · ·+ ut+1)Ω + p(2)t (u)

= p(2)t (u) + q(2)t (u)u(t−1)Ω ≤ p(2)t (u) + q1(u)u(t−1)Ω

= p(2)t (u) + q2(u)u(t−1)Ω

Set

a = 2κΩ
1− κ0Ω

3

, b = κ(u1−u0)
2+2κ1(u1−Ω)

2Ω(1−κ0u1)
f or Ω 6= 0,

c = max{a, b} and d = min{1− 2κ0Ω, v}.

Lemma 3. Suppose
κ0u1 < 1, 2κ0Ω < 1, p2(α) ≤ 0, (6)

and
0 ≤ c ≤ α ≤ d. (7)

Notice that conditions (6) and (7) determine the smallness of Ω.
Then, sequence {ut} is non-decreasing, bounded from above by u∗∗ = Ω

1−α and converges to
its unique least upper bound u∗ ∈ [0, Ω

1−α ]. Moreover, the following estimates hold:

0 ≤ vt − ut ≤ αtΩ, (8)

and
0 ≤ ut+1 − vt ≤ αt+1Ω. (9)

Proof. The following items shall be shown using induction

0 ≤ 2κ(vk − uk)

1− κ0
6 (uk + 2vk)

≤ α, (10)

0 ≤ κ(uk+1 − uk)
2 + 2κ1(uk+1 − vk)

2(1− κ0uk+1)
≤ α(vk − uk), (11)

and

0 ≤ uk ≤ vk ≤ uk+1. (12)

These estimates hold for k = 0 by the expression (4), the choices of a, b, conditions (6)
and (7). It follows that

0 ≤ u1 − v0 ≤ αΩ,
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0 ≤ v1 − u1 ≤ α(v0 − u0) ≤ αΩ,

so u1 ≤ Ω + αΩ =
1− α2

1− α
Ω <

Ω
1− α

= u∗∗.

Suppose

0 ≤ vk − uk ≤ αkΩ, 0 ≤ uk+1 − vt ≤ αk+1Ω and

u
k+1≤ 1−αk+2

1−α Ω<u∗∗
,

hold for all k ≤ t. Then, evidently (10) holds if

2καkΩ +
κ0

6
α

[
1− αk+1

1− α
Ω + 2

(
1− αk+1

1− α
+ αkΩ

)]
− α ≤ 0,

or

p(1)k (u) ≤ 0 at u = α. (13)

Define function p(1)∞ on the interval [0, 1] by

p(1)∞ (u) = lim
k→∞

p(1)k (u). (14)

It follows by the definition of p(1)∞ and p(1)k that

p(1)∞ (u) =
κ0Ω

2(1− u)
− 1. (15)

Then, by Lemma 2(i) and expression (15), estimate (14) holds if

κ0Ω
2(1− u)

− 1 ≤ 0 at u = α,

which is true by the right hand side of (7). Notice that

2
κ0

6
(uk + 2vk) ≤

κ0

3
3

Ω
1− α

≤ 1,

by the choice of α, so

0 ≤ 1
1− κ0

6 (uk + 2vk)
≤ 2.

Hence, (11) holds if

κ[4κ(vk − uk)
2 + (vk − uk)]

2 + 8κ1κ(vk − uk)
2

2(1− κ0uk+1)
≤ α(vk − uk),

or

κ[4κ(vk − uk) + 1]2(vk − uk) + 8κ1κ(vk − uk)

2(1− κ0uk+1)
≤ α,

or

16κ3(vk − uk)
3 + 8κ2(vk − uk)

2 + κ(vk − uk) + 8κ1κ(vk − uk) + 2κ0uk+1 − 2α ≤ 0,
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or

16κ3(αkΩ)3 + 8κ2(αkΩ)2 + κ2αkΩ + 2ακ0
1− αk+2

1− α
Ω− 2α ≤ 0,

or

p(2)k (u) ≤ 0 at u = α. (16)

By Lemma 2(iii), the definition of α and v, estimate (16) holds if p(2)1 (u) ≤ 0 at u = α, which
is true by (13). The induction for estimate (10) and (11) is completed. Then, estimate (12)
holds by expressions (4), (10) and (11). It follows that sequence {ut} is nondecreasing and
bounded from above by u∗∗ and as seen it converges to u∗ ∈ [0, Ω

1−α ].

3. Semilocal Convergence

Throughout this section, we prove the existence theorem for the method (2) for which
the conditions H are needed. Assume:

(h1) There exist x0 ∈ B, Ω ≥ 0 such that [G′(x0)]
−1 ∈ δ(T2, T1) and ‖[G′(x0)]

−1[G(x0)]‖ ≤ Ω.
(h2) There exists κ0 > 0 such that for each z ∈ B

‖[G′(x0)]
−1(G′(z)− G′(x0))‖ ≤ κ0‖z− x0‖. (17)

Define B1 = U(x0, 1
κ0
) ∩ B.

(h3) There exists κ > 0, κ1 > 0 such that for each µ ∈ B1, w ∈ B1

‖[G′(x0)]
−1(G′(µ)− G′(w))‖ ≤ κ‖µ− w‖,

and ‖[G′(x0)]
−1G′(µ)‖ ≤ κ1.

(h4) Conditions of Lemma (1) or Lemma (3) hold, and
(h5) U[x0, u∗] ⊂ B.

Then, the following semilocal result for method (2) can be shown under conditions H.

Theorem 1. Assume conditions H. Then, iteration {xt} given by method (2) is well defined in
U[x0, u∗] remains in U[x0, u∗] for each t = 0, 1, · · · and converges to a solution χ∗ of equation
G(x) = 0 in U[x0, u∗]. Moreover, the following assertions hold

||yt − xt|| ≤ vt − ut, (18)

||xt+1 − yt|| ≤ ut+1 − vt, (19)

and

||χ∗ − xt|| ≤ u∗ − ut. (20)

Proof. By condition (h1) and the expression (4),

‖y0 − x0‖ = ‖[G′(x0)]
−1[G′(x0)]‖ ≤ Ω = v0 − u0 ≤ u∗,

so (17) holds for t = 0 and y0 ∈ U[x0, u∗]. Let µ ∈ U[x0, u∗]. Using condition (h2), we get

‖[G′(x0)]
−1(G′(µ)− G′(x0))‖ ≤ κ0‖µ− x0‖ ≤ κ0u∗ < 1,

Thus, the Banach lemma on linear invertible operators [1,2,7] assures that [G′(µ)]−1

exists and
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‖[G′(µ)]−1G′(x0)‖ ≤
1

1− κ0‖µ− x0‖
. (21)

Next, we can write from the method (2)

xk+1 = yk + [G′(xk)]
−1G(xk)− 4[Ak]

−1G(xk)

= yk + ([G′(xk)]
−1 − 4[Ak]

−1)G(xk)

= yk − (4[Ak]
−1 − [G′(xk)]

−1)G(xk)

= yk − [Ak]
−1(4[G′(xk)]

−1 − Ak)[G′(xk)]
−1G(xk). (22)

Some estimates are needed assuming inequalities (18) and (19) for all k ≤ t

4[G′(xk)]− 3G′
(

2xk + yk
3

)
− G′(yk)

= 3[G′(xk)]− G′
(

2xk + yk
3

)
] + [G′(xk)− G′(yk)],

Hence, by conditions (h2) and (h3)

‖[G′(x0)]
−1[4[G′(xk)]− 3G′

(
2xk+yk

3

)
− G′(yk)]‖

≤ 3κ‖xk −
2xk+yk

3 ‖+ κ‖yk − xk‖
≤ 2κ‖yk − xk‖ ≤ 2κ(vk − uk),

(23)

‖[4G′(x0)]
−1[Ak − 4G′(x0)]‖

≤ 1
4
[3‖[G′(x0)]

−1[G′
(

2xk + yk
3

)
− G′(x0)]‖

+‖[G′(x0)]
−1(G′(yk)− G′(x0))‖]

≤ 1
4

κ0[‖
2xk + yk

3
− x0‖+ ‖yk − x0‖]

≤ 1
4

κ0[‖
2‖xk − x0‖+ ‖yk − x0‖

3
+ ‖yk − x0‖]

≤ 1
4

κ0[
1
3
(2uk + vk) + vk] =

κ0

6
(uk + 2vk) < 1,

so

‖[Ak]
−1G′(x0)‖ ≤

1
1− κ0

2 (uk + 2vk)
. (24)

Hence, by expressions (4) and (22)–(24), we have

‖xk+1 − yk‖ ≤
2κ(vk − uk)(vk − uk)

1− κ0
2 (uk + 2vk)

= uk+1 − vk,

and

‖xk+1 − x0‖ ≤ ‖xk+1 − yk‖+ ‖yk − x0‖
≤ uk+1 − vk + vk − u0 = uk+1 ≤ u∗.

Therefore, iterate xk+1 ∈ U[x0, u∗] and inequality (19) holds for t = 0. Hence, iterate yk+1 is
well defined (by (21) for µ = xk+1). We can write

G(xk+1) = G(xk+1)− G(xk) + G(xk)

= G(xk+1)− G(xk)− G′(xk)(yk − xk)

= G(xk+1)− G(xk)− G′(xk)(xk+1 − xk) + G′(xk)(xk+1 − yk),
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so by assumption (h3) and the induction hypotheses

‖[G′(x0)]
−1G(xk+1)‖ ≤ κ

2‖xk+1 − xk‖2 + κ1‖xk+1 − yk‖
≤ κ

2 (uk+1 − uk‖2 + κ1‖uk+1 − vk‖.
(25)

and

‖yk+1 − xk+1‖ ≤ ‖[G′(xk+1)]
−1G′(x0)‖+ ‖[G′(x0)]

−1G(xk+1)‖

≤ κ(uk+1 − uk)
2 + 2κ1(uk+1 − vk)

2(1− κ0uk+1)
= vk+1 − uk+1,

and

‖yk+1 − x0‖ ≤ ‖yk+1 − xk+1‖+ ‖xk+1 − x0‖
≤ vk+1 − uk+1 + uk+1 − u0 = vk+1 ≤ u∗,

which complete the induction for inequality (18) and (19). The sequence {uk} is fundamen-
tal as convergent and majorizes sequence {xt}. Therefore, sequence {xt} is fundamental
in Banach space T1). Hence, there exists χ∗ ∈ U[x0, u∗] such that limk→∞ xk = χ∗. Then,
by letting k→ ∞ in inequality (24), we get G(χ∗) = 0, where we also used the continuity
of G.

Remark 1. (a) The limit point u∗ can be replaced by 1
κ0

and Ω
1−α given in closed form in Theorem 1

under the conditions of Lemmas 1 and 3, respectively.
(b) The solution v of equation q2(u) = 0 depends on Ω, but it can independent of Ω as follows.

Define polynomial

q2(u) = 2κ0u3 + κ2u− κ2.

Then, we have q2(0) = −κ2 and q2(1) = 2κ0. Denote the smaller zero of equation q2(u) = 0 in
(0, 1) by v.

Notice also that

q2(u) = 16κ3u2Ω2(u3 − 1) + 8κ2u3Ω(u2 − 1) + q2(u)

≤ q2(u),

so v, q2 can replace v, q2, respectively, in the previous results, In this case v is independent of Ω.

A uniqueness of the solution result follows.

Proposition 1. Assume

(1) There exists element χ∗ ∈ U[x0, δ0] ⊂ B for some δ0 > 0 which is a simple solution for
equation G(x) = 0.

(2) Condition (h2) holds.
(3) There exists δ1 ≥ δ0 such that

κ0

2
(δ0 + δ1) < 1. (26)

Define B2 = U[x0, δ1] ∩ B.
Then, the element χ∗ is the only solution of equation G(x) = 0 in the set B2.
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Proof. Assume there exists µ∗ ∈ B2 satisfying G(µ∗) = 0. Define linear operator
M =

∫ 1
0 G′(µ∗ + θ(χ∗ − µ∗))dθ. Then, in view of condition (h2) and inequality (26),

we obtain in turn

‖[G′(x0)]
−1(M− G′(x0))‖ ≤ κ0

∫ 1

0
[(1− θ)‖µ∗ − x0‖+ θ‖χ∗ − x0‖]dθ

=
κ0

2
(δ0 + δ) < 1.

Therefore, operator M is invertible. Hence, by using the identity M(µ∗ − χ∗) = G(µ∗)−
G(χ∗) = 0, we deduce that µ∗ = χ∗.

Remark 2. Notice that not all conditions H are used in Proposition 1, But if they were used, then
we can certainly set δ0 = u∗.

4. Numerical Examples

Example 1. To revert to the motivational example from the study’s introductory section, dealing
with the study of semilocal convergence, Let u0 = 0.9955. The consecutive derivatives of ϕ are

ϕ′(u) = 3u2logu2 + 5u4 − 4u3 + 2u2,

ϕ′′(u) = 6ulogu2 + 20u3 − 12u2 + 10u,

ϕ′′′(u) = 6logu2 + 60u2 − 24u + 22.

It can be easily seen that ϕ′′′ is unbounded on B. Through the conditions (h1), (h2) and (h3), we
can calculate

‖[ϕ′(u0)]
−1.ϕ(u0)‖ = 0.00456182 = Ω,

κ0 = 21.5093, κ = 7.03249 and κ1 = 1.3044, where B1 = U(u0, 1
κ0
) ∩ B. Next, we verify the

conditions (5), (6) and (7) of Lemma 1 and Lemma 3 where α = 0.714123 and v = 0.766581.
Majorizing sequences

ut = {0, 0.00486441, 0.00540241, 0.00540983, 0.00540983, · · · }
vt = {0.00456182, 0.00486441, 0.00539816, 0.00540983, 0.00540983, · · · }

converge to u∗ ∈ [0, 0.159573]. Table 1 displays error estimates (18), (19) and (20) which are not
computable in earlier studies. Nevertheless, all the assumptions of the Theorem 1 are satisfied and
hence, the iteration {xt} given by scheme (2) converges to a solution χ∗ of equation G(x) = 0
in U[u0, 0.00540983]. Precisely, we present a technique that gives weaker sufficient semi-local
convergence conditions, tighter error estimates on the distances involved, and more exact information
on the solution’s location.

Table 1. Error estimates.

t vt − ut ut+1 − vt u∗ − ut

0 0.00456182 0.00030259 0.00540983

1 0 0.000538 0.00054542

Example 2 ([10]). Next, in order to demonstrate the applicability of our hypothesis in a real-world
scenario, take the following quartic equation, that describes the fraction of the nitrogen-hydrogen
feed that gets converted to ammonia, called the fractional conversion. For 250 atm and 500C, this
equation is written as follows:

f (x) = x4 − 7.79075x3 + 14.7445x2 + 2.511x− 1.674.
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In this example, we wil look at the domain B = (0.3, 0.4), where x0 = 0.3. Through the conditions
(h1), (h2) and (h3), we can calculate

‖[ f ′(x0)]
−1. f (x0)‖ = 0.02179956 = Ω,

κ0 = κ = 1.76728 and κ1 = 1.15604, where B1 = U(x0, 1
κ0
) ∩ B. Next, we verify the condi-

tions (5), (6) and (7) of Lemmas 1 and 3 where α = 0.843909 and v = 0.87568. Majorizing sequences

ut = {0, 0.0234965, 0.0260807, 0.0261157, 0.0261157, · · · }
vt = {0.0217956, 0.026057, 0.0261157, 0.0261157, 0.0261157, · · · }

converge to u∗ ∈ [0, 0.0415249]. Table 2 displays error estimates (18), (19) and (20). Therefore, as
expected, estimates of the error are lower as initial guesses get closer to the root. Nevertheless, all
the assumptions of the Theorem 1 are satisfied and hence, the iteration {xt} given by scheme (2)
converges to a solution χ∗ of equation G(x) = 0 in U[x0, 0.0261157].

Table 2. Error estimates.

t vt − ut ut+1 − vt u∗ − ut

0 0.0217956 0.0017009 0.0261157

1 0.0025605 2.37 × 10−5 0.0026192

2 3.5 × 10−5 0 3.5 × 10−5

Example 3 ([10]). Let us define the function f on D0 by

f (x) = x3 − p;

where D0 = U(x0, 1− p) and p ∈ (0, 1). Set x0 = 1. As a result, through the conditions (h1),
(h2) and (h3), we can calculate

‖[ f ′(x0)]
−1. f (x0)‖ =

1− p
3

= Ω,

κ0 = (3− p), κ = 2 min
[
(2− p), 1 +

1
κ0

]
and κ1 = (2− p)2,

where D1 = U(x0, 1
κ0
) ∩ D0. Next, we verify the conditions (5), (6) and (7) of Lemmas 1 and 3

where α = 0.848595 and v = 0.887371. Majorizing sequences

ut = {0, 0.038339, 0.047006, 0.0475302, 0.0475323, · · · }
vt = {0.0333333, 0.0466847, 0.047529, 0.0475323, 0.0475323, · · · }

converge to u∗ ∈ [0, 0.22016]. Table 3 displays error estimates (18), (19) and (20). Nevertheless, all
the assumptions of the Theorem 1 are satisfied and hence, the iteration {xt} given by scheme (2)
converges to a solution χ∗ of equation G(x) = 0 in U[x0, 0.0475323]. Therefore, as expected,
estimates of the error are lower as initial guesses get closer to the root.

Table 3. Error estimates.

t vt − ut ut+1 − vt u∗ − ut

0 0.0333333 0.0050057 0.0475323

1 0.0083457 0.000319 0.0091933

2 0.000523 1.2 × 10−6 0.0005263
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5. Conclusions

A new technique is developed using only derivatives appearing on the method to
show semilocal convergence for high convergence order method (2). Earlier works have
shown convergence assuming the existence of derivatives of high order which may not
appear in the method. Hence, limiting its applicability. This technique also provides error
bounds and uniqueness results that are not previously available. Finally, this technique
is very general since it does not depend on the actual method. That is why it can be
used along the same lines to extend the applicability of other methods such as single step
Newton, Newton-like, Secant, Kurchatov, Stirling’s or two step Traub, Newton or multistep
methods [1,2,4,5,10,11].
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