# The Frequency Fluctuation Model for the van der Waals Broadening

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Description of the Method

## 3. The Results of Numerical Calculations

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Conflicts of Interest

## Abbreviations

FFM | Frequency Fluctuation Model |

MD | Molecular Dynamics |

CT | Chen and Takeo |

## References

- Griem, H.; Baranger, M.; Kolb, A.; Oertel, G. Stark broadening of neutral helium lines in a plasma. Phys. Rev.
**1962**, 125, 177. [Google Scholar] [CrossRef] - Kogan, V. Broadening of spectral lines in high-temperature plasma. Plasma Phys. Probl. Control Fusion
**1958**, 4, 305. [Google Scholar] - Stambulchik, E.; Maron, Y. Plasma line broadening and computer simulations: A mini-review. High Energy Density Phys.
**2010**, 6, 9–14. [Google Scholar] [CrossRef] - Brissaud, A.; Frisch, U. Theory of Stark broadening—II exact line profile with model microfield. J. Quant. Spectrosc. Radiat. Transf.
**1971**, 11, 1767–1783. [Google Scholar] [CrossRef] - Alexiou, S. Implementation of the Frequency Separation Technique in general lineshape codes. High Energy Density Phys.
**2013**, 9, 375–384. [Google Scholar] [CrossRef] - Ferri, S.; Calisti, A.; Mossé, C.; Rosato, J.; Talin, B.; Alexiou, S.; Gigosos, M.A.; González, M.A.; González-Herrero, D.; Lara, N.; et al. Ion Dynamics Effect on Stark-Broadened Line Shapes: A Cross-Comparison of Various Models. Atoms
**2014**, 2, 299–318. [Google Scholar] [CrossRef] - Talin, B.; Calisti, A.; Godbert, L.; Stamm, R.; Lee, R.; Klein, L. Frequency-fluctuation model for line-shape calculations in plasma spectroscopy. Phys. Rev. A
**1995**, 51, 1918. [Google Scholar] [CrossRef] [PubMed] - Mossé, C.; Calisti, A.; Stamm, R.; Talin, B.; Bureyeva, L.; Lisitsa, V. A universal approach to Rydberg spectral line shapes in plasmas. J. Phys. At. Mol. Opt. Phys.
**2004**, 37, 1343. [Google Scholar] [CrossRef] - Calisti, A.; Bureyeva, L.; Lisitsa, V.; Shuvaev, D.; Talin, B. Coupling and ionization effects on hydrogen spectral line shapes in dense plasmas. Eur. Phys. J. D
**2007**, 42, 387–392. [Google Scholar] [CrossRef] - Calisti, A.; Mossé, C.; Ferri, S.; Talin, B.; Rosmej, F.; Bureyeva, L.; Lisitsa, V. Dynamic Stark broadening as the Dicke narrowing effect. Phys. Rev. E
**2010**, 81, 016406. [Google Scholar] [CrossRef] [PubMed] - Ferri, S.; Calisti, A.; Mossé, C.; Mouret, L.; Talin, B.; Gigosos, M.A.; González, M.A.; Lisitsa, V. Frequency-fluctuation model applied to Stark-Zeeman spectral line shapes in plasmas. Phys. Rev. E
**2011**, 84, 026407. [Google Scholar] [CrossRef] [PubMed] - Stambulchik, E.; Maron, Y. Quasicontiguous frequency-fluctuation model for calculation of hydrogen and hydrogenlike Stark-broadened line shapes in plasmas. Phys. Rev. E
**2013**, 87, 053108. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Letunov, A.; Lisitsa, V. The Coulomb Symmetry and a Universal Representation of Rydberg Spectral Line Shapes in Magnetized Plasmas. Symmetry
**2020**, 12, 1922. [Google Scholar] [CrossRef] - Bureeva, L.; Kadomtsev, M.; Levashova, M.; Lisitsa, V.; Calisti, A.; Talin, B.; Rosmej, F. Equivalence of the method of the kinetic equation and the fluctuating-frequency method in the theory of the broadening of spectral lines. JETP Lett.
**2010**, 90, 647–650. [Google Scholar] [CrossRef] - Takeo, M.; Chen, S. Broadening and shift of spectral lines due to the presence of foreign gases. Rev. Mod. Phys.
**1957**, 29, 20. [Google Scholar] - Anderson, P.; Talman, J. Proceedings of the Conference on Broadening of Spectral Lines, Murray Hill, NJ, USA, 3 May 1956.
- Astapenko, V.; Letunov, A.; Lisitsa, V. From the Vector to Scalar Perturbations Addition in the Stark Broadening Theory of Spectral Lines. Universe
**2021**, 7, 176. [Google Scholar] [CrossRef] - Chandrasekhar, S.; von Neumann, J. The Statistics of the Gravitational Field Arising from a Random Distribution of Stars. Astrophys. J.
**1942**, 95, 489–531. [Google Scholar] [CrossRef] [Green Version] - Sobelman, I.I. Introduction to the Theory of Atomic Spectra: International Series of Monographs in Natural Philosophy; Elsevier: Amsterdam, The Netherlands, 2016; Volume 40. [Google Scholar]
- Demura, A.; Umanskii, S.Y.; Scherbinin, A.V.; Zaitsevskii, A.V.; Demichenko, G.V.; Astapenko, V.A.; Potapkin, B.V. Evaluation of Van der Waals Broadening Data. Int. Rev. At. Mol. Phys.
**2011**, 2, 109–150. [Google Scholar] - Omar, B.; González, M.Á.; Gigosos, M.A.; Ramazanov, T.S.; Jelbuldina, M.C.; Dzhumagulova, K.N.; Zammit, M.C.; Fursa, D.V.; Bray, I. Spectral line shapes of He I line 3889 Å. Atoms
**2014**, 2, 277–298. [Google Scholar] [CrossRef] [Green Version] - Margenau, H. Theory of pressure effects of foreign gases on spectral lines. Phys. Rev.
**1935**, 48, 755. [Google Scholar] [CrossRef]

**Figure 1.**The normalized intensity profile of one spectral component as the function of the reduced energy shift. Comparison of the FFM profile with the Chen and Takeo theory; $\nu =1.5$.

**Figure 2.**The normalized intensity profile of one spectral component as the function of the reduced energy shift. Comparison of the FFM profile with the impact theory; $\nu =100$.

**Figure 3.**The normalized intensity profile of one spectral component as the function of the reduced energy shift. Comparison of the FFM profile with the impact theory; $\nu =1200$.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Letunov, A.; Lisitsa, V.; Astapenko, V.
The Frequency Fluctuation Model for the van der Waals Broadening. *Foundations* **2021**, *1*, 200-207.
https://doi.org/10.3390/foundations1020015

**AMA Style**

Letunov A, Lisitsa V, Astapenko V.
The Frequency Fluctuation Model for the van der Waals Broadening. *Foundations*. 2021; 1(2):200-207.
https://doi.org/10.3390/foundations1020015

**Chicago/Turabian Style**

Letunov, Andrei, Valery Lisitsa, and Valery Astapenko.
2021. "The Frequency Fluctuation Model for the van der Waals Broadening" *Foundations* 1, no. 2: 200-207.
https://doi.org/10.3390/foundations1020015