# Free Space Strange and Unipolar EM Pulses: Yes or No?

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods: Some Relations for the Vector Potential in K-Space

## 3. Results: Free EM Pulses Are Not Strange

**k**. Taking into account the convergence of the energy integral (15), the requirement of convergence of the integrals in (19) does not seem excessively strict.

## 4. Conclusions and Discussion

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Brabec, T.; Krausz, F. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys.
**2000**, 72, 545. [Google Scholar] [CrossRef] - Lekner, J. Theory of Electromagnetic Pulses; Morgan & Claypool Publishers: San Rafael, CA, USA, 2018. [Google Scholar]
- Feng, S.; Winful, H.G.; Hellwarth, R.W. Spatiotemporal evolution of focused single-cycle electromagnetic pulses. Phys. Rev. E
**1999**, 59, 4630. [Google Scholar] [CrossRef] - April, A. Ultrashort Strongly Focused Laser Pulses in Free Space. In Coherence and Ultrashort Pulse Laser Emission; Duarte, F.J., Ed.; InTech: New York, NY, USA, 2010; pp. 355–382. [Google Scholar]
- Keldysh, L.V. Multiphoton ionization by a very short pulse. Phys. Usp.
**2017**, 60, 1187–1193. [Google Scholar] [CrossRef][Green Version] - Kiselev, A.P. Localized Light Waves: Paraxial and Exact Solutions of the Wave Equation (a Review). Opt. Spectrosc.
**2007**, 102, 603–622. [Google Scholar] [CrossRef] - Ziolkowski, R.W. LocalizedWaves: Historical and Personal Perspectives. In Non-Diffracting Waves; Hernández-Figueroa, H.E., Recami, E., Eds.; John Wiley & Sons: New York, NY, USA, 2013; Chapter 2; pp. 69–81. [Google Scholar]
- Artyukov, I.A.; Dyachkov, N.V.; Feshchenko, R.M.; Vinogradov, A.V. Energy density and spectrum of single-cycle and sub-cycle electromagnetic pulses. Quantum Electron.
**2020**, 2020, 187–194. [Google Scholar] [CrossRef] - So, I.A.; Plachenov, A.B.; Kiselev, A.P. Simple unidirectional finite-energy pulses. Phys. Rev. A
**2020**, 102, 063529. [Google Scholar] [CrossRef] - Bialynicki-Birula, I. New solutions of the Dirac, Maxwell, and Weyl equations from the fractional Fourier transform. Phys. Rev. D
**2021**, 103, 085001. [Google Scholar] [CrossRef] - Popov, N.L.; Vinogradov, A.V. Space-Time Coupling: Current Concept and Two Example from Ultrafast Optics Studied Using Exact Solution of EM Equations. Symmetry
**2021**, 13, 529. [Google Scholar] [CrossRef] - Bessonov, E.G. On a class of electromagnetic waves. Zh. Eksp. Teor. Fiz.
**1981**, 80, 852–858. [Google Scholar] - Kaplan, A.E.; Shkolnikov, P.L. Electromagnetic “Bubbles” and Shock Waves: Unipolar, Nonoscillating EM Solitons. Phys. Rev. Lett. D
**1995**, 2316–2319. [Google Scholar] [CrossRef] - Miloševi’c, D.B.; Paulus, G.G.; Bauer, D.; Becker, W.J. Above-threshold ionization by few-cycle pulses. Phys. B At. Mol. Opt. Phys
**2006**, 39, R203–R262. [Google Scholar] [CrossRef] - Kim, K.J.; McDonald, K.T.; Stupakov, G.V.; Zolotorev, M.S. A bounded source cannot emit a unipolar electromagnetic wave. arXiv
**2000**, arXiv:physics/0003064. [Google Scholar] - Kim, K.J.; McDonald, K.T.; Stupakov, G.V.; Zolotorev, M.S. Comment on “Coherent Acceleration by Subcycle Laser Pulses”. Phys. Rev. Lett.
**2000**, 84, 3210. [Google Scholar] [CrossRef] [PubMed] - Arkhipov, R.M.; Pakhomov, A.V.; Arkhipov, M.V.; Babushkin, I.; Tolmachev, Y.A.; Rosanov, N.N. Generation of unipolar pulses in nonlinear media. JETP Lett.
**2017**, 105, 408–418. [Google Scholar] [CrossRef] - Feshchenko, R.M.; Vinogradov, A.V. On the number and spin of photons in classical electromagnetic fields. Phys. Scr.
**2019**, 94, 065501. [Google Scholar] [CrossRef][Green Version] - Zeldovich, Y.B. Number of quanta as an invariant of the classical electromagnetic field. Sov. Phys.—Dokl.
**1966**, 10, 771. [Google Scholar] - Bialynicki-Birula, I. Photon Wave Number. In Progress in Optics; Wolf, E., Ed.; Elsevier Science: New York, NY, USA, 1996; Volume 36, pp. 245–294. [Google Scholar]
- Feshchenko, R.M.; Vinogradov, A.V. On the number of photons in a classical electromagnetic field. J. Exp. Theor. Phys.
**2018**, 127, 274–278. [Google Scholar] [CrossRef] - Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields, 2nd ed.; Addison-Wesley: Reading, MA, USA, 1962. [Google Scholar]
- Olver, F. Asymptotics and Special Functions; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Zangwill, A. Modern Electrodynamics; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Gonoskov, I.; Aiello, A.; Heugel, S.; Leuchs, G. Dipole pulse theory: Maximizing the field amplitude from 4π focused laser pulses. Phys. Rev. A
**2014**, 86, 053836. [Google Scholar] [CrossRef] - Kondakci, E.; Abouraddy, A.F. Diffraction-free space-time light sheets. Nat. Photonics
**2017**, 11, 733. [Google Scholar] [CrossRef][Green Version] - Besieris, I.; Abdel-Rahman, M.; Shaarawi, A.; Chatzipetros, A. Two fundamental representations of localized pulse solutions to the scalar wave equation. Prog. Electromagn. Res.
**1998**, 19, 981–984. [Google Scholar] [CrossRef][Green Version] - Fagerholm, S.J.; Friberg, A.T.; Salomaa, M.M. Unified description of nondiffracting X and Y waves. Phys. Rev. E
**2000**, 62, 4261. [Google Scholar] - Saari, P.; Reivelt, K. Generation and classification of localized waves by Lorentz transformations in Fourier space. Phys. Rev. E
**2004**, 69, 036612. [Google Scholar] [CrossRef] [PubMed] - Madsen, L.B. Gauge invariance in the interaction between atoms and few-cycle laser pulses. Phys. Rev. A
**2002**, 65, 053417. [Google Scholar] [CrossRef] - Fedotov, A.M.; Korolev, K.Y.; Legkov, M.V. Exact analytical expression for the electromagnetic field in a focused laser beam or pulse. Proc. SPIE
**2007**, 6726, 672613. [Google Scholar]

**Table 1.**Bessonov characteristic ${\mathit{S}}_{\mathit{E}}\left(\mathit{r}\right)$ and classification of EM pulses from moving charges (2nd column) and EM pulses travelling in free space (3rd column).

EM Pulses from Moving Charges [12] | Free Space EM Pulses (This Paper) | |||
---|---|---|---|---|

Charge Motion | Bounded | Unbounded | ||

${\mathit{S}}_{\mathit{E}}\left(\mathit{r}\right)$ | 0 | $\ne 0$ | 0 | 0 |

usual or strange | usual | strange | usual | usual |

bipolar or unipolar | bipolar | both are possible | bipolar | bipolar |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Popov, N.L.; Vinogradov, A.V.
Free Space Strange and Unipolar EM Pulses: Yes or No? *Foundations* **2021**, *1*, 169-174.
https://doi.org/10.3390/foundations1020012

**AMA Style**

Popov NL, Vinogradov AV.
Free Space Strange and Unipolar EM Pulses: Yes or No? *Foundations*. 2021; 1(2):169-174.
https://doi.org/10.3390/foundations1020012

**Chicago/Turabian Style**

Popov, Nikolay L., and Alexander V. Vinogradov.
2021. "Free Space Strange and Unipolar EM Pulses: Yes or No?" *Foundations* 1, no. 2: 169-174.
https://doi.org/10.3390/foundations1020012