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Abstract: Endoscopic spine surgery (ESS) began more than 20 years ago as percutaneous endoscopic
discectomy and has evolved to the present day. This technique offers many advantages, including a
short hospital stay, minimal trauma and blood loss, the option of local or epidural anesthesia with
sedation, a low rate of nosocomial infections, early recovery, and a quick return to work and daily
activities. The success rate of this technique ranges from 83% to 90% in operated patients. This article
aims to provide an overview of indications, versatility of the technique, advantages, contraindications
and limitations, and also a reflection on the possible contraindications and limitations of the technique.

Keywords: endoscopic spine surgery; indications; evolution; development; advantages

1. Introduction

Endoscopic spine surgery (ESS) began as percutaneous discectomy through the efforts
of Kambin and Hijikata in the 1970s. They independently introduced the posterolateral
percutaneous lumbar nucleotomy technique [1,2]. At that time, decompression of the spinal
canal was indirect, as the technique was guided fluoroscopically [3].

A few years later, Kambin and coworkers [4,5] developed a new method to remove the
nucleus pulposus using flexible forceps and a 5 mm working cannula. Subsequently, some
improvements in percutaneous endoscopic discectomy techniques were reported [6–8]. Kam-
bin established the anatomical understanding of the triangular safe zone and transforaminal
(TF) approach in 1990 [9]. This safe zone is the area where a lesion can be reached without
injuring the nerves. This area is formed by the exiting nerve root, the superior endplate
of the caudal vertebrae, and the superior articular process of the inferior vertebrae [9].
In this way, ESS was able to make rapid progress by using larger working channels and
larger instruments [2]. In the late 1990s, Yeung [10] introduced the first fully functional
endoscopic system. He used a multichannel endoscope with continuous fluid irrigation,
which provided better image quality and less blood loss. They also reported successful
results in cases of disc herniation [3].

With the advent of foraminoplasty in the TF approach, it was possible to remove
central disc herniations and perform decompression of the lateral recess and foramen in the
lumbar or thoracic spine [11]. In 1997, Osman published a cadaveric study in which the TF
technique resulted in less instability and greater expansion of the foraminal space [12]. The
TF approach has also shown long-term success in patients with foraminal stenosis [13,14].

With the technical development of ESS, clinical relevance became practical and stan-
dardized [15,16]. Historically, the main indication for this procedure has been soft disc
herniations that may compromise a neural structure and have not been well controlled
with nonsurgical therapies for a period of at least 6 weeks or show signs of worsening [17].
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Most contraindications to this procedure are relative, as there are studies reporting
the use of ESS in some cases that have been contraindicated in the past. The purpose of
this overview is to highlight the evolution of the indications of ESS, the advantages, the
versatility of the technique with the different possibilities of endoscopic approaches, the
possible contraindications and limitations of the technique, and the changes related to ESS
in recent years.

2. Development and Advantages of ESS

The development and history of ESS can be divided into four important periods. The
first period is the advent of intradiscal procedures, such as percutaneous nucleotomy or
percutaneous discectomy. At this time, anatomical knowledge was expanded and the first
percutaneous instruments were developed. However, these were blind procedures without
direct vision, only with fluoroscopy, and moreover, the indication was limited. The second
period concerns the first endoscopic operations, which focused on soft tissues. This was
the era of the first endoscopes that allowed direct visualization of the procedure, such as in
endoscopic discectomy. The concepts of inside-out and outside-in emerged, especially in
the transforaminal approach. During this period, we observed an evolution of instructions
with the emergence of different types of clamps (straight, curved, angled, flexible, etc.),
and there was little discussion of decompression. The third period was when ESS really
consolidated on the world stage, and it includes the concept of bone surgery. This was the
time when technology, endoscopes, instruments, equipment, and ESS indications evolved
the most. It was the time when foraminoplasty and central decompression techniques
evolved and ESS began to be used in more complex cases [3]. Finally, the fourth phase
can be defined as the combination of ESS with regenerative medicine, concepts in the
treatment of disc disease and even spinal fusion. In this phase, the aim was to delay
the development of degenerative diseases of the spine. Changes in the patient’s lifestyle,
dietary changes, optimization of physical rehabilitation, nutritional supplements, hormone
and/or vitamin replacement, prolotherapy, and the use of orthobiologic agents such as
platelet-rich plasma (PRP), platelet-rich fibrin (PRF), bone marrow aspirate (BMA), and
concentrated bone marrow aspirate (BMAC) are some of the methods used in regenerative
medicine. Patients are better prepared for ESS to further optimize their recovery (concept
of ground preparation) [18].

The first step is to change patients’ habits to promote regenerative capacity, which is
influenced by complex cellular functions and molecular processes, as they require optimal
conditions [18]. The concept of ground preparation is to maximize the results by activating
factors that can positively influence the regenerative capacity of the human body and
eliminating the unfavorable/deteriorating factors of the patient. The focus of ground
preparation is on factors that can be changed, such as lifestyle and diet, including metabolic
syndrome, obesity, dysbiosis, sleep regulation, alcoholism, smoking, diet, physical activity,
and the use of certain types of medications [18–20]. In the first stage of ground preparation,
risk factors for low-grade systemic inflammation are investigated [18,21]. Some metabolic
disorders, such as diabetes mellitus and obesity, are associated with low-grade systemic
inflammation [18,22]. Some habits or metabolic disorders may affect recovery protocols. For
example, obesity plays an important role in mesenchymal stem cell (MSC) differentiation
and efficiency. In animal studies, obesity has been shown to negatively affect the osteogenic,
adipogenic, and chondrogenic potential of MSCs [18,23]. Smoking negatively affects
platelet activity by inhibiting the action of tissue plasminogen [18,24]. Alcoholic beverages
have negative effects on MSCs by decreasing their activity and number and limiting their
multipotency. It is known that alcohol consumption inhibits platelet aggregation. Therefore,
it is recommended to avoid alcohol after treatment with PRP or other orthobiological
products [18,25,26]. Sleep disturbances can impair endocrine function, reduce carbohydrate
tolerance, and lead to serious health disorders [18].

In the context of ESS, PRP was initially used intradiscally for degenerative disc disease
with a discogenic pain component, but some studies have shown that it can also be used in
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the facet joints to treat facet pain, resulting in improvement of low back pain and functional
disability [27]. PRP, due to its increased concentration of secreted growth factors, can
promote an anti-inflammatory milieu that is essential for the healing process, as it can
increase the metabolic activity of fibroblasts and osteoblasts [28,29]. In other words, PRP has
a function in local proliferation, angiogenesis, differentiation, and settlement of local cells
and stem cells. The regenerative properties are determined by differentiation and growth
factors released upon platelet stimulation. They also play a role in the local production of
matrix proteins, including collagen. These proteins are considered to be building blocks
for the restoration of normal tissues [29]. According to some previous cohort studies, PRP
accelerated spinal fusion, bone formation, and reduced pain scores in patients receiving
PRP compared to the control group [29,30].

PRF provides all the clinical benefits of PRP as well as a spontaneously forming fibrin
scaffold that controls clot formation, harbors stem cells and growth factors, and serves as
a helpful template for tissue regeneration. This is due to the fact that it is obtained by
centrifugation of whole blood without any additives. Since centrifugation is performed
without anticoagulants, PRF is able to form a gelatinous clot with the fibrin matrix which
contains the secretion of growth factors at the clotting site [31]. During tissue repair, recruited
fibroblasts remodel this fibrin matrix and begin collagen synthesis [31,32]. The combined
effect of fibroblast recruitment and growth factor secretion promotes tissue regeneration
and collagen formation [31]. Indeed, PRF offers advantages over PRP, especially with regard
to growth factors, as PRP has a comparatively short half-life of these compounds [31,33,34].

Because of its ease of removal and great regenerative potential, BMA is the most
commonly used product in degenerative spine disease. Nowadays, attempts are made
to treat the entire segment affected by the degenerative disease, i.e., the disc, bone, facet
joint, nerve roots, interspinous ligament, and paravertebral muscles [35]. BMA contains
progenitor cells that can differentiate into osteoblasts and other MSCs. The only difficulty
is to obtain enough progenitor cells [29]. MSCs are known to have the potential to differ-
entiate into various tissues of mesenchymal origin [18]. BMA is rich in anti-inflammatory
cytokines [36,37], anti-catabolic factors [38,39], and growth factors [40–42], and presumably
supports the synthesis of proteoglycans [43–45] and II-type collagen [46,47]. Because of
these factors, BMA influences the proinflammatory state of the disc by modulating the
inflammatory response and restoring homeostasis within the disc. BMA has been used as
an adjunct to fusion with local bone graft in several studies [48–55], and one study reported
fusion rates of 86% to 97% [55].

BMAC is the centrifuged BMA capable of promoting angiogenesis, and has been
shown to be a novel treatment for cartilage diseases such as osteoarthritis due to its
osteogenic, osteoconductive, and osteoinductive properties [18]. It is postulated that by
centrifuging BMAC, the differences in density gradients contribute to an appropriate
concentration of MSCs, providing a more suitable injectable volume for administration to a
patient [56,57]. BMAC has anti-inflammatory, immunomodulatory, and angiogenic effects
and may potentially improve tissue repair [18,58]. Since BMAC has a higher concentration
of MSCs, it could accelerate the restoration of hemostasis in the disc. There are already
several stem cell-based approaches for the treatment of intervertebral disc degeneration
and fusion that will soon come to market [29]. The use of orthobiologics in combination
with ESS seems promising, but there are still few studies in the literature on this topic.

Another possibility is the use of virtual reality (VR), augmented reality (AR), and
mixed reality (MR). These technologies demonstrate the advantages of virtual simulators
(ESS) and can be increasingly use to enhance surgical training programs, preoperative
planning, and intraoperative applications [59].

Improvements in design and newer instrumentation certainly benefit the development
of ESS. This development is primarily due to advances in novel endoscopic instruments
that allow for better illumination, high-resolution imaging, and complementary technolo-
gies [60]. An example of these advances is the changes in the cutting surfaces and shapes of
the endoscopic milling heads used in ESS. Technological advances have allowed us to use
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ESS for many previous contraindications. With the advent of new possibilities for surgical
access, its use has also been optimized. Figure 1 shows the possible endoscopic approaches
to the lumbar, cervical and thoracic spine.
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Compared with open spine surgery, ESS has several advantages, such as a small skin
incision, minimal blood loss, no muscle retraction, no excessive bone removal, minimal
nerve manipulation, performed under local anesthesia and sedation, shorter operation
time, and rapid return of the patient to normal daily life and activities. In addition, ESS has
a very low rate of local and nosocomial infections and fewer side effects [61,62].

3. Complications and Contraindications of ESS

Although ESS has many advantages over open spine surgery, complications also
has occur, such as incomplete decompression and incomplete removal of the intended
disc fragments (these two are the most common complications), followed by inadvertent
dural tear and nerve root damage. Other less common complications include persistent
pain, dysesthesias, transient neuropraxia, nerve root injury, epidural hematoma, hernia
recurrence, infection, postoperative instability, vascular injury, and visceral injury [17]. It
is important to be aware of all possible problems that may occur during surgery, even if
they are rare. It is also important to have plans in place to prevent or mitigate patient
injuries [14,17,63]. Interestingly, some complications are specifically related to the use of
endoscopic techniques, such as postoperative headache and postoperative seizures after
prodromal neck pain. These complications are thought to be likely related to epidural
pressure from endoscopic epidural irrigation, but fortunately, all of these cases are self-
limiting [17,64]. Despite the advanced optical technology available nowadays, one of
the main difficulties of ESS is the inability of visualization to obtain a complete image
of the surgical field and adjacent structures at all times. In general, however, the risk of
complications with ESS is low.

Most previous contraindications to ESS are now relative [14,17,65]. Until 2017, con-
traindications included: high-grade migration, calcified disc herniation (CDH), recur-
rent disc herniation (reoperation), more than one level, spinal stenosis and/or foraminal
stenosis, spondylolisthesis, cauda equina syndrome (CES), nerve root abnormalities, and
tumours [66]. With advances in devices and technology, even more contraindications
associated with ESS have become relative. However, one of the remaining obstacles on the
ESS website is segmental instability of the level being treated [17].

One of the most classic contraindications is CDH, as this pathology carries high risks
and challenges for many reasons. CDH is defined as a subtype of disc herniation in
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which the herniation site is calcified. Often, the dural sac is adhered to the annulus, and
endoscopic instruments do not provide sufficient manoeuvrability to carefully remove one
from the other, which could increase the risk of iatrogenic injury to the dura mater [17].
Nevertheless, ESS can currently be used safely and with satisfactory results in CDH. The
limiting factors for the use of ESS in these cases are surgeon skill and learning curve [67].

Another relative contraindication is multilevel and multisectoral stenosis. Some
authors hypothesize that this type of stenosis is better treated with traditional open surgery,
which requires careful inspection and visualization of each level to confirm that adequate
decompression has been achieved, outweighing the potential benefits of ESS [17]. With the
advances of ESS and in experienced hands, this argument has become moot [68].

In cases where tumors are partially responsible for the patient´s pathology and com-
pression symptoms, ESS requires a greater degree of skill, as the neoplasm often deforms
normal structures, easily leading to disorientation and iatrogenic injury [17]. Bone tumors
such as osteoid osteoma can be completely removed by ESS, according to some reports in
the literature [69].

The only formal contraindication to isolated ESS is segmental instability, in which
complete endoscopic discectomy or decompression may result in a transient outcome,
as instability may be responsible for high rates of symptom recurrence [70]. In such
cases, endoscopically assisted arthrodesis may be an option. Dissection of the disc can be
performed under fluoroscopy and reviewed with the endoscope. Percutaneous or expansive
cages can be used along with bone grafts, and posterior fixation with percutaneous pedicle
screws or facet screws is mandatory.

4. What Changed in the ESS Context?

Originally, ESS was used only for lumbar discectomy, but recently, with the advance-
ment of instruments and camera systems, it has become possible to treat many degenerative
spinal conditions in the cervical and thoracic spine, so that the indications for the use of ESS
have expanded considerably and continue to increase [17,71]. ESS technology has revolu-
tionized spine surgery, as the development of high-speed drills, probes, and curved forceps
has enabled the treatment of various types of disc herniations and spinal stenosis [72–74].

Nowadays, there are several case reports and studies based on previous contraindi-
cations. These studies show that these contraindications can be relative and ESS can be
used with a clear conscience, since ESS can see injuries in a significantly magnified view
and even the finest areas can be treated with this technique. It can be used not only for
mechanical surgical injuries, but probably for many pain-causing areas that have been diffi-
cult to treat [75]. ESS has been used for decompression in degenerative spinal stenosis, disc
herniation, migrated disc herniation, calcified disc herniation, scoliosis, spondylolisthesis,
tumour, previous fusion, lumbar facet cysts, spinal fractures, cauda equina syndrome, and
infection [70,74,76–83].

Spinal stenosis is defined as a narrowing of the spinal canal resulting in radicular impair-
ment or clinical symptoms attributable to the spinal cord. Spinal stenosis can affect the cervical,
thoracic, or lumbar spine, and can be either unilateral or bilateral and monosegmental or
multisegmental [84]. Depending on the location of the stenosis, a distinction is made between
central, lateral recession and foraminal stenosis. Central stenosis is most commonly found
at the L4–L5 level, followed by L3–L4, L5–S1, and L1–L2 [84,85]. In lumbar spinal stenosis
(LSS) without instability, some studies have supported the efficacy of ESS as a treatment
option [70,86–89]. Because ESS requires minimal incision and much less soft tissue damage,
and also spares the facet joints and posterior ligaments, it can lead to preservation of
vertebral segment stability, unlike open surgery [90].

Migrated disc herniation (MDH) and CDH can be challenging in ESS, although success-
ful outcomes have been reported in these cases [74,91–100]. MDH is commonly classified
based on radiographic findings according to Lee et al. (2007). This classification is a
schematic representation of the herniated disc and divides the direction and degree of
migration into four zones (high-grade upward, low-grade upward, low-grade downward,
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and high-grade downward) [101]. High-grade migrated hernias are traditionally treated
with the interlaminar technique, mainly at L5–S1. Low-grade migrated hernias can be
treated via a transforaminal or interlaminar approach, depending on criteria such as the
level approached, associated stenosis, facet joint inclination, and surgeon preference. CDH
is defined as a subtype of disc herniation in which the herniation site is calcified. Calcifica-
tion may be caused by chronic inflammatory responses to the herniated disc, and usually
occurs in cases more than 6 months old [99]. Several studies have reported that calcification
may result from prolonged disease progression, nucleus pulposus changes, and unknown
triggers such as infection and microtrauma [102–105]. In these cases, a hard disc is present
that contains calcifications or ossifications in the dislocated portion of the disc herniation
and is often associated with apophyseal osteophytes. This type of disc herniation may
adhere to the adjacent nerve tissue [99]. It is difficult to remove the entire herniated disc
by extracting part of the herniated mass and still achieve good results by ESS [99,106,107].
Until recently, ESS was thought to be poorly suited for the treatment of CDH [99], because
of the increased risk of dura or root injury [97,102,104]. However, the risk of injury to
neural structures exists with any type of technique used. Conventional open surgery has
been widely used to treat calcified disc herniation, but it has some disadvantages, such
as significant blood loss, large tissue injury, long operation time, and slow postoperative
recovery, and muscle denervation and atrophy [98,108]. Other studies suggest that tra-
ditional open surgery may cause complications such as instability, infection, and chronic
pain [109,110]. In this regard, ESS proves to be an efficient and safe option for the treatment
of CDH with lower operative morbidity and fewer complications [97,99,111–113].

Lumbar facet cysts are a common degenerative spinal condition whose etiopatho-
genesis is not well understood, but they are frequently associated with degenerative facet
disease, spondylolisthesis, and spinal trauma [81,114–116]. They most commonly occur in
the lumbar spine, but they can also occur in the thoracic and cervical spine [81,117]. The
L4–L5 level is the most predisposing level for cyst formation in the lumbar spine because
this level is the most mobile level of the spine, followed by the L5–S1 level [81,118,119]. The
cyst is often composed of synovial fluid extrusion, fibroblast secretion, mesenchymal cell
proliferation, and collagen degeneration [120,121]. Although the open procedure has been
the gold standard for the treatment of this pathology, some authors have described ESS as
an efficient alternative for the treatment of facet cysts with less surgical time, less blood loss,
less surgical trauma, less postoperative pain, and less hospitalization time [121–123]. With
the development of new instruments, such as diamond burrs and shavers, it is possible
to achieve satisfactory bone resection with advanced instrument mobility, making cyst
removal technically feasible even in stenotic cases [121]. In summary, the indications for
ESS have expanded to include all degenerative diseases, including facet cysts [121,124].

Another type of cyst is the disc cyst, a rare lesion that can be treated with ESS [125,126].
Sciatalgia and back pain are the most common symptoms of disc cyst. Motor deficits and
hypoesthesia are the predominant signs of nerve root compression [127,128]. In most cases
of symptomatic disc cyst, surgical treatment is required, but in some cases, it may regress
spontaneously [127]. Disc cysts are often associated with degenerative disc disease, and
ESS allows resection of bulging cysts into the spinal canal and efficient repair of the annulus
tear [127].

In oncology, approximately 70% of all skeletal metastases are due to metastatic disease
of the spine [129–131]. In these patients, open palliative surgery is often required to treat
pain, neurologic deficits, and vertebral collapse [131]. However, open surgery is associated
with a high complication rate [131,132], mainly due to postoperative wound infections
caused by muscle dissection and denervation, and high blood loss [131,133–135]. For this
reason, ESS may be the best technical option, as it is believed to result in earlier pain relief
and less physiological impairment, allowing early optimization of function [131,136]. Some
recent retrospective case series conclude that ESS is a suitable tool for the treatment of
spinal tumours due to the above-mentioned advantages of this procedure and the favorable
outcomes [131,137].
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In the context of fractures, osteoporosis is the most common cause of spinal fractures
in the elderly due to the aging population [138,139]. Osteoporosis leads to a loss of mineral
content and trabecular connectivity, and these factors result in a decrease in vertebral
strength [82]. An osteoporotic vertebral fracture is a fracture caused by osteoporosis
resulting in compression of nerve roots in the corresponding lumbar segments and often
occurs in patients with low back and leg pain [138,140]. ESS can be used in these cases
if there is radicular or medullary compression due to injury to the posterior wall of the
fractured vertebra [141]. In this context, another indication for ESS is the removal of
cement that has extravasated into the canal or foramen causing neurologic symptoms or
pain [142,143].

Finally, scoliosis is a three-dimensional deformation of the spine, and this deformation
can cause LSS in idiopathic or degenerative cases. In older adults, LSS is a common problem.
The permanent or intermittent pain is caused by compression of neural elements by bone, soft
tissue (or both), or dynamic reinforcement, resulting in ischemia of the nerve roots [144,145].
Treatment of patients with LSS without existing instability or severe deformity can usually
be achieved by decompressive surgery [70]. ESS is a suitable option for LSS cases caused by
scoliosis [83]. Several authors [146–150] have already shown that this technique provides
equivalent results to microsurgical or tubular techniques, but with advantages such as
less tissue damage and shorter hospital stays [70,147,151–153]. With regards to scoliosis,
Hasan et al. (2019) studied 45 patients with concomitant scoliosis and/or spondylolisthesis,
26 of whom underwent ESS and 19 underwent minimally invasive surgery. The authors
concluded that the results were very similar in terms of functional outcomes, but ESS
showed a lower complication rate [83].

5. Limitations of the Study

This article provides an overview of the changes associated with ESS, but further
review articles and meta-analyses are needed to confirm all of these findings.

6. Conclusions

ESS has evolved over the past 20 years, and much has been learned about these proce-
dures. In the field of modern spine surgery, ESS is one of the fastest growing techniques
because there are fewer complications and less postoperative pain, patients return to their
daily activities more quickly, and symptoms are better relieved. Due to better patient
outcomes and lower medical costs, this procedure will tend to gain even more acceptance,
importance, and popularity in the near future, especially because of the rapid increase in
indications. The indications for ESS have expanded to include most degenerative diseases
of the spine. One lesson we can learn is that if a technical improvement meets their needs
and promotes improvement or standardization of a surgical technique and its outcomes,
acceptance among surgeons will be high.
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