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Abstract: Depression and obesity are highly comorbid with one another, with evidence of bidirec-
tional causal links between each disorder and a shared biological basis. Genetic factors play a major
role in influencing both the occurrence of comorbid depression and obesity, their courses, and their
response to existing treatments. The current paper is a scoping review of studies that have evaluated
the contribution of specific genetic variants to the comorbidity between obesity and depression. Based
on a search of the PubMed and EMBASE databases, 28 studies were included in this review, covering
54 candidate genes. Positive associations were identified for 14 genetic loci (AKR1C2, APOA5, COMT,
DAT1, FTO, KCNE1, MAOA, MC4R, MCHR2, NPY2R, NR3C1, Ob, PCSK9, and TAL1). Replicated
findings across two or more independent samples were observed for the FTO and MC4R genes. Many
of these gene products represent novel molecular targets for the pharmacological management of
obesity that interact with each other and are not pharmacologically influenced by existing anti-obesity
or antidepressant medications. The implications of these associations for future drug development are
discussed, with an emphasis on recent evidence on the polygenic architecture of comorbid depression
and obesity and on a precision-medicine approach to these conditions.

Keywords: depression; obesity; genetics; leptin; fat-mass- and obesity-associated gene; melanocortin
receptor; neuropeptide Y

1. Introduction

Obesity is the most common metabolic disorder worldwide. According to estimates
provided by the World Obesity Federation, around 650 million adults fulfil standard
diagnostic criteria for obesity, and the prevalence of this condition has trebled in the past
four decades [1]. A recent meta-analysis of global research, covering over 280 studies and
13 million subjects, estimated the global prevalence of central obesity at 41.5%, though there
were significant variations related to age, gender, urbanisation, and national income [2].
Though obesity is comorbid with a wide range of medical and psychiatric conditions,
comorbidity is not in itself proof of a causal association in either direction [3]. Evidence
from cross-sectional and longitudinal research across countries and settings demonstrates a
significant bidirectional association between depression and obesity, with each disorder
increasing the likelihood of the other by approximately 1.5-fold [4,5]. Analysis of clinical
and genetic data supports the contention that the association between depression and
obesity is not only bidirectional but also causal: in other words, depression can lead to
obesity, and obesity can lead to depression [3,6,7]. This association appears to be specific
to obesity and not to less severe increases in body mass [4,5], and remains significant
even in individuals without elevations in other physiological parameters, such as plasma
glucose, serum cholesterol and triglycerides, blood pressure, or C-reactive protein [8]. A
portion of the variance in this association can be explained by behavioural factors, such as
overeating in depressed patients, and by the obesogenic effects of medications used in the
treatment of depression [7,9]. However, even after taking these factors into account, there
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is substantial translational and clinical evidence that obesity and depression are associated
with shared alterations in several physiological processes, including dysregulation of the
hypothalamic–pituitary–adrenal axis, increased immune–inflammatory activity, changes in
the composition of the gut microbiome, and altered brain structure and functioning [10–13].

The management of comorbid obesity and depression is challenging. A recent system-
atic review concluded that certain psychological and pharmacological therapies showed
promise in the management of this group of patients. However, there was insufficient
evidence from available studies to provide robust guidance in clinical practice, and the
effects of both types of treatment were modest and not well sustained at follow-up [14].
Obesity is associated with a poorer response to antidepressant treatment in depressed
patients [15,16], whereas weight loss leads to an improvement in depressive symptoms [17],
but this is often difficult to accomplish in practice. Moreover, undiagnosed depression can
interfere with motivation for, and adherence to, lifestyle and behavioural interventions
for obesity [18]. There is little evidence that currently available antidepressants have a
beneficial effect on obesity, and it has even been suggested that these drugs contribute to
obesity in certain cases [7,19,20]. In this scenario, there is a clear need for more effective
pharmacological approaches that target the shared molecular pathways linking obesity and
depression [21,22].

Evidence from family, twin, linkage, candidate-gene, and genome-wide association
studies suggests that genetic factors account for a significant proportion of the overlap
between depression and obesity [23–27]. Besides contributing substantially to the shared bi-
ological substrate of these disorders [28], multiple genetic variants influence the occurrence
of specific symptoms, such as increases in appetite, during episodes of depression [29,30].
Moreover, polymorphisms in certain obesity-related genes may predict a poorer response to
conventional antidepressants [31]. The genetic variants that have been tentatively flagged
in this research are related not just to neurotransmission but also to diverse biological path-
ways, including those involved in cell division, apoptosis, glucose and lipid metabolism,
energy utilisation, and immune–inflammatory regulation [32]. It is probable that a bet-
ter understanding of the role played by these pathways, and the genes involved in their
regulation, could lead to the development of safer and more effective treatments for both
obesity and depression. A deeper understanding of the molecular genetics of this comor-
bidity could also lead to a more precise and personalised approach to the pharmacological
management of obesity [33]. It was with this objective in mind that the current review
was undertaken.

2. Review Process

The current study is a scoping review of studies examining the role of specific genetic
variants in the relationship between depression and obesity. This review was carried out in
accordance with the PRISMA extension guidelines for scoping reviews [34].

Study retrieval and search strategy: Studies were included if they evaluated the
effect of specific genetic variants (either single or multiple polymorphisms) on depressive
symptoms in obesity, on obesity in depressed individuals, or on the co-occurrence of
depression and obesity. Studies that only provided general evidence of heritability, such as
family and twin studies, were excluded, as were studies that evaluated polygenic risk scores
(PRS) without specifying the relative contributions or the strengths of the associations with
the specific variants that were included in the PRS.

The PubMed and EMBASE databases were searched using the following search terms:
(“obesity” or “obese”) along with (“depression”, “depressive symptoms”, “depressive
symptomatology”, or “major depression”), and (“genetic” (including variants), “gene”,
“linkage”, “association”, “polymorphism” (including variants), or “genome-wide”). Epi-
genetic studies were not included in this review, as they have been extensively reviewed
in a recent publication, which covered all published studies up to 2020 and identified
variations in the methylation of three specific genes as being linked to both obesity and
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depression [35]. However, the results of the current review are subsequently examined in
the light of these epigenetic findings.

The PRISMA-ScR flow diagram for this study is provided below (Figure 1). Of a total
of 1286 citations retrieved through the literature search, 261 duplicates were removed, and
the remaining abstracts were screened for suitability for the current review. At this stage,
737 citations were excluded, as they were unrelated to the subject of this review. In the final
step, the full texts of 288 papers were evaluated for inclusion in this review, based on the
criteria mentioned in the first paragraph. A total of 260 papers were excluded at this stage,
and a total of 28 publications were included in the final review. The reference lists of each
included paper were searched for further relevant studies, but no additional papers were
identified through this method.
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Data charting and study quality assessment: All included studies were charted under
the following headings: year of publication, study population and sample size, study
methodology, study quality, and positive and negative study results. Study quality was
assessed using the Q-Genie tool, which is a structured instrument to evaluate the quality of
genetic studies. This tool evaluates the quality of a given genetic study across 11 distinct
domains, covering the study rationale, definition of exposures and outcomes, selection
of the study population, steps taken to minimise bias, statistical analysis and power,
and appropriateness of the conclusions presented by the researcher. Based on the total
score obtained, studies are classified as being of poor, moderate, or good quality [36]. It
should be noted that the rating of a study as “poor” using Q-Genie does not disqualify
it from inclusion in a review; however, any positive findings from such a study should
be interpreted with caution due to the risk of false-positive results arising from various
biases. As the single study rated “poor” in this review did not yield any positive results,
it was included for the sake of completeness. This is in accordance with the PRISMA-ScR
guidelines (item 16), which recommend a critical appraisal of such papers but not their
exclusion [34].

Data synthesis: Following the extraction of the above data, information on the genetic
variants identified, their known physiological roles, and the strength and consistency of
the evidence supporting their links with depression and obesity were tabulated separately.
Information on pharmacological agents related to each variant, either already marketed or
in development, was retrieved where available, and the implications of this information
were discussed from conceptual and clinical perspectives.

In addition to these conventional methods, an attempt to delineate protein–protein
interactions and thereby identify potential molecular hubs that link obesity and depres-
sion was made through queries from the Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) database. Two separate queries were conducted. The first in-
cluded only those genes for which there were unequivocal positive findings (n = 14). The
second included both the positive and equivocal findings from the current review, as well
as the three genes identified as targets of epigenetic modification by the earlier review
(n = 19).

A total of 28 studies was included in the final scoping review. Details of the studies
included in this review are provided in Table 1.
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Table 1. Genetic-association studies included in the current review.

Study and Year of
Publication

Candidate Gene(s) and
Polymorphisms Studied Study Design Study Population and

Sample Size Results Study Quality (Q-Genie
Quality Score)

Comings et al.,
1991 [37] DRD2 (Taq1 SNP) Single-gene association Patients seeking psychiatric

care, Caucasian (n = 314)
DRD2 Taq1 A1 allele not significantly
associated with depression or obesity Poor (31)

Comings et al.,
1996 [38]

Ob (D7S1875 repeat
polymorphism) Single-gene association Young adults (age 26–30),

Caucasian (n = 208)

Ob D7S1875 < 208 bp repeat
polymorphism significantly associated
with BMI and depressive symptoms, but
only in women

Moderate (42)

Ejchel et al.,
2005 [39] APOA4 (360 Gln/His SNP) Single-gene association Elderly adults (age ≥ 60)

(n = 383)
APOA4 360 His allele associated with
both obesity and depression Moderate (39)

Chen et al.,
2006 [40]

APOA5
(−1131T→C SNP) Single-gene association Elderly adults (age 66–97)

(n = 371)
APOA5-1131 C allele associated with
obesity in the presence of depression Moderate (37)

Krishnamurthy et al.,
2008 [41]

NR3C1 (Bcl1, N363S, rs33388
and rs33389 SNPs) Single-gene association

Premenopausal women
(age 21–45) with (n = 52) and
without (n = 29) depression

NR3C1 Bcl1 G/G genotype associated
with greater abdominal obesity in
women with depression; no significant
association for other SNPs

Moderate (39)

Spalova et al.,
2008 [42] NMB (P73T SNP) Single-gene association

Adults with (n = 292) and
without (n = 155) obesity or
overweight, Caucasian

No significant effect of NMB P73T on
weight loss or depressive symptoms
when followed up over 2.5 years after a
weight-reduction programme

Moderate (42)

Fuemmeler et al.,
2009 [43]

MAOA (30 bp VNTR) and
SLC6A4 (5-HTTLPR 44bp
Ins/Del)

Multiple-gene association,
gene x depression interaction Adolescents (n = 1584)

MAOA high-activity variant associated
with lower risk of obesity in the presence
of depression in male but not
female adolescents

Moderate (45)

Kivimaki et al.,
2011 [44] FTO (rs1421085 SNP) Single-gene association Adults (age 35–55) (n = 4145)

FTO rs1421085 C allele associated with
depression and obesity in men, but not
in women; link between risk allele and
depression in men apparently
independent of obesity

Good (48)

Rivera et al.,
2012 [45] FTO (10 SNPs) Single-gene association;

gene x depression interaction

Two independent samples of
adults with (n = 3734) and
without (n = 2499)
major depression

Significant associations between 5 SNPs
of FTO and BMI in adults with
depression, but not in controls

Good (55)
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Table 1. Cont.

Study and Year of
Publication

Candidate Gene(s) and
Polymorphisms Studied Study Design Study Population and

Sample Size Results Study Quality (Q-Genie
Quality Score)

Samaan et al.,
2013 [46] FTO (rs9939609 SNP) Single-gene association

Pooled data from 4 samples
of adults with (n = 6561)
and without (n = 21932)
depression

FTO rs993609 A variant associated
with increased BMI but lower risk
of depression

Good (53)

Beydoun et al.,
2014 [47]

21 SNPs across 10 genes
(ABCG5, APOB, APOA4,
APOE, BCMO1, CD36, LIPC,
FABP2, LPL, SCARB1)
associated with
serum-carotenoid levels

Multiple-gene
association study

Adults (age 30–64),
African-American (n = 873)

No specific association between any
individual SNP and either obesity
or depression

Good (49)

Harbron et al.,
2014 [48]

FTO (rs1421085 and
rs17817449 SNPs
and haplotype)

Single-gene association;
gene x depression interaction

Adults with obesity,
Caucasian (n = 133)

FTO rs17817449 GG genotype associated
with more severe depressive symptoms;
rs1421085 C allele mediates relationship
between depressive symptoms and BMI

Moderate (41)

Bielinski et al.,
2015 [49]

SLC6A4 (44-bp Ins/Del) and
HTR2A (1438G/A SNP) Multiple-gene association Adults (age 18–73) with

obesity, Caucasian (n = 180)
No significant association between either
variant and depressive symptoms Moderate (43)

Borkowska et al.,
2015 [50]

SLC6A4 (5-HTTLPR
repeat polymorphism) Single-gene association Adults with obesity,

Caucasian (n = 390)

5-HTTLPR L/L genotype associated
with higher BMI and more severe
depressive symptoms

Good (47)

Delacretaz et al.,
2015 [51]

MCHR2 (8 SNPs) and
MCHR2-AS1 (4 SNPs) Multiple-gene association

Independent analyses of
Caucasian adults with
psychiatric disorders (n = 816)
and in the general population
(n = 119,218)

MCHR2 rs7754794 TT genotype
associated with lower BMI in patients
with depression; similar but weaker
association observed in the
general population

Good (57)

McCaffery et al.,
2015 [52]

8 SNPs at 6 loci previously
associated with
depressive symptoms

Multiple-gene association
Adults with obesity or
overweight, multi-ethnic
(n = 2118)

KCNE1 rs1543654 associated with
depressive symptoms; no significant
associations for other SNPs

Good (46)

Samaan et al.,
2015 [53]

21 SNPs previously
associated with obesity Multiple-gene association

Multi-ethnic adults with
(n = 3209) and without
(n = 14,195) depression

TAL1 rs2984618 SNP significantly
associated with both BMI and
major depression

Good (53)

Yilmaz et al.,
2015 [54]

MC4R (rs571312, rs17782313,
rs489693, rs11872992 and
rs8087522 SNPs)

Single-gene association Adults (age 24–50),
Caucasian (n = 328)

MC4R rs17782313 C allele associated
with higher depressive symptoms and
higher BMI, but the latter was not
significant after correction

Good (51)
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Table 1. Cont.

Study and Year of
Publication

Candidate Gene(s) and
Polymorphisms Studied Study Design Study Population and

Sample Size Results Study Quality (Q-Genie
Quality Score)

Quteineh et al.,
2016 [55]

CRTC1 (rs3746266 and
rs6510997 SNPs) Single-gene association

Pooled data from 3 samples
of adults with (n = 5344) and
without (n = 5515)
major depression

No overall association between CRTC1
polymorphisms and depression; CRTC1
rs3746266 G allele and rs6510997 C allele
associated with BMI in one of
the samples

Moderate (43)

Bielinski et al.,
2017 [56]

COMT (Val158Met) and
DAT1 (VNTR polymorphism) Multiple-gene association Adults (age 39–69) with

obesity, Caucasian (n = 364)

DAT1 9-repeat allele associated with
higher BMI and depressive symptoms;
COMT Met/Met genotype associated
with depressive symptoms

Moderate (42)

Hellgren et al.,
2017 [57]

38 SNPs of four genes
(AKR1C2, AKR1C4, SRD5A1
and SRD5A2) involved in
allopregnanolone synthesis

Multiple-gene association Pregnant women, Caucasian
(n = 1351)

AKR1C2 rs28488494 SNP associated with
BMI; AKR1C2 rs1937863 SNP associated
with postnatal depressive symptoms

Good (50)

Rivera et al.,
2017 [58] FTO (rs9939609 SNP) Single-gene association;

gene x depression interaction

Pooled data from 5 samples
of adults with (n = 6902) and
without (n = 6799) depression

FTO rs9939609 A variant associated with
higher BMI in patients with depression
but not in controls

Good (54)

Schepers and Markus,
2017 [59]

SLC6A4 (5-HTTLPR repeat
polymorphism) Single-gene association Healthy young adults

(mean age 21.3) (n = 827)
5-HTTLPR S allele associated with
higher BMI and depressive symptoms Moderate (45)

Treutlein et al.,
2017 [60] NPY2R (rs6857715 SNP) Single-gene association;

gene x weight interaction

Adults with depression
(n = 595) and general
population controls (n = 1295)

NPY2R rs6857715 T allele associated
with depression independent of
increased weight; trend towards an
association between T allele weight gain
in depressed patients

Good (51)

Brummett et al.,
2018 [61] HTR2C (rs6318 SNP) Single-gene association

Pooled data from 10 adult
samples, Caucasian and
African-American
(n = 27,161)

No association between HTR2C rs6318
and either depressive symptoms or BMI Good (54)

Hay et al.,
2022 [62]

PCSK9 and surrounding
locus (7 lead SNPs identified
through sequential analysis
of biobank data)

Single-locus association
Data from adult Biobank
samples, mixed ethnicity
(n = 73,627)

PCSK9 rs2647282 associated with BMI;
no association between any PCSK9 SNP
and major depression

Good (49)
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Table 1. Cont.

Study and Year of
Publication

Candidate Gene(s) and
Polymorphisms Studied Study Design Study Population and

Sample Size Results Study Quality (Q-Genie
Quality Score)

He et al.,
2022 [63]

HTR2C (13 rare variants
identified in a prior sample) Single-gene association

Data from adult Biobank
samples, Caucasian
(n = 153,352)

HTR2C V61I variant associated with
depression and obesity, but not
significant after correction

Moderate (44)

Rahati et al.,
2022 [64] MC4R (rs17782313 SNP) Single-gene association

Adults (age 20–50) with
obesity or overweight,
Iranian (n = 403)

MC4R rs17782313 C allele associated
with higher depressive symptoms; CC
genotype associated with higher
body weight

Moderate (45)

Abbreviations: ABCG5, ATP-binding cassette sub-family G member 5 gene; AKR1C2, aldo-keto reductase family 1 member C2 gene; AKR1C4, aldo-keto reductase family 1 member C4
gene; APOA4, apolipoprotein A-IV gene; APOA5, apolipoprotein A-V gene; APOB, apolipoprotein B gene; APOE, apolipoprotein E gene; BCMO1, beta-carotene oxygenase 1 gene;
BMI, body-mass index; CD36, cluster of differentiation 36 gene; COMT, catechol O-methyltransferase gene; CRTC1, CREB-regulated transcription coactivator 1 gene; DAT1, dopamine
transporter gene; DRD2, dopamine type 2 receptor gene; FABP2, fatty-acid-binding protein 2 gene; FTO, fat-mass- and obesity-associated gene; HTR2A, serotonin type 2A receptor gene;
HTR2C, serotonin type 2C receptor gene; LIPC, hepatic lipase gene; LPL, lipoprotein lipase gene; MAOA, monoamine oxidase A gene; MC4R, melanocortin 4 receptor gene; MCHR2,
melanin-concentrating hormone receptor gene; NMB, neuromedin beta gene; NPY2R, neuropeptide Y type 2 receptor gene; NR3C1, glucocorticoid receptor gene; Ob, leptin gene; PCSK9,
proprotein convertase subtilisin/kexin type 9 gene; SCARB1, scavenger receptor class B1 gene; SLC6A4, serotonin transporter gene; SNP, single-nucleotide polymorphism; SRD5A1,
3-oxo-5α-steroid 4-dehydrogenase 1 gene; SRD5A2, 3-oxo-5α-steroid 4-dehydrogenase 2 gene; TAL1, T-cell acute lymphocytic leukemia protein 1 gene.



Int. J. Transl. Med. 2023, 3 168

3. Methodological Characteristics and Quality of the Included Studies

Of the 28 studies included in this review, the majority (n = 20) were association
studies involving a single gene or locus; only eight studies examined multiple genes across
distinct loci. Five of the 28 included studies examined interaction effects between genotype
and either depression or obesity. Nine studies used a case-control design: eight compared
individuals with depression to healthy controls, and one compared individuals with obesity
to controls. The remaining 19 studies did not have a control or comparator group.

Study populations in the uncontrolled studies were as follows: adults in the general
population (n = 6), adults with obesity (n = 6), elderly adults (n = 2), young adults (n = 2),
adolescents (n = 1), pregnant women (n = 1), and adult patients seeking psychiatric care
(n = 1). Ethnicity was specified in 17 of the 28 studies as being Caucasian (n = 12), African-
American (n = 2), or multi-ethnic (n = 3); in the remaining 11 studies, ethnicity was not
specifically mentioned.

The mean Q-Genie score for the included studies was 46.3 ± 6.1, indicating good
study quality. Fourteen studies were rated “good”, 13 were rated “moderate”, and only
one study received a rating of “poor.” The average Q-Genie score for sources of possible
bias was 4.1, indicating a low risk of bias, whereas the average score for study power was
4.2, indicating generally adequate study power. Concerns related to individual studies
being underpowered were identified in eight of the 28 (28.6%) included studies.

4. Genetic Associations Identified through the Review

The 28 studies included in this review evaluated the effects of variants in 54 distinct
genes on the relationship between obesity and depression. Among these variants, replicated
positive associations were identified for two genetic loci, positive associations in single
studies were identified for 12 genetic loci, and mixed or equivocal associations (i.e., both
positive and negative findings) were reported for a further two loci. Details of these
candidate genes and their physiological significance are summarised in Table 2.

Table 2. Functional significance and quality of evidence for genes associated with both obesity and
depression.

Genetic Locus Physiological Effects of Gene Product Impact on Obesity and Depression

Genes with replicated associations

FTO (5 studies) DNA/RNA demethylase enzyme that influences
food intake, adiposity, and energy expenditure

Multiple SNPs associated with elevated BMI in
depression but not in general samples [45]
rs9939609 A allele associated with higher BMI both
in general samples and in patients with depression;
also associated with lower depressive symptoms in
general samples [46,58]
rs17817749 GG genotype associated with elevated
depressive symptoms in adults with obesity [48]
rs1421085 C allele interacts with depressive
symptoms to influence higher BMI [44]

MC4R (2 studies) G-protein-coupled, membrane-bound receptor for
α-melanocyte-stimulating hormone

rs17782313 C allele associated with increased
depressive symptoms in adults both with and
without obesity [54]
CC genotype associated with increased body weight
in adults with obesity [64]

Genes with positive findings in single studies

AKR1C2
Reduction of 5α-dihydroprogesterone to
allopregnanolone; one of two isoforms
expressed in the brain

rs28488494 associated with BMI and rs1937863
associated with post-partum depressive symptoms
in pregnant women [57]

APOA5 Component of high-density lipoprotein (HDL);
involved in regulation of plasma-triglyceride levels

−1131 C allele associated with obesity in elderly
adults with depression [40]
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Table 2. Cont.

Genetic Locus Physiological Effects of Gene Product Impact on Obesity and Depression

COMT
O-methylation and inactivation of catecholamine
neurotransmitters—dopamine, epinephrine,
norepinephrine

rs4680 Met/Met genotype associated with
depressive symptoms in adults with obesity [56]

DAT1 Reputake of dopamine into presynaptic neurons 9-repeat allele associated with higher BMI and
elevated depressive symptoms [56]

KCNE1 Regulation of voltage-gated potassium channel
activity in cardiac muscle, inner ear, and brain

rs1543654 associated with depressive symptoms in
adults with obesity [52]

MAOA
Catabolism of monoamine
neurotransmitters—dopamine,
serotonin, norepinephrine

High-activity variant associated with reduced
obesity in adolescent girls with depression [43]

MCHR2 G-protein-coupled, membrane-bound receptor for
melanin-concentrating hormone

rs7754794 TT genotype associated with lower BMI in
patients with depression [51]

NPY2R
Receptor for neuropeptide Y, which is involved in
the stress response, eating behaviour, cognition, and
pain perception

rs6857715 T allele associated with depression
independent of BMI [60]
Trend towards an association between this allele and
increased BMI in patients with depression [60]

NR3C1

Nuclear receptor for cortisol and other
glucocorticoid hormones; involved in regulation of
carbohydrate metabolism, immune-inflammatory
activity, and the stress response

Bcl1 G/G genotype associated with greater obesity
in women with depression [41]

Ob (Leptin) Centrally active hormone secreted by adipose cells;
regulates satiety and energy expenditure

D7S1875 < 208 bp variant associated with depressive
symptoms and higher BMI in women [38]

PCSK9
Proprotein convertase enzyme; regulates serum
cholesterol levels by modulating the number of
low-density lipoprotein receptors (LDL)

rs2647282 associated with BMI in adults; no
association with depression [62]

TAL1 Transcription factor involved in differentiation of
erythroid and myeloid cells

rs2984618 associated with higher BMI and risk of
major depression in adults [53]

Genes with mixed positive and negative findings

SLC6A4 a Reputake of serotonin into presynaptic neurons

5-HTTLPR s allele associated with higher BMI and
depressive symptoms in young adults [59]
5-HTTLPR l/l genotype associated with higher BMI
and more severe depressive symptoms in adults
with obesity [50]

APOA4 b

Component of very-low-density lipoprotein (VLDL)
and chylomicrons; activator of enzymes involved in
lipid metabolism; involved in regulation of serum
cholesterol levels

360 Gln/His associated with obesity and depression
in elderly adults [39]

a Two positive and two negative studies. b One positive and one negative study.

4.1. Replicated Candidate-Gene Associations

Replicated findings across two or more independent populations were identified
for the fat-mass- and obesity-related gene (FTO) and the melanocortin 4 receptor gene
(MC4R). FTO, located on chromosome 16q, encodes a nucleic-acid demethylase enzyme
that regulates the expression of multiple genes through its regulation of DNA and RNA
methylation, exerting complex effects on glucose and lipid metabolism as well as food
intake and satiety [65,66]. The effects of variants of this gene on the links between obesity
and depression are complex: it has been associated both with elevated depressive symptoms
in obese adults and with an increased body-mass index (BMI) in depressed individuals.
There is also evidence of an interaction between a specific SNP of this gene and the
presence of depressive symptoms in influencing BMI. Thus, FTO variants appear to exert
bidirectional effects on the link between depression and obesity.
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The MC4R gene encodes a receptor for α-melanocyte-stimulating hormone (melanocor-
tin) that influences both food intake and energy expenditure; the action of melanocortin
at MC4R is influenced by several factors, including neurotransmitters such as serotonin,
other hormones such as leptin, and circulating levels of fatty acids [67]. Only a single
functional polymorphism (rs17782313) of this gene has been studied in relation to obesity
and depression; in one study, the C allele of this SNP was associated with elevated depres-
sive symptoms independent of weight, whereas in the other, homozygosity for this allele
was associated with higher weight in adults with obesity. Unlike variants in FTO, MC4R
rs17782313 appears to have independent effects on depression and obesity.

4.2. Candidate-Gene Associations from Single Studies

Of the remaining genes identified in this review, three (COMT, DAT1, and MAOA)
are involved in monoaminergic neurotransmission and have been extensively studied in
relation to the monoamine hypothesis of depression. COMT and DAT1 variants were
both associated with elevated depressive symptoms in adults with obesity, but only the
latter was associated with elevated BMI. The significance of findings related to MAOA
are unclear; the higher-activity variant of this gene was associated with lower depressive
symptoms in obese adolescents, but this effect appeared to be gender specific, and there
are no studies of MAOA in relation to depression and obesity in adults.

Apart from monoamine transmitters, a single study implicated a functional variant of
the NPY2 gene in both depressive symptoms and increased BMI. NPY2 encodes a receptor
for neuropeptide Y, a peptide neurotransmitter that influences a wide range of behavioural
and physiological processes, including food intake, the stress response, and mood [68].

Four studies implicated genes that encode specific hormones or their receptors. Among
these, AKR1C2, involved in the synthesis of allopregnanolone, was associated with in-
creased body-mass index and post-partum depressive symptoms in pregnant women,
though different SNPs were involved in each association. MCHR2 encodes a receptor
for melanin-concentrating hormone (MCH). In certain animal species, MCH’s primary
function is to regulate melanin concentrations and colour changes; however, it also plays a
key role in regulating arousal and energy balance in mammals [69]. Homozygosity for a
specific allele of the rs7754794 SNP of this gene appeared to exert a protective effect against
obesity in individuals with depression. NR3C1 encodes the receptor for glucocorticoid
hormones such as cortisol, thereby playing a central role in both stress responsiveness
and energy balance. Functional variants in this gene have been consistently associated
with depression [70]. In the current review, homozygosity for a specific variant of NR3C1
(Bcl1 G/G) was linked to elevated obesity in women with depression. Finally, the Ob gene
encodes the hormone leptin, which plays a central role in regulating both food intake and
energy metabolism [71]. A specific repeat polymorphism of Ob was associated with both
obesity and depression, but only in women.

The remaining genes Identified in this review represent diverse physiological and
biochemical processes. These include proteins involved in the regulation of lipid levels
(APOA5, PCSK9) which appear to be associated with obesity but not with depressive
symptoms, a regulator of voltage-gated potassium channels (KCNE1) and a transcription
factor (TAL1) best known as a regulator of haematopoiesis. The latter two associations are
particularly intriguing, as they were previously implicated in other forms of disease but
not specifically in obesity or depression.

4.3. Identification of Interactions between the Products of Identified Genes

To extend the results of this review beyond the scope of single-gene associations, an
attempt was made to examine interactions between the proteins encoded by these genes.
To this end, the genes identified in this review were entered into the STRING database
and a map of possible protein–protein interactions was constructed, which is illustrated
in Figure 2. This process was carried out in two steps. In the first, only the 14 genes with
unequivocal evidence of an association with depression and obesity, as noted in Table 2,



Int. J. Transl. Med. 2023, 3 171

were entered. In this model (marked in Figure 2a), associations could be identified between
10 of the 14 protein products. Genes related to brain monoaminergic transmission (COMT,
SLC6A3, and MAOA) were strongly linked to the glucocorticoid receptor NR3C1, which
was itself linked to LEP (Ob). LEP was, in turn, linked with FTO and MC4R. FTO was
linked to genes related to lipid metabolism (APOA5 and PCSK9), whereas MC4R showed a
significant connection to NPY2R. Thus, there appear to be two distinct “networks”—one
more directly associated with stress and depression, and one with energy utilisation and
lipid metabolism—which appear to be linked via the stress-related genes NR3C1 and LEP.
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In the second model, all the 16 genes identified as having some supporting evidence
in Table 2, as well as the three genes identified in the earlier review of the epigenetics of
obesity and depression (BDNF, SORBS2, and TAPBP) [35], were entered into the database.
The resulting map (marked in Figure 2b) demonstrates protein–protein interactions of
likely significance between 13 of the 19 genes included. Once again, there appeared to
be a “network” involving genes related to monoaminergic transmission, neural plasticity,
and the stress response, which was in turn linked to another “network” related to food
intake, energy utilisation, and lipid metabolism through the genes LEP, MC4R, and FTO.
The possible significance of these findings is discussed below.

5. Discussion

The current review identified 14 candidate genes that appear to be involved in the link
between obesity and depression, of which two were replicated in independent populations.
Evidence from studies of large general-population samples suggests that most cases of
obesity are not caused by alterations in single genes but by the additive or interactive effects
of several genes involved in distinct physiological pathways. Moreover, this polygenic
architecture appears to overlap significantly with that of depression [25–28,72–76]. Existing
treatments for obesity are effective in some patients, but their use is often limited by
adverse effects, and it is not known whether they are effective in the presence of comorbid
depression [77]. Moreover, there is no evidence that antidepressant drugs are themselves
useful in treating obesity, and some of them may be associated with significant weight
gain [78]. Against this background, the current review was undertaken to identify novel
molecular targets that could lead to more effective and well-tolerated treatments for these
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comorbid conditions. Potential pharmacological approaches that target these pathways,
both synthetic and natural, are summarised in Table 3 below. Drugs acting via standard
targets for antidepressant medications are not covered here, as their use in obesity has been
extensively reviewed elsewhere [19].

Table 3. Potential pharmacological therapies for comorbid obesity and depression, based on genetic
studies.

Target Gene Synthetic Agents Natural Agents

FTO Selective inhibitors of FTO demethylase a Angelica sinensis ext.
Rhein

MC4R Bremelanotide b

Setmelanotide b
Moringa oleifera ext.
Daisaikoto

AKR1C2 Selective ARK1C2 inhibitors a Astaxanthin
Bai He Gun Jin Tiang

KCNE1 -
Coriandrum sativum ext.
Gintoin
Rottlerin

MCHR2 GW803430 a -

NPY2R Neuropeptide Y, intranasal a

Combined NPY2R and GLP-1 agonists a Panax ginseng ext.

NR3C1 CORT125281 a

PT150 c

Aesculus turbinata ext.
Curcumin
Baihe Zhimu
Xingpi Jieyu

Ob -
Commiphora myrrha ext.
Nelumbo nucifera ext.
Prunus persica ext.

PCSK9 Alirocumab b

Evolocumab b

Lysimacha vulgaris ext.
Protium heptaphyllum ext.
Salvia plebeia ext.

TAL1 PIK-75 a -
Abbreviations: AKR1C2, aldo-keto reductase family 1 member C2 gene; Ext., extract; FTO, fat-mass- and obesity-
associated gene; GLP-1, glucagon-like peptide 1; MC4R, melanocortin receptor type 4 gene; MCHR2, melanin-
concentrating hormone type 2 receptor gene; NPY2R, neuropeptide Y type 2 receptor gene; NR3C1, glucocorticoid
receptor gene; Ob, leptin gene; PCSK9, proprotein convertase subtilisin/kexin type 9 gene; TAL1, T-cell acute
lymphocytic leukaemia protein 1 gene. a Under development or for experimental use in animal models only.
b Randomised controlled trials and/or available on the market for use in human patients. c Preclinical trials
ongoing in humans.

5.1. Synthetic Pharmacological Therapies

Given the preponderance of research implicating functional variants of FTO in the
association between obesity and depression, it is natural to consider whether pharmacolog-
ical manipulation of the FTO gene product—namely, the demethylase enzyme encoded by
this gene—might be effective in treating these conditions. Though there are no currently
available pharmacological agents for this purpose, there are ongoing efforts to develop
small-molecule FTO inhibitors for the treatment of other disorders in humans, particularly
certain types of cancer [79]. This research is still in its early stages, but there is evidence that
it is possible—at least in principle—to develop selective inhibitors of FTO that do not exert
comparable effects on other demethylase enzymes, and that these compounds are active
in in vitro models related to cancer-cell lines [80]. Such compounds, if demonstrated to be
safe and effective in humans, may represent a valuable and innovative treatment approach
to the treatment of comorbid obesity and depression.

Evidence of an association between variants in MC4R and the presence of obesity and
depression was identified in two independent populations. Two selective agonists of this
receptor, bremelanotide and setmelanotide, have been developed and assessed for safety
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and efficacy in humans. There is evidence that bremelanotide is associated with modest
benefits in terms of weight reduction and reduced caloric intake in a proof-of-concept trial
involving women with obesity. However, this drug has to be administered parenterally
and was associated with high rates of injection-site reactions [81]. Setmelanotide has been
evaluated in randomised controlled trials in both children and adults, but only in patients
with monogenic obesity due to isolated loss-of-function mutations, such as Bardet–Biedl
syndrome [82,83]. This drug also requires parenteral administration and is associated
with high rates of both injection-site effects and other adverse events such as increased
skin pigmentation, nausea, and diarrhoea. There is evidence from animal models that
antagonists (rather than agonists) of MC4R can ameliorate depressive-like symptoms; thus,
it is not clear which degree of activation of this receptor would be optimal in managing
patients with both obesity and depression [84,85]. Non-peptide modulators of MC4R are
also under development and may offer advantages in terms of pharmacokinetics and
adverse effects [86].

Studies of melanin-concentrating hormone modulators in laboratory settings are com-
plicated by the facts that rodents, which are the most frequently used animals in these
studies, do not express the MCHR2 receptor. However, administration of an experimen-
tal MCHR1 antagonist, GW803430, was associated with reductions in both obesity and
depression in a rat model [87]. Selective antagonists of MCHR2 have been developed for
use in other mammals, such as dogs and monkeys [88]. These agents are not currently
available for experimental or clinical use in humans but represent a potentially valuable
line of research in the management of comorbid obesity and depression.

In an animal model, administration of neuropeptide Y was found to synergise with
pharmacological manipulation of MC4R to alleviate depressive-like behaviours induced
by stress. Experimental agonists of the Y2 receptor exist for use in research and have been
considered for use as novel antidepressants, but none have been developed for use in
humans [89]. It has recently been suggested that combined agonism of the Y2 receptor
and the glucagon-like peptide-1 (GLP-1) receptor may be a useful approach to treating
addictive behaviours in humans [90]. GLP-1 agonists have shown independent evidence of
efficacy in treating obesity in randomised controlled trials [91]. It is therefore plausible that
such drugs could be useful in treating comorbid obesity and depression, particularly when
associated with increased food intake or compulsive eating.

The NR3C1 receptor has far-reaching physiological effects that extend beyond its
associations with depression and obesity. Therefore, direct pharmacological manipulation
of this receptor carries definite risks [92]. Nevertheless, a competitive NR3C1 antagonist,
named PT150, has been developed for use in humans and appears to be well tolerated
in phase I trials [93]. In a mouse model of obesity, another novel NR3C1 antagonist,
CORT125281, was associated with weight reduction and an improved lipid profile [94].
Given the existing evidence for the benefits of glucocorticoid receptor antagonism in
patients with resistant depression [95], it is possible that drugs such as PT150 may be useful
in a subset of patients with depression and obesity resistant to standard treatments.

PCSK9 inhibitors are already in use as lipid-lowering agents in clinical practice and are
effective for this indication when added to standard therapies [96]. These drugs have not
been evaluated for specific effects on obesity and depression in humans. A study of mice
genetically engineered to carry a PCSK9 inhibitor showed that these animals maintained
a normal body mass even when given a high-fat diet [97]. However, PCSK9 inhibitors
have been associated with a slight but significant and paradoxical increase in depressive
symptoms in humans [98]; therefore, caution is required when evaluating these drugs in
patients with both disorders.

Among the other molecular targets identified in this review, synthetic inhibitors of
AKR1C2 and TAL1 have been investigated as treatment approaches in cancer chemotherapy;
however, they are not yet available for use in human subjects, and it is not clear what role
they might play in the management of obesity associated with depression [99,100].
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5.2. Natural Compounds

Certain natural compounds have been identified as potentially acting through the
molecular pathways identified in this review. Though the evidence for their use in comorbid
obesity and depression is largely in the preclinical stage, it is possible that some of these
compounds may represent safe and effective treatment approaches to these conditions or
may serve as pharmacological “leads” to such treatments.

Two plant products have been identified as having potentially beneficial effects
through their actions on FTO. Extracts from the roots of Angelica sinensis, which is used in
traditional Chinese medicine, have been shown to suppress weight gain in rodent models,
and this suppression was associated with increased expression of FTO, as well as with
increased methylation of the FTO-promoter region. However, this plant extract is a complex
mixture of several compounds, and it is not known which of these molecules is responsible
for this specific effect [101]. Rhein, an anthraquinone molecule extracted from Rheum L.
rhizomes used in traditional medicine, has been shown to inhibit the enzymatic action of
FTO and was observed to inhibit adipocyte differentiation in vitro [102].

Similarly, there is evidence that two phytochemicals may have anti-obesity effects
through their actions on MC4R expression. Extracts from the leaves of Moringa oleifera, a
plant used both for food and in traditional medicine, reduced weight gain and adiposity in
rats fed a high-fat diet. These effects were associated with increased MC4R expression [103].
Daisaikoto, a traditional Kampo (Japanese) medicine, reduced both body weight and fatty
liver in mice in whom MC4R was knocked out and who were fed a high-fat diet [104].

Regarding the other candidate genes identified in this review, there is preliminary
evidence that phytochemicals acting on NR3C1 may be effective both in obesity and in
depression. Escin, a saponin compound extracted from Aesculus turbinata, has anti-obesity
effects in mice, which were partly mediated through its effects on this pathway [105]. Two
Chinese herbal preparations have been identified as acting on NR3C1 and possessing
potential antidepressant properties based on in silico network analyses [106,107], as does
curcumin, extracted from turmeric [108]. Bioactive compounds derived from Korean
ginseng (Panax ginseng) have been found to reduce obesity in rodent models, and this
effect appears to be associated with a reduction in neuropeptide Y levels; however, it is
not known to what extent these correlate with altered activity at the Y2 receptor [109].
Several plant compounds have been shown to reduce elevated leptin levels in rodent
models of obesity, and these effects correlate with their ability to prevent or attenuate
obesity in these models [110–112]. The carotenoid compound asthaxanthin [113] and the
Chinese herbal preparation Bai He Gu Jin Tiang, which contains 10 distinct herbs [114],
have both been identified as acting on AKR1C2 in silico, which may be associated with
anti-depressant and anti-obesity effects. Phytochemicals derived from Lysimachia vulgaris,
Protium heptaphyllum, and Salvia plebeia have been shown to reduce PCSK9 expression
in vitro, though these have been investigated as lipid-lowering agents and not specifically
for obesity or depression [115–117]. Finally, certain plant products have been shown to be
pharmacologically active at the KCNE1 binding site; however, these properties have been
evaluated in the context of anti-arrhythmic or anti-convulsant activities [118–120].

5.3. Mapping Protein–Protein Interactions and Possible Molecular Hubs

When examining possible networks of interactions between the protein products of
genes implicated in obesity and depression (Figure 2), similar findings were obtained
both when considering the genes identified in this review and when incorporating those
identified as being subject to epigenetic modification in obesity and depression. In both
cases, there appeared to be two closely linked “networks”—one involving genes related to
monoaminergic transmission and neural plasticity and one related to energy intake and
utilisation. In both cases, the “bridge” between these two tightly interconnected networks
appeared to involve the genes NR3C1, Ob (LEP), FTO, and MC4R. These findings suggest
that therapies for co-occurring depression and obesity may be more effective if they are
directed at one or more of these molecular targets. They also suggest that evaluation of
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the efficacy of anti-obesity treatments, particularly in the presence of depression, may be
improved by the study of these genes or their products as potential biomarkers: this could
include measures of the methylation of these genes, or the expression of their respective
protein products, in relation to changes in body weight or in depressive symptoms. These
findings might also explain the relative inefficacy of antidepressants in the management
of obesity, as their effects may be confined to the first network without meaningfully
influencing the second.

It should also be noted that for six of the genes included in this analysis—AKR1C2,
KCNE1, MCHR2, SORBS2, TAL1, and TAPBP—no significant protein–protein interaction
was identified. This may reflect limitations in the methodology employed (for example,
AKR1C2 was identified in a study of pregnant women and may not be related to obe-
sity in other populations) or in our existing knowledge of protein–protein networks. It
remains possible that examination of the physiological effects of these genes in the context
of depression and obesity could yield valuable insights into the pathophysiology and
treatment of these conditions. One likely mechanism of importance in this context is
immune–inflammatory dysregulation, which is known to occur in both depression and
obesity and in which some of these genes have already been implicated [35].

5.4. Implications for Clinical Practice and Research

Depression and obesity, besides being highly comorbid with one another, share the
property of being complex conditions, resulting from the interaction of multiple vulnerabil-
ity genes with environmental factors such as childhood adversity, diet, physical activity,
and stress [121,122]. Due to their complex nature, it is unlikely that a single class of treat-
ments would be effective for all patients suffering from these disorders. This has led to
interest in a personalised-medicine approach to both depression and obesity [123,124]. One
way of achieving this is through the use of polygenic-risk scores, but these have not been
specifically evaluated in the prediction of treatment outcomes in obesity and depression and
are crucially dependent on the availability of genetic data from diverse populations [125].
In the absence of such wide-ranging data, it is possible that pre-treatment screening for
the functional polymorphisms identified in this review, particularly those related to the
FTO and MC4R genes, may help in predicting treatment outcomes of both conventional
and novel treatments for these conditions [126]. Alternately, peripheral assays of the levels
of particular enzymes or hormones, or measures of receptor expression, may correlate
with the response to specific treatments for depression and obesity: such an effect has
already been demonstrated to some extent for the anti-obesity medication sibutramine,
which causes a significant reduction in serum-leptin levels post-treatment [127].

Prior to the initiation of formal drug-development processes, it is important that
the evidence identified in this review be replicated in diverse populations. Attempts
should also be made to elucidate the cellular and tissue-level mechanisms through which
these gene products are associated with obesity or depression. Such research would not
only place future drug development on a firmer footing but also lead to the elucidation
of further novel molecular targets, as well as interactions between those identified in
current research [128–131]. Based on these results, both existing natural and synthetic
compounds, as well as “leads” derived from such compounds, could be tested in animal
models of obesity with associated depressive-like behaviours or symptoms [132,133]. When
evaluating such compounds in clinical trials, an emphasis must be placed on rigorous
standards for drug safety as well as efficacy, given the concerning history of serious adverse
drug reactions associated with prior treatments marketed for both disorders [134,135]. In
addition, attempts should be made to correlate any observed benefits achieved through
the use of these drugs with changes in objective biomarkers, such as alterations in the
expression of target genes, inhibition of target enzymes, or changes in the circulating levels
of specific hormones.
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6. Limitations

The current review is subject to certain limitations. First, it is based on the available
literature on association studies in obesity and depression obtained through a search of
selected databases and could not account for unpublished or “grey” literature. Second,
though the included studies were of an acceptable quality overall, several of them were
subject to important limitations regarding phenotype definition, selection of candidate
genes, and study power. Third, most published studies were conducted in high-income
countries in which the majority of the population is of Caucasian ethnicity; hence, it is not
clear to what extent these results can be generalised to other countries or ethnic groups.
Fourth, some of the included studies were conducted in special populations, such as
pregnant women, adolescents, and the elderly, in whom the biological processes related
to obesity and depression may be unique to some extent. Therefore, these findings may
not be directly applicable to obesity or depression in the general population. Fifth, caution
is required when extrapolating from the results of animal or in vitro studies to human
subjects, and most of the molecules mentioned in Table 3 are not currently available for
clinical use. Sixth, certain natural compounds that exhibit in vitro or in silico evidence of
efficacy may have pharmacokinetic properties that limit their use in human subjects; in
such cases, phytochemicals should be considered “lead molecules” rather than treatments
in themselves [136]. Finally, it is possible that epigenetic modifications of gene expression,
rather than polymorphisms of candidate genes themselves, may be more directly related to
the pathogenesis of obesity and depression at a cellular level [34]; therefore, it is important
not to place undue weight on association studies alone.

7. Conclusions

Despite certain limitations, the current review identified certain novel molecular
targets for the pharmacological management of obesity with comorbid depression or
depressive symptoms. These targets included not only the well-known fat-mass- and
obesity-associated protein gene FTO but also hormone receptors such as MC4R, MCHR2,
and NR3C1; neurotransmitter receptors such as NPY2R; and genes not previously associated
with these conditions, such as KCNE1, PCSK9, and TAL1. Available evidence suggests
that certain natural and synthetic compounds targeting these molecular pathways may
represent advances in the management of both disorders, though much of this evidence
is at a preliminary stage and requires replication and verification in animal and human
models. It is hoped that the findings of this review will be of use to those involved in the
development and testing of novel drug therapies for obesity and depression, as well as to
those advocating a personalised-medicine approach towards these disorders.
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