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Abstract

:

The tremendous plastic production and poor post-use management are current and future sources of environmental and human contamination due to their degradation products: microplastics and nanoplastics (MNPLs). Methodological developments have allowed MNPLs to be detected in an increasing variety of human foods, as well as in stool and colonic mucosa. It was suggested early that the direct contact between MNPLs and intestinal tissues could represent a potential risk for human health. In order to assess this, over the last 3 years, numerous studies have evaluated the impact of MNPL ingestion on intestinal homeostasis in rodents. This comprehensive review reports the preclinical studies published between January 2021 and January 2024, and analyzes their contributions as well as their shortcomings. It shows that evidence is accumulating of the intestinal toxicity of spherical MNPLs, which lead to pro-inflammatory, pro-oxidative, barrier-disruptive and dysbiotic effects. However, the available literature has addressed only a minor part of the potential health issues of MNPLs. Many parameters contributing to MNPL toxicity need to be better taken into account in future studies. Particular attention should be paid to improve the representativeness of MNPLs, as well as to better consider the susceptibility factors of MNPL toxicity, generated especially by an underlying pathology or pathological imprinting.
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1. Introduction


Plastic is a long-carbon-chain polymer that is massively integrated in our daily life. Plastic products are used in packaging, building and construction, automotives, electricals and electronics, agriculture and houseware [1]. During the last 70 years, plastic production has extensively expanded, reaching 390.7 metric tons of plastic production worldwide in 2021 [1]. The accumulation of post-consumer plastic waste in the environment coupled with mismanaged waste programs have led to plastic contamination in all environmental niches [2]. Overall, nearly 60–75% of plastic products are discarded to the environment or landfilled, and this colossal plastic burden will remain in the earth for centuries [3]. Indeed, in the environment, large plastics undergo continuous physical, chemical and biological degradation processes, generating a broad amount of microplastics. Microplastics (MPLs) refer to small plastics ranging in size from 1 µm to 5 mm [4]. They can be further degraded into plastic particles with a size range between 1 and 1000 nm, known as nanoplastics (NPLs) [5]. Microplastics and nanoplastics (MNPLs) have many shapes such as granules, fragments, microbeads, fibers and foams [6]. MNPLs spread through the air, land and sea. The mass of MPLs which accumulates in the oceans has led to contamination by MPLs in fish, zooplankton, shrimp, crab, clam, mussel and many other aquatic organisms [7]. Microplastics can also be absorbed and accumulated by plants, such as rice, wheat, lettuce and other crops. Plants can absorb MPLs through their roots and then transfer them to their aboveground parts [8,9]. Moreover, MPLs easily enter the human food chain as marine and terrestrial organisms ingest MPLs [10]. Overall, human food can be contaminated by plastic particles either through direct exposure to the environment or indirectly by the transfer of MPLs within the ecosystem [10]. Therefore, MPLs accumulate in the human food chain. They have been detected in water, tea, beer, white wine, energy drinks, soft drinks, fish, shellfish, salt, sugar, honey, milk, poultry meat, fruit and vegetables [11]. The most common detected MPLs in food are polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyamide (PA) and polycarbonate (PC) [11]. Still, there is a lack of data quantifying MNPLs in meat, cereals and many other food products, and the amount of MNPLs ingested by human through food is recognized to be underestimated [6]. Moreover, exposure to MPLs through dust also decisively contributes to MPL intake. The amount of MPLs ingested from exposure to indoor dust has been estimated to be 0.21, 0.23 and 0.6 MPL/kg bw/day for adults worldwide [12], in China [13] and in Iran [14], respectively. Infants and newborns are exposed to higher MPL concentrations, namely 3.04, 7.4 and 13.7 MPL/kg bw/day, respectively. Despite the knowledge gaps regarding human exposure to MNPLs, the total burden of human exposure to MNPLs has been recently estimated to be 2.93 × 1010 particle/year [6]. The contact between MPLs and the colonic epithelium has been confirmed by several studies describing the detection of MPLs in the stools of healthy adults [15,16,17,18,19]. MPLs have also been detected in the meconium and in infant stools [20,21]. MPLs are therefore present in the intestinal lumen, but could also penetrate the intestinal epithelium, as suggested by their detection in human colectomy specimens [22,23]. Indeed, MPL presence was reported in colons from healthy adults and from patients with colorectal carcinoma. Therefore, it is essential to determine the health impact generated by MPL exposure, particularly at the intestinal level. Numerous studies carried out mainly in aquatic organisms and to a lesser extent in rodents have since demonstrated the intestinal toxicity caused by the ingestion of MPLs. The available data were reviewed in 2020 [24,25]. Since then, knowledge of the effects of MNPLs has extended to mammals, thanks to numerous studies which have assessed the effect of ingestion of MPLs and NPLs in rodents. In comparison with previous studies, these new studies focus more closely on human physiology. They studied a wide variety of MPLs and NPLs; they addressed several types of polymers, presenting a wide variety of sizes, sometimes with different surface charges. They were carried out for varying durations, in healthy or pathological individuals. They strengthened the evidence of MNPL-induced gut toxicity, but also identified new intestinal adverse effects as well as novel pathophysiological mechanisms impaired by MNPL exposure. The aim of this work was to offer a comprehensive analysis of the recent literature in order to provide an up-to-date understanding of the research area of MNPL intestinal toxicity.




2. Methods


A systematic search for published articles and documents was conducted in databases such PubMed database (https://www-ncbi-nlm-nih-gov.proxy.insermbiblio.inist.fr, accessed on 29 February 2024), ScienceDirect (https://www-sciencedirect-com.proxy.insermbiblio.inist.fr, https://www-ncbi-nlm-nih-gov.proxy.insermbiblio.inist.fr, accessed on 29 February 2024), SpringerLink (https://link-springer-com.proxy.insermbiblio.inist.fr, https://www-ncbi-nlm-nih-gov.proxy.insermbiblio.inist.fr, accessed on 29 February 2024) and Google Scholar (https://scholar-google-com.proxy.insermbiblio.inist.fr, https://www-ncbi-nlm-nih-gov.proxy.insermbiblio.inist.fr, accessed on 29 February 2024), in the period from January 2021 to February 2024.



The search queries were “microplastic or nanoplastic” and “intestinal” and “mouse or rat or rodent” in titles/abstracts. All the relevant studies were retrieved by sorting the title and the abstract. Only studies aimed at studying the impact of MPLs and/or NPLs by ingestion in rodents were included. Publications including in vitro and in vivo studies were included but only in vivo data were reported. Studies reporting only data on the gut microbiota were included. Studies for which it was not possible to report a primary characterization of the MNPLs used, such as the type of polymer, were excluded.




3. Results and Discussion


The preclinical studies which assessed the intestinal toxicity of MNPLs in rodents are detailed in Table 1.



Most of the preclinical studies focused on PS. There are a plethora of studies showing gut toxicity of 5 µm PS MPLs, which is characterized by impaired gut barrier and mucus production, increased oxidative stress and cytokine levels, and gut microbiota dysbiosis [26,31,32,33,34,35,37,41,44,45,48]. Most studies reported MPL toxicity in the colon, but when the small intestine was analyzed, impairments to the duodenum, jejunum and ileum were also reported [28,48]. Two studies found that gut toxicity occurred from a concentration of 0.1 mg/kg bw/day for 5 µm PS MPLs and worsened the intensity of DSS-induced colitis [26,31]. Similar effects were even found at the lowest dosage of 0.02 mg/kg bw/day [34,37]. The dysbiotic effects of 5 µm PS MPLs were detected from 0.02 mg/kg bw/day in male C57BL/6 mice [32,44] and from 0.006 mg/kg/bw/day in female BALB/C mice [49]. These findings related to 5 µm PS MPL are consistent with the ones observed for other sizes of MPLs [40,43], which all showed strong evidence of the gut toxicity of PS MPLs.



Numerous publications have also reported the gut toxicity of PS NPLs, which is, as for PS MPLs, characterized by impaired gut barrier function and mucus production, increased oxidative stress and cytokine levels, and gut microbiota dysbiosis [38,39,42,46,50,53,54,56,57]. Li et al. reported intestinal mechanical and immune barrier dysfunction in mice exposed to 0.02 mg/kg bw/day of PS NPLs [50]. Accordingly, colon inflammation was observed after exposure to PS NPLs at a similar concentration by Teng et al. [53]. The 0.02 mg/kg bw/day concentration can therefore be considered so far as the lowest observed adverse effect level for both PS MPL and PS NPL intestinal toxicity. Compared with PS MPLs, ingestion of PS nano-sized NPLs induced similar gut disturbances, except in the studies of Xiao et al. and Schwarzfisher et al., who showed, respectively, slight and null gut toxicity following exposure to PS NPLs [29,30]. PS NPL ingestion impaired both the colon and the small intestine epithelium. PS MNPL toxicity can be associated with disturbances to gut immune response, involving macrophages, innate lymphoid cells and B and T lymphocytes [39,49,50]. Overall, PS MNPL intestinal toxicity appeared in most studies after an exposure duration of about 4 weeks, but was also described after 2 and 32 weeks of exposure. Among the studies with exposure to both MPLs and NPLs in the same experimental conditions, four studies supported a greater intestinal toxicity of MPLs compared to NPLs [27,47,51,52]. The other five studies showed that the intestinal toxicity of NPLs was of a similar intensity to that of MPLs, but that the features of toxic effects were dependent on the size of the MNPLs [28,40,43,49,55]. The complete study performed by Zhang et al., which included different PS MNPL sizes and concentrations and 2-week and 4-week exposure durations, argued in favor of a greater influence of exposure duration and MNPL size compared to MNPL concentration on the gut toxicity of MNPLs [49]. Furthermore, the influence of the surface charge of PS NPLs on adverse gut effects was assessed: two studies consistently observed a gradually increasing gut toxicity from pristine PS NPLs, to negatively charged carboxylated PS NPLs and then positively charged aminated PS NPLs [27,42], whereas similar levels of colon impairments were observed for pristine PS, PS-COOH and PS-NH2 NPLs by Teng et al. [53].



PS was the only polymer that could be administered in the drinking water of rodents. Other polymers required administration by gavage or through feed. Oral administration of PE, PVC, PP and PET MPLs also promoted gut microbiota dysbiosis and permeability defects, but these effects were observed at the highest exposure concentrations (minimum 0.2 mg/kg for PE [58,63], 22 and 100 mg/kg for PVC [64,65], 22 to 2272 mg/kg for PP [66] and 200 mg/kg for PET [67]). However, the dosage of 0.02 mg/kg bw/day has never been assessed for these polymers. Therefore, to date, it remains difficult to assess the relative gut toxicity of the different polymers. The best way to achieve this goal is to compare the polymers under the same experimental conditions, as shown by Xie et al., who concluded that the pro-inflammatory properties on the colon followed this trend: PS > PVC > PET > PE > PP [69].



It must be emphasized that apart from the consistently described pro-inflammatory, pro-oxidative, barrier-disruptive and dysbiotic effects, other adverse gut effects have been reported which deserve further investigation, such as the promotion of H. pylori infection [59], hyperproliferation and tumorigenesis [37,60,72], dyslipidemic effects [39] and alterations to microbial antibiotic resistance genes and virulence factors [40].



One important limitation is that most of the rodent studies have been performed with commercially available MNPLs. Therefore, they only reflect the toxicity of spherical MNPLs. They assessed only one of the many forms of MNPLs which are found in the environment and food [74]. Moreover, commercial MNPLs are devoid of additives and contaminants unlike MNPLs resulting from the degradation of industrial plastics. It is known that some plastic additives and contaminants have their own intestinal toxicity, such as bisphenols and phthalates [75,76]. Some plastic contaminants such as heavy metals and persistent organic pollutants could also present combined intestinal toxicity with MNPLs [77]. In addition to the known additives and contaminants of MNPLs, other unknown chemical products could additionally be released and alter gut homeostasis: this is the new avenue of research which was opened by Wang et al., who showed that human gut enzymes catalyzed the release of oligomer nanoparticles by polylactic acid. In mice, these oligomers induced small intestine and colon inflammation according to histological and molecular studies, associated with MMP12 inactivation [78]. An important limitation is therefore that the combined effect of MNPLs and their additives and contaminants is not taken into consideration in the studies using commercially available MNPL beads.



Furthermore, most of the studies did not consider either the mixture effects of various shapes and polymer types, or the weathering and aging of MNPLs. To date, only four studies have been performed on more realistic MNPLs [36,61,66,68]. They used ground or crushed MNPLs. Mouse exposure to pin-made PET MPLs did not induce colon barrier defects and inflammation. By contrast, it led to alterations in the gut immune transcriptome and metagenome [68]. Some adverse gut effects of spherical PET NPLs have also been shown at high concentrations in mice [67]. Ingestion of PET MPLs induced structural and functional alterations to duodenal myenteric neurons in pigs [79]. But the scarcity of studies precludes drawing conclusions on the toxicity of PET MPLs. Regarding the other polymers, studies on fragmented MPLs showed consistent evidence of pro-inflammatory effects induced in the small intestine for PS MPLs and in the colon for PE and PP MPLs. Feed contamination with crushed PS MPLs for 3 weeks induced small intestine epithelium damage and fecal dysbiosis [36]. Polydisperse, ground PE NPLs and MPLs led to overt colitis after only 1 week of exposure [61]. Colon oxidative stress, inflammation, barrier impairment and apoptosis were induced by oral administration of irregular ground PP MPLs [66]. These studies performed with more realistic MPLs tend to converge towards those performed with commercial microbeads. The types of damage observed appear similar, including pro-inflammatory, pro-oxidative, barrier-disruptive and dysbiotic effects. However, to date, the available data are too few and the protocols are too heterogeneous to determine whether real MPLs have increased or reduced toxicity compared to commercial microbeads.



Another important knowledge gap comes from the scarcity of research on the effects of mixtures of the various polymers. Except for the dysbiotic impact induced in rats by co-exposure to PP, PET, PS, rayon, PE, POM, PC, PA, PVC and PU [71], the cocktail effects induced by the ingestion of realistic mixtures of several polymers have been studied very little in mammals.



Another important issue is the individual susceptibility to MNPL toxicity. In addition to most of the studies carried out in healthy adult rodents, a few studies were performed in the presence of susceptibility factors. They suggested that the intestinal toxicity of MPLs could be worsened in undernourished patients as well as in patients with obesity [33,48]. Because MPLs are more likely to enter the intestinal epithelial cells in patients with leaky gut and PS MPLs exacerbated colitis in murine models [26,34], MPLs were proposed as emerging risk factors for inflammatory bowel disease [80]. Consistent with this hypothesis, Yan et al. showed that the fecal MPL concentration in IBD patients was significantly higher than that in healthy individuals. They also revealed a positive correlation between the fecal MPL concentration and the severity of IBD, suggesting that MPL exposure may be related to the disease’s development [18]. In IBD as in irritable bowel syndrome (IBS), the increased gut permeability may favor MNPLs crossing the gut barrier, inducing a vicious circle maintaining the barrier defects and subsequently the intestinal inflammation. MNPL exposure may also exacerbate IBD or IBS pathology by worsening dysbiosis, dysregulating the intestinal immune response or exerting direct inflammatory impacts and metabolic toxicity in intestinal epithelial cells, as supported by several in vitro studies on intestinal cell lines or organoids [81,82,83]. Of particular interest, a hyperproliferative effect induced by MPLs under basal conditions and a worsening of established colon cancer progress induced by NPL exposure have been reported, suggesting that MNPLs could favor the development of colorectal cancer [37,60,72]. These in vivo findings were reinforced by in vitro data showing that MNPLs may promote colorectal cancer by increasing the propensity for cell migration and the potential for pro-metastatic effects in human gastrointestinal cancer cells [84]. Lastly, it is worthy of note that gestational exposure to PS NPLs was reported to induce small intestine histological changes, oxidative damage and ferroptosis initiation in female and male offspring [38]. Extraintestinal health outcomes have been reported following in utero exposure to MNPLs in mice, further supporting the need to assess the transgenerational effect on MNPL ingestion on gut health [85,86,87].




4. Conclusions and Future Directions


During the last three years, it has been shown that in rodents, the ingestion of MNPLs impacts the main parameters of intestinal homeostasis, which are the barrier function, the immune response, the oxidative status and the balance of the intestinal microbiota. It is established that MNPL ingestion in healthy subjects disrupts intestinal functions, and critical studies showed that these disruptions could contribute to making individuals more susceptible to the development of inflammation, cancer or infections. However, despite these numerous advances, our knowledge of the intestinal impact of MNPLs remains limited. In order to address MNPLs in their whole physico-chemical complexity and to decipher their effects in various physiological and pathological states, more collaborative efforts must be developed involving experts from diverse fields (e.g., polymer chemistry, analytical chemistry, toxicology, pathophysiology). Future studies will need to better investigate the impact of realistic MNPLs by taking into consideration their diversity in terms of polymer type, shape and size. Above all, the presence in MNPLs of additives and contaminants that are likely to influence the overall toxicity of MNPLs must be better investigated. It is also essential to decipher the impact of MNPL ingestion in individuals weakened by an underlying pathology, particularly pathologies in which the intestinal barrier function is impaired, including inflammatory bowel diseases, irritable bowel syndrome and colorectal cancer [88], but also extraintestinal diseases such as metabolic and neurological diseases [89,90]. Finally, since pioneering studies have shown that gestational exposure to MNPLs could be hazardous for offspring, particular attention should be paid to the effects of MNPLs as determinants of health at early ages but also later in life.
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Table 1. Overview of rodent studies of the intestinal toxicity of MNPLs.






Table 1. Overview of rodent studies of the intestinal toxicity of MNPLs.





	
Sex

Background

Specie

	
Polymer Type, Shape, Mean Aerodynamic Diameter and Other Specificities of MPLs/NPLs

	
Exposure Conditions

Concentration *

Duration

Administration Pathway

	
Main Alterations Observed

	
Reference






	
Polystyrene (PS)




	
Male

C57BL/6

mice

	
Spherical

5 µm

PS

	
500 µg/L

so ≈0.11 mg/kg bw/day

4 weeks

Drinking water

	
Increased intestinal permeability in mice with acute DSS 1-induced colitis

	
[26]




	
Male

C57BL/6

mice

	
Spherical

70 nm NPL and 5 µm MPL PS, pristine PS, negatively charged carboxylated PS (PS-COOH) and positively charged aminated PS (PS-NH2)

	
0.2 and 2 mg/kg bw/day

4 weeks

Gavage

	
Gut toxicity PS-NH2 > PS-COOH > pristine PS

Decreased expression of tight-junction proteins for PS-NH2 MPL and NPL

Dysbiosis:

MPL > NPL

Chemically modified MNPL > pristine MNPL

	
[27]




	
Male

C57BL/6

mice

	
Spherical

50, 500, 5000 nm individually and combined

PS

	
2,5, 50, 250, 500 mg/kg bw/day

4 weeks

Gavage

	
Numerous significant effects on duodenum, jejunum, ileum, colon: dose-dependent and size-dependent, including

Decreased mucus

Increased ROS 2 generation (DHE)

Increased apoptosis (TUNEL)

Increased caspase-3

Increased intestinal permeability (4 and 70 kDa dextran) and decreased Ecad levels

Combined toxicity of 50 and 500 nm NPLs

	
[28]




	
Female

C57BL/6 mice

	
Spherical

50 nm and 1 µm

PS

	
0.2 mg/mouse

so ≈9 mg/kg bw/day

12 and 23.7 weeks

Drinking water

	
No effects under basal, acute colitis or chronic colitis conditions

	
[29]




	
Male

C57BL/6 mice

	
Spherical

47 nm

PS

	
0.2, 1 and 10 mg/kg bw/day

4.2 weeks

Gavage

	
Slight dysbiosis (impact on 3 to 8 taxa/group)

Slight intestinal damage (only Tff3 and Klf3 mRNA decrease at highest dose)

	
[30]




	
Male C57BL/6 mice

	
Spherical

5 µm

PS

	
500 µg/L so

≈0.11 mg/kg bw/day

4 weeks

Drinking water

	
In colon:

Increased TNFα, IFNγ, IL1β, GPx

Decreased Claudin1 and Occludin1

Worsened DSS 1-induced colitis (colon length)

Decreased glycine and taurine production only under DSS 1-induced conditions

	
[31]




	
Male

C57BL/6 mice

	
Spherical

5 µm

PS

	
18 and 180 µg/kg bw/day

12.8 weeks

Drinking water

	
Dysbiosis

	
[32]




	
Male ICR

mice

	
Spherical

5, 50, 100 and 200 µm PS

	
80 mg/kg bw/day, including 20 mg/kg of 5, 50, 100 and 200 µm MPL

10 weeks

Gavage

	
In normal-diet mice: induction of dysbiosis (including decreased Firmicutes/Bacteroides ratio)

In high-fat-fed (HFD) mice: modification of HFD-induced dysbiosis (including worsening of Enterobacteriaceae abundance increase)

	
[33]




	
C57BL/6J mice

(sex not provided)

	
Spherical

5 µm

PS

	
0.5 and 5 µg/mouse so

≈0.023 and 0.23 mg/kg bw/day

2 and 9 weeks

Gavage

	
DSS 1-induced acute and chronic colitis exacerbation

	
[34]




	
Male C57BL/6 mice

	
Spherical

5 µm

PS

	
0.1 mg/day so

≈4.5 mg/kg bw/day

6 weeks

Gavage

	
Alterations in gut microbiota and metabolites

	
[35]




	
Male C57BL/6 mice

	
Crushed

51 and 88 µm

PS

	
50 and 500 mg/kg bw/day

3 weeks

Feed

	
Decreased SI 3 mucus layer thickness

Increased SI 3 epithelial injury

Fecal dysbiosis

Host plasma lipid metabolism disturbance

	
[36]




	
Male C57BL/6 mice

	
Spherical

5 µm

PS

	
100 µg/L

so ≈0.02 mg/kg bw/day

6 weeks

Drinking water

	
In colon:

Decreased goblet cell number

Increased crypt depth and density

Decreased Tff3 and Muc2 mRNA

Increased Il1β, Il6, Dll1, Dll4, Jag1, Notch1, Hes1, Lgr5, Bmi1, Olfm4 and c-Myc mRNA levels

Increased c-MYC and PCNA protein levels

Worsened DSS 1-induced colitis (body weight, colon length, histological score, serum LPS, colon Il1β and Il6)

	
[37]




	
Male and female

C57BL/6

mice

	
Spherical

71 nm

PS

	
50, 250 or 1250 µg/mouse/day

So ≈2.3, 11.5 or 57.5 mg/kg bw/day

7.52 × 1011, 3.76 × 1012, and 1.88 × 1013 particles/day

3 times per week during gestation

Oropharyngeal aspiration

	
In adult male and female offspring:

Duodenum, jejunum and ileum histomorphological alterations in female and male mice

Small intestine oxidative stress

Small intestine ferroptosis

	
[38]




	
Male

C57BL/6 mice

	
Spherical

0.45–0.53µm

PS COOH

	
1000 µg/L

so ≈0.22 mg/kg bw/day

4 weeks

Drinking water

	
On SI of high-fat-diet-fed mice:

Decreased goblet cells

Decreased mucus thickness

Decreased villus height and higher crypt depth

Increased innate lymphoid cells ILC1 and T bet+ ILC3 cells

Increased M1/M2 macrophage ratio

Decreased ILC3 cells

Decreased palmitic acid, acetic acid, propionic acid and butanoic acid

in feces

Increased inflammatory cytokines and lipid metabolism gene expression

	
[39]




	
Male

C57BL/6 mice

	
Spherical

0.05–0.1 µm

and 9–10 µm

PS

	
1 ppm, 1 mg/L

so ≈0.22 mg/kg bw/day

12 weeks

Drinking water

	
Size-dependent

Gut dysbiosis (bacteria and fungi)

Disturbed microbial metabolic pathways

Altered microbial antibiotic resistance genes and virulence factors

	
[40]




	
Male C57BL/6 mice

	
Spherical

5 µm

PS

	
0.1 mg/mouse

so ≈4.5 mg/kg bw/day

6 weeks

Gavage

	
Gut dysbiosis and variations in predicted functional pathways

Modifications to metabolite profiles (bile acid metabolism enrichment)

Increased bile acids, decreased purine and pyrimidine nucleosides

Decreased fecal levels of acetic acid, propionic acid, butyric acid and

isobutyric acid (SCFA)

	
[41]




	
Male

BALB/c mice

	
Spherical

100 nm

PS,

PS-COOH

and PS-NH2

	
1 mg/mouse/day

so ≈45.5 mg/kg bw/day

4 weeks

Gavage

	
Decreased villus length

Increased crypt depth and lower ratio of villus length to crypt depth

Increased the secretion of mucus

in ileum

Increased IL-17a-positive cells

in the ileal lamina propria

Increased ileal apoptosis (TUNEL)

Increased necroptosis (RIPK3 and MLCK protein expression)

Increased mitophagy (PINK1, PARKIN, SQSTM1/p62, LC3B, TOMM20 protein expression)

	
[42]




	
Male C57BL/6 mice

	
Spherical

100 nm NPL and 1 µm MPL

PS

	
0.5 mg/mouse

so ≈22.7 mg/kg bw/day

8.5 weeks

Gavage

	
Decreased colon mucus secretion

Increased gut permeability (FITC dextran)

Size-dependent dysbiosis

Altered serum metabolites

	
[43]




	
Male C57BL/6 mice

	
Spherical

5 µm

PS

	
0.001, 0.1, 1 and 10 µg/mL

so ≈0.002, 0.02, 0.2 and 2 mg/kg/day

10 weeks

Drinking water

	
Dysbiosis

from the 0.1 µg/mL concentration

	
[44]




	
Male C57BL/6 mice

	
Spherical

5 µm

PS

	
10 mg/L

so ≈2.3 mg/kg bw/day

6 weeks

Drinking water

	
In distal colon of healthy mice:

Increase in the number of endocrine cells

Increase in the content of highly

sulfated mucins in goblet cells

Increase in the number of cells in the lamina propria

Decrease in the volume fraction of

macrophages

Worsening of DSS 1-induced colitis:

greater prevalence of ulcers and inflammation; decrease in the content of neutral mucins in goblet cells

	
[45]




	
KN

Mice

(sex not provided)

	
Spherical

300 nm

PS

	
12 and 500 mg/kg bw/day

4 weeks

Gavage

	
Dose-dependent

Increased gut permeability

Increased ileum Muc2 expression

Decreased jejunum and ileum villus number and length

Decreased colon mucus thickness and goblet cells number

Ileum and jejunum oxidative stress

	
[46]




	
Male

Wistar

rat

	
Spherical

50 nm

and

5 µm

PS

	
0.1 and 1 mg/kg bw/day

4 weeks

Gavage

	
Higher for MPLs than NPLs:

Decreased colon mucus secretion and MUC2 expression

Decreased colon ZO-1 and occludin expression

For both MPLs and NPLs: decreased colon exosomal miR-126a expression

	
[47]




	
Male C57/BL/6

mice

	
Spherical

5 µm

PS

	
200 µg/L

so ≈0.04 mg/kg bw/day

5 weeks

Drinking water

	
With normal diet:

Increased serum Diamine oxidase (DAO), D-Lactate, D-Lactate dehydrogenase (D-LDH) and intestinal fatty acid-binding protein (IFABP)

Decreased ileum secretory IgA

Fecal dysbiosis

Worsened with dietary restriction:

Decreased ileum mucus secretion

Increased serum DAO, D-Lactate, IFABP and TNF-α levels

	
[48]




	
Female

BALB/C

mice

	
Spherical

20, 500, 5000 nm

PS

	
6, 60, 600 µg/kg bw/day

2 or 4 weeks

Gavage

	
Gut microbiota composition alterations

Variation in short-chain

fatty acid levels

Modifications to intestinal permeability (decreased after 2 weeks,

increased after 4 weeks)

Increased leukocytes in SI (4 weeks)

Decreased secretory IgA levels

Decreased CD4+ and CD8+ T cells

in MLN 4

	
[49]




	
Female C57BL/6 mice

	
Spherical

50 nm

PS

	
0.1, 1 or 10 mg/L

so ≈0.02, 0.23 or 2.3 mg/kg bw/day

32 weeks

Drinking water

	
Increased caveolin and clathrin levels (endocytosis proteins)

Histological damage in jejunum, ileum, colon

Decreased Claudin-1, Occludin, ZO-1 levels

Increased ROS2 and MDA levels

Decreased SOD and GSH-Px levels

Increased B lymphocytes in MLN4

Decreased γδ+CD8+ and CD3+ CD8+ T cells in intestine

Increased intestinal mucosal IL1β, IL-6 and TNF-α.

	
[50]




	
Male

C57BL/6

mice

	
Spherical

0.5 and 5 µm

PS

	
0.5 mg/mouse/day

so ≈22.7 mg/kg bw/day

8 weeks

Gavage

	
Decreased colon length (5 µm only)

Increased colon IL6, TNFα, Il1β secretion (higher for 5 µm than 0.5 µm)

Dysbiosis and variation in fecal metabolome (higher for 5 µm than 0.5 µm)

	
[51]




	
Male

C57BL/6

mice

	
Spherical

0.2, 1 and 5 µm

PS

	
1 mg/kg bw/day

4 weeks

Gavage

	
In colon:

5 µm PS:

Oxidative stress

Increased inflammatory cytokines

Impaired tight junctions and mucins

Lower impairments for 1 µm

Fewest impairments for 0.2 µm

	
[52]




	
Male

ICR

mice

	
Spherical

44 nm

nonfunctionalized PS,

51 nm PS-NH2,

50 nm PS-COOH

	
80 µg/L

0.018 mg/kg bw/day

9 weeks

Drinking water

	
Similar for the 3 NPLs:

Increased colon histological score

Decreased colon Ifnγ, Il6, Il10, Tff3

Increased Tlr3 expression

NPL-specific variations in fecal microbiome and metabolome

	
[53]




	
Male

BALB/C

mice

	
Spherical

140 nm

PS

	
5 mg/kg bw/day

4 weeks

Gavage

	
Jejunum and colon mitophagy

(increased secretion of LC3B2/LC3B-1, BNIP3, NIX and p62)

Dysbiosis

	
[54]




	
Male

ICR mice

	
Spherical

99 nm and 5 µm

PS

	
200 or 500 µg/mouse

so ≈9 or 22.5 mg/kg bw/day

5 weeks

Gavage

	
Size- and concentration-dependent dysbiotic effects

	
[55]




	
Male

C57BL/6 mice

	
Size and shape not provided

PS

NP

	
0.5 and 1.5 mg/mouse/day

so ≈22.7 and 68

mg/kg bw/day

4 or 6 weeks

Gavage

	
Activation of pro-inflammatory gene expression (RNA sequencing)

Activation JAK-STAT and

ERK1/2 signaling pathways

Depletion of taurine in colon

Increased gut permeability

(FITC-dextran and reduced

Tight-junction proteins)

DSS 1-induced colitis exacerbation

	
[56]




	
Male

C57BL/6

mice

	
Spherical

200 and 800 nm

Nile-red-labeled PS

	
109/mouse

3 times per week for 4 weeks

Gavage

	
Disruptions to cecal microbiome and metabolome

	
[57]




	
Polyethylene (PE)




	
Female

ICR

mice

	
Spherical

1–10 µm

PE

	
0.002 and 0.2 µg/g bw/day

4 weeks

Gavage

	
At 0.2 µg dosage:

Decreased colon mucin

Decreased Il1β, ERK1, NF-κB, and increased Il10 and Il8 mRNA

Dysbiosis

	
[58]




	
Male

BALB/C

mice

	
Spherical

61 µm

PE

	
25 or 50 µg/mouse

so ≈1.25 or 2.5 mg/kg bw/day

3 times in a week

Gavage

	
Without H. pylori infection:

Gastric pathological damage

Increased gastric IL6 and TNF-α levels

With H. pylori infection:

Increased H. pylori gastric

colonization

Increased gastric injury

Increased gastric inflammation

(MPO, IL6, TNF-α)

	
[59]




	
Female C57BL/6 Mice

	
Spherical

36 and 116 µm

PE

	
100 µg/g feed

so ≈16 mg/kg bw/day

6 weeks

Feed

	
Colon hyperproliferation

Increased colon mucus and Muc2 expression

Colon inflammation

Whole-gut immune population and

epithelial cell disturbances

Dysbiosis

	
[60]




	
BALB/c mice (sex not provided)

	
Polydisperse, grinded

530 and 2300 nm

PE

	
10 mg/kg bw/day

in 0.5% CMC

1 week

Gavage

	
Overt colitis

Decreased colon length

Increased colon Il1β, Th2, Treg, Th17 cells

	
[61]




	
Male

C57BL/6

mice

	
Spherical

2.6 to 13 µm

LDPE

and

oxidized LDPE

	
5 mg/mouse/day

so ≈227 mg/kg bw/day

4 weeks

Gavage

	
Higher for oxidized LDPE than LDPE

Decreased duodenum length

Increased duodenum and colon crypt depth

Oxidative stress

Increase in Tnfα, Il1β, Il6 expression in duodenum and colon

Same extent for both LDPEs: dysbiosis

	
[62]




	
Male

C57BL/6

mice

	
Spherical

5 µm

PE

	
1 and 10 mg/L

so ≈0.22 and 2.2

mg/kg bw/day

3 weeks

Drinking water

	
Concentration-specific

dysbiosis

	
[63]




	
Polyvinylchloride (PVC)




	
Male C57BL/6 Mice

	
Spherical

2 µm

PVC

	
100 mg/kg bw/day

8.5 weeks

Gavage

	
Increased intestinal permeability

Decreased mucus secretion

Decreased colon Muc1, Muc2, Muc3, Klf4, Retnlb mRNA expression

Gut dysbiosis

Modification to fecal metabolic profile

	
[64]




	
Male C57BL/6 Mice

	
Spherical

2 µm

PVC

	
0.5 mg/mouse

So ≈22.7 mg/kg bw/day

8.5 weeks

Gavage

	
Gut dysbiosis

	
[65]




	
Polypropylene (PP)

	




	
Male C57BL/6 Mice

	
Irregular

Grinded

8 and 70 µm

PP

	
0.1, 1, 10 mg/mL

So ≈22, 227 and 2272 mg/kg bw/day

4 weeks

Gavage

	
Mild colon submucosa edema

Colon oxidative stress and inflammation

Disruption of intestinal barrier

TLR4/NF-κB signaling pathway

Colon apoptosis

	
[66]




	
Polyethylene terephthalate (PET)




	
Male and female KM mice

	
Spherical

200 nm and 700 nm

PET

	
200 mg/kg bw/day

4 weeks

Gavage

	
LD50:

266 mg/kg bw for 200 nm-PET

and 523 mg/kg bw for 700 nm-PET

200 nm PET only:

Intestinal obstruction

Perturbations to gut microbiome and metabolome

	
[67]




	
Female

C57BL/6 mice

	
Pin made

1 µm

PET

	
3 × 104/mouse

Gavage

8 weeks

	
In colon:

No evidence of impaired histomorphology and mucus barrier

No low-grade inflammation

139 differentially expressed genes

In gut immune cells:

Oxidative phosphorylation and

reactive oxygen species pathways

enrichment

Dysbiosis

	
[68]




	
Several polymer types




	
Kunming mice

(sex not provided)

	
Spherical 150–130 µm

PE, PET, PP, PS and PVC

	
4 mg/mouse/day

So, ≈182 mg/kg/day

7 days

	
All: colon damage (PS > PVC > PET > PE > PP)

Polymer-specific oxidative stress

Polymer-specific dysbiosis

	
[69]




	
Male and female

Wistar rats

	
Spherical

15–20 µm

polyamide