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Abstract: In order to identify how research contributes to the knowledge of marine litter as a
pressure on beaches, we reviewed interactions of beach fauna with this pollutant. Entanglement of
pinnipeds in fishing gear, negative correlations between macroinvertebrates abundance and sediment
pollution, and the presence of plastic surrounding burrows were primary evidence of beach fauna
interacting with stranded litter. Ingestion represents the main body of research; microplastic uptake by
invertebrates has been studied by laboratory experiments and field collections to report the presence
of polymers in tissues. In the natural context, the higher the urbanization surrounding beaches
and sediment pollution, the higher the concentration of microplastics in organs of bivalves. This
approach currently constitutes the main research direction, but ecotoxicological assays are emerging
prospects to assess the effects of exposure to microplastics. Beached macroplastics entangle and entrap
invertebrates and vertebrates, and studies have reported increasing negative interactions with seals
and sea turtles. Changes in nesting and feeding behavior of resident and transient organisms have
been shown as typical early warning indicators of marine litter impacts. The focus on fauna–litter
interactions holds terrific potential for research and citizen science projects, which finally becomes a
powerful driver towards environmental awareness on sandy beaches.
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1. Introduction

Reports of marine litter analyzing a variety of materials and shapes in the marine
environment date back half a century [1,2]. The environmental contamination and the
consequent pollution are broadly recognized as a widespread threat, affecting all marine
ecosystems from the poles to deep ocean basins [3]. Plastic polymers are materials of
broad use; consequently, the chances of environmental spills are higher, and its occurrence
in marine litter usually surpass other litter types [4]. Furthermore, under an ecological
perspective, all plastic polymers are persistent in the environment, with disappearing rates
by natural processes on the scale of decades to centuries [5]. Residing in the environment
for a long time, and undergoing breakdown processes, plastics become a nearly irreversible
pollutant (throughout a series of fractions, from macro, to fragments, to microplastics). The
emerging but urgent need is to gather information about contamination, and relate that
with pollution from marine litter plastics and consequences for biodiversity [6].

Research is hence facing the challenge of providing urgently needed information,
shifting from the quantification of plastic polymers in the environment (patterns), to the
assessment of their effects on organisms (processes). Numerous and serious consequences
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of plastics presence in the environment for marine fauna have been assessed and/or
hypothesized [6]. The risks are mainly related to the ingestion of micro- and macroplas-
tics [7] and the entanglement and entrapment in large debris causing lethal and sublethal
damages [8]. Currently, more than 900 marine species have already been negatively af-
fected by the interaction with marine litter items, and this number is expected to increase
exponentially [9].

When it comes to marine litter assessment, sandy beaches are often used as elective
sites for studying and monitoring, given their behavior as “sinks” for marine litter, the
cost-effectiveness of the studies, and the possibility to engage the society in the process.
More in detail, sandy beaches represent the interface between land and sea, comprise half of
the world’s ice-free coastlines and support various ecosystem services, of which recreation
is of paramount relevance for economies [10]. This often carries along a bias towards its
recreational use at the expenses of conservation [11]. For their nature of ecotonal systems,
beaches are known to be depositional sites where marine litter from adjacent ocean and land
compartments accumulate and are exchanged with still unclear dynamics [12]. In addition,
beachgoers’ activities directly contribute to marine litter disposal and accumulation on
coastal areas [13]. At the same time, beach visitors seem to react negatively to the presence
of marine litter and are usually sensitized to reports of charismatic animals interacting with
it [14–16]. However, excepting effects on tourism and on charismatic fauna (e.g., sea turtles
and mammals), the consequences of stranded marine litter on beach fauna are usually not
a target of management actions [17,18]. This set of characteristics, social and ecological,
makes sandy beaches an ideal compound to tackle the assessment of interaction of fauna
with marine litter and shed light on the marine litter-related risks to which resident and
transient beach fauna (beyond marine megafauna and species of commercial relevance, for
a long time prioritized in local research) are exposed.

Science-based information regarding the effects of marine litter on sandy beach res-
ident fauna and its final effect on ecosystem functioning is crucial for supporting social
mainstream action, i.e., specific management interventions and environmental education. In
parallel, sandy beaches are openly recognized as elective locations of campaigns (e.g., clean-
up days) on combating marine litter and monitoring of fauna–litter interactions [19–21].
Undoubtedly, beaches provide an exceptional asset for creating and sustaining a base of
empirical evidence and its channeling via scientific outreach and environmental education
actions [22]. The number of beached marine litter studies has indeed increased exponen-
tially worldwide [14,23]. The recent outbreak of the personal protective equipment (PPE)
litter driven by COVID-19 [24] added dramatically to this. Thus, the awareness of threats
associated with beached marine litter beyond tourist deterrence, including the negative
effects that this poses to beach fauna and ecosystem functioning is at reach, but should find
new directions.

With the goal of synthesizing the available scientific information regarding the interac-
tion of sandy beach fauna with marine litter, we screened the literature related to indirect
and direct interactions of different taxonomic groups with beached marine litter, includ-
ing entanglement, entrapment, ingestion and their consequences for different ecological
organization levels. Previous syntheses on organisms with indicator roles and suggested
for biomonitoring [25,26] were used as background for the queries. The results from the
queries to literature were discussed in terms of (1) synthesis, (2) toxicity of marine litter to
beach fauna and correlation with potential drivers such as contamination of the sediment
and proximity to urban infrastructure, and (3) the interface with social tissue towards beach
conservation and litter pollution mitigation.

2. Materials and Methods

We searched for articles that evaluated indirect, direct or putative interaction of sandy
beach invertebrates and vertebrates with marine litter in Google Scholar database. We
choose Google Scholar because it is broader than other specific search bases and can be
accessed without needing subscription. We used the following keywords present in title:
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“beach” OR “surf zone” AND “marine litter” OR “marine debris” OR “waste” OR “plas-
tic(s)” OR “microplastic (s)” OR “macroplastic (s)” AND “ingestion” OR “entanglement”
OR “entrapment” OR “interaction” OR “benthic fauna” OR “turtle” OR “bird (s)” OR
“fish”. We considered the last three terms together with “beach” word to avoid articles
reporting interaction with litter outside beach ecosystem. Afterward, the terms “beach”
and “surf zone” were replaced by family and genera of sandy beach indicator species
known to characterize the beach and surf zone habitat, along with their common names, as
follows: “ghost crab” OR “Ocypodidae” OR “Ocypode” OR “mole crab” OR “Hippidae”
OR “Emerita” OR “sandhopper (s)” OR “Talitridae” OR “Talitrus” OR “Orchestia” OR
“Atlantorchestoidea” OR “Donacidae” OR “Donax” [25].

Lists of references from papers found in the literature review were further inspected
with the aim of finding studies that had not been retrieved from the search platforms
(n = 35) (Spreadsheet S2, Figure S1). Regarding species that use beaches only for resting
and nesting, such as penguins, sea turtles and pinnipeds (i.e., transient organisms), en-
tanglement was retained while ingestion was not included in our dataset, because this
latter kind of interaction results most likely from foraging in marine ecosystems other than
beaches [27,28]. Accordingly, plastic ingestion assessed from stranded animals was not
considered. Marine litter as a vector for bioinvasion was not considered in the literature
review because it is not a direct interaction with sandy beach species (i.e., non-incrusting
organisms). The full list of papers screened as well as the steps for exclusion were accessed
by all authors (Spreadsheets S1 and S2) and steps taking to the final list of items retained
were discussed in the framework of the study objectives.

Two other parameters were further extracted from the resulting literature: (i) The
concentration of microplastics in sediment, whenever indicated in the papers, was used
to test whether the concentration of microplastics in macroinvertebrates (expressed as mi-
croplastics per g of wet weight) quantitatively reflects the abiotic pollution level. Thus, the
process follows the concept of beach invertebrates as biomonitors [25]. (ii) The urbanization
level surrounding each beach (scale of 1000 m) contained in the dataset was used to assess
its role as drivers of fauna contamination. The HMc (Human Modification Metric [29])
was applied to represent the urbanization level, using the geo-coordinates provided in the
articles surveyed, and applying the packages “raster” [30] and “rgdal” [31] in R software.
Details of HMc calculation are provided as Supplementary Material (Doc file S1). These
analyses were limited to bivalves and crabs because data is available only for these groups.

Finally, bivariate regression models were built with sediment pollution and urbaniza-
tion as predictive variables, and the microplastic concentration in organisms as dependent
variable [25]. For bivalves, only the concentrations measured from the soft tissues were
included in the analyses. The visual inspection of the residues preceded the adjustment of
the models with linear function, as well as the confirmation of homoscedasticity, normality,
and influence of outliers.

3. Results and Discussion
3.1. Overview

The search, initially performed in October 2021, with latest update on August 2022,
returned 57 articles (process in Figure S1 and full dataset in Spreadsheets S1 and S2). The
number of articles retrieved for each keywords’ combination (n = 242) are provided in
Supplementary Material (Spreadsheet S1, Figure S1). Expert judgment was applied as the
criteria for selection, and to proceed with further screening.

Most studies were conducted with invertebrates (n = 34), followed by pinnipeds
(n = 13), sea turtles (n = 4), surf zone fish (n = 5), and birds (n = 1) across a range of negative
interaction with marine litter (show in the table at the end of text). Of those studies, one was
performed with invertebrates and birds simultaneously aiming to evidence microplastic
trophic transfer on beaches [32]. One study reported animals and algae trapped in fishing
lines deposited on a Mediterranean beach, reinforcing the contribution of marine litter
as vector to biological invasions [33], though not explicitly regarding beach fauna. It is
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unlikely that floating marine litter contribute to the introduction of exotic beach fauna
because most species are not encrusting.

The relatively low number of papers compared to other reviews about marine litter is
evidence that knowledge on beach indicator species and their ecology is not being up-taken
by plastics studies, and paths of interaction are still scarcely explored. Co-occurrence
analysis focusing on sandy beach literature showed that plastic-related keywords interact
100–500 times with fauna-related terms, including mainly invertebrates and turtles [34].
However, the analyses performed by these authors could not define if interaction really
occurred on the beach or if the co-occurrence of words source from mere speculation in the
papers. Meaningfully, the current focus highlights the main ways of fauna–litter interaction
on sandy beaches.

3.2. Putative and Diffuse Interactions: A Starting Point

Studies had long reported pinnipeds entangled with litter when using beaches for
resting (i.e., transient species) [21]. These reports emerged in the 1980s [35–39], being
usually based on beach monitoring, but without taking into account seals entangled in
beached litter (i.e., diffuse interaction). Most entangling litter comes from fishery activi-
ties, including plastic packing bands that are also used on bait boxes during angling on
beaches [40]. Some authors argue that stricter monitoring of pinnipeds is an important and
reliable mitigation action, even because most seals–litter interaction can be easily reported
on sandy beaches [21].

To our knowledge, the biological consequences of marine litter to sandy beach resident
fauna were firstly conjectured by a correlative study [41]. The authors assessed spatial
variability and composition of marine litter in five beaches in southern Brazil, and found
negative, but weak correlation between the number of items and the number of ghost crab
(Crustacea: Ocypodidae) burrows. The co-occurrence of litter with more profusely studied
stressors related to recreational use of beaches actually represents a confounding effect. This
was clear in the case of lower burrow densities of two ghost crab species that were observed
on more polluted sectors of Cable Beach in Australia, whereas these sectors also receive
substantial vehicle traffic simultaneously to litter pollution [42]. In general, urbanization is
assumed to be associated with higher littering probability [43,44]. Recent studies remark
that a high amount of macroplastics on urbanized beaches exerted confounding negative
effects on crustacean abundance, because it is an independent mechanism (yet co-occurring
with trampling and vehicle traffic) by which human disturbance affects populations size
and community richness [45,46]. The major challenge is to unveil if and how marine litter
contributes to the widespread reduction in fauna population sizes in urban beaches [47,48].

The first clear evidence of marine litter usage by ghost crabs was demonstrated by the
presence of litter surrounding burrows in south-eastern Brazil [49] (Figure 1). Interestingly,
the authors verified that straw, polystyrene Styrofoam, soft plastic, and ropes were more
frequent on burrows’ entrances than in the drift line. This apparent selectivity and the
higher occupation rates of burrows with litter (68%) than without (28%) suggested that
litter could be used in homing behavior (as a landmark for burrow placement).

Contradicting possible negative effects [41,45], some authors suggests that large litter
items may increase habitat heterogeneity on beach environments, besides increasing sedi-
ment stability and burrow abundance at patchy scales [50]. In addition, higher sediment
stability may explain the burrow construction by ghost crabs near large plastic items as
it does on other physical barriers to sediment transport on beaches [51]. This postulate,
similar to the stabilization of sediment substrate in presence of coarse pieces (from pebbles
up), remains untested and needs in-depth consideration regarding the effect of differential
litter densities on ghost crab behavior.
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Figure 1. Litter surrounding burrows is evidence of anthropogenic debris usage by the ghost crab
Ocypode quadrata (Fabricius, 1787). (a) Ice lolly stick; (b) food pack. Pictures by Leonardo Costa.

3.3. Ingestion

The negative effects of marine litter on health and fitness of beach fauna are probably
preponderant, particularly regarding the ingestion of microplastics. Information about
other litter types ingested by beach fauna and potential sources are generally lacking. The
first evidence that microplastics could be swallowed by a beach species was demonstrated
in laboratory experiments, where the sandhopper Talitrus saltator (Montagu, 1808) feeds on
polyethylene microspheres (diameter 10–45 mm) mixed in fish food [52]. This preliminary
investigation did not show any consequence of microsphere ingestion on the survival
capacity in the laboratory. Accordingly, in situ manipulative experiments show that some
invertebrates, such as the ghost crab Ocypode quadrata (Fabricius, 1787), misidentify large
litter items (e.g., cigarette butts, straws, popsicle sticks, paper napkins and polystyrene
Styrofoam) as food sources [53] (Figure 2), evidencing that ingestion of plastic occurs
mainly during active foraging.
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Thereafter, various studies have reported macro- and microplastics ingestion (mainly
in the shape of colored fibers) by invertebrates. Almost 50 beach invertebrate species were
reported to ingest micro- and macroplastics at natural context. This included sandhop-
pers [54,55], ghost crabs [56–58], meiofaunal polychaetes and nematodes [59,60], mole
crabs [61] and mainly clams [62–69]. However, these works did not investigate possible
effects of ingestion at any biological level.
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Negative consequences of plastic ingestion by beach fauna at organism level have
been demonstrated in laboratory assay [70]. For instance, the survival of the talitrid
Platorchestia smithi Lowry, 2012 decreases 35%, and jump height decreases ~1.6 cm after
120 h exposure to microplastics [70]. Jumping impairment due to microplastics ingestion
may reduce the ability of individuals to respond to predators, and the resilience to human
trampling [70]. The mole crab Emerita analoga (Stimpson, 1857) exposed to polypropylene
fibers in laboratory assay presented increased mortality and decreased retention of egg
clutches after ingesting microfibers, causing variability in embryonic development rates [71].
The exposure of Donax trunculus Linnaeus, 1758 to polyethylene and polypropylene mixture
(0.06 g/Kg of sand) induced a significant inhibition of Acetylcholinesterase activity (a
neurotoxicity biomarker) in both gills and digestive gland and oxidative stress (measured
by Catalase and Gluthation-S-Transfereases enzymatic activities) in all organs, which
has been studied [72]. The clam Atactodea striata (Gmelin, 1791) reduced the filtration
rates (and energy uptake) when exposed to high microplastic concentrations, avoiding
the incorporation of particles without nutritional value [73]. These are mechanisms that
could contribute to the reduction in macroinvertebrate population size on urban beaches
worldwide synergically with other physical and chemical stressors.

Even pristine beaches are exposed to marine litter pollution [74,75], posing a challenge
to unveil the role of plastic as a causative agent of human-induced changes in diversity
patterns. Recent studies have tested whether microplastics incorporation by beach fauna
varies according to the proximity of beaches to urbanized areas. Urbanization level on
beaches in Morocco and India significantly influenced the concentration of microplastics
in clam tissues [62,63]. Oppositely, microplastics ingestion by ghost crabs was not related
to urbanization in south-eastern Brazil [57]. Correspondingly, relationships between mi-
croplastics concentration in invertebrate tissues and urbanization surrounding beaches
are not statistically significant (r2 < 0.05; p > 0.10) when considering data from reviewed
studies together (Figure 3). These contrasting, species-dependent, and local-dependent
results challenge the assessment of microplastics beach pollution as overall paradigms [25].
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Sentinel species should accumulate a pollutant in their tissues without major adverse
effects on population size. They can be regarded as biomonitors when the individuals
concentrate the target pollutant in the proportion it is found in the environment [25,76].
Studies on decapod crustacean species did not find significant correlation between mi-
croplastics density in sediment and prevalence of contaminated crabs (Figure 4a). However,
microplastics concentration in soft tissues of beach clams seems to reflect the sediment and
water pollution level (Figure 4b). Notable ingestions of microplastics by clams inhabiting
sandy beaches in India [63], Thailand [67], China [64], Argentina [66], United States of
America [65], South Korea [77], and Morocco [62] were recently reported. In fact, specifi-
cally donacid clams are commonly used in environmental monitoring studies as sentinel
species for the biomonitoring of sandy beaches [78].

Microplastics 2022, 1, FOR PEER REVIEW 7 
 

 

 
Figure 3. Microplastics (MP) concentration in soft tissues (grams of wet weight) of sandy beach 
invertebrates (y-axis) and in relation to urbanization level (HMc—Human Modification Metric) 
surrounding the beaches (x-axis). (a) All invertebrates; (b) crabs; (c) bivalves; (d) Donacidae clams. 

Sentinel species should accumulate a pollutant in their tissues without major adverse 
effects on population size. They can be regarded as biomonitors when the individuals 
concentrate the target pollutant in the proportion it is found in the environment [25,76]. 
Studies on decapod crustacean species did not find significant correlation between 
microplastics density in sediment and prevalence of contaminated crabs (Figure. 4a). 
However, microplastics concentration in soft tissues of beach clams seems to reflect the 
sediment and water pollution level (Figure 4b). Notable ingestions of microplastics by 
clams inhabiting sandy beaches in India [63], Thailand [67], China [64], Argentina [66], 
United States of America [65], South Korea [77], and Morocco [62] were recently reported. 
In fact, specifically donacid clams are commonly used in environmental monitoring 
studies as sentinel species for the biomonitoring of sandy beaches [78]. 

 
Figure 4. (a) Relationship between the frequency of individuals of decapod crabs with microplastics 
(MP) in the digestive tract in relation with MP concentration in the sediment is not significant 
according to regression model (r2 = 0.01; p = 0.231; (b) Relationship between MP concentration in 
soft tissues of Donax cuneatus Linnaeus, 1758 and MP concentration in the sediment is significant (r2 
= 0.66; p = 0.001). 
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soft tissues of Donax cuneatus Linnaeus, 1758 and MP concentration in the sediment is significant
(r2 = 0.66; p = 0.001).

Microplastics uptake through ingestion can propagate to predators such as surf zone
fish and shorebirds, as microplastic abundance nearshore increases. Indeed, ingestion
of plastic by transient vertebrates foraging on beaches such as fishes and shorebirds has
already been reported [79–83]. Similar composition of plastic fibers in invertebrates’ tissues
and shorebirds’ scats, for instance, suggests secondary ingestion and trophic transfer of
microplastics [32].

A typical prediction of microplastics studies is that the feeding mode affects microplas-
tic ingestion by fishes. Unsurprisingly, surf zone fishes (typical predators of invertebrates
on sandy beaches) ingest microplastics, but this pollutant incorporation does not always
differ among trophic guilds, weakening the prediction that functional traits affect mi-
croplastics ingestion [79]. Oppositely, the abundance of microplastics in invertebrates of
sandy beaches and mudflats was related with feeding mode, with deposit feeders and
grazers being more susceptible to microplastics ingestion [64]; the authors, however, argued
that patterns are very local specific. Indeed, the effect of feeding mode of organisms on
microplastics ingestion is still inconsistent in the literature [64]. Sandy beaches are excellent
study grounds for filling this gap, given the variety of trophic guilds found on sandy shores
and food resource zonation across the littoral active zone [10,84].

Plastics are admittedly a vector of trace elements, persistent organic pollutants, and
polycyclic aromatic hydrocarbons for beach invertebrates. Microplastics ingested by beach
clams have dozens of chemical elements adhered to their surface [62]. Notoriously, mi-
croplastics in the beach environment can adsorb persistent organic pollutants that can
potentially be assimilated by organisms. The presence of microplastics seems to cause
greater proportional uptake of polybrominated diphenyl ethers, as found with the surf
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zone amphipod Allorchestes compressa Dana, 1852 [85]. However, microplastic ingestion
can both transfer and remove polybrominated diphenyl ethers from organisms collected
on beaches, indicating a partial balance among positive and negative effects [86]. Thus,
future studies combining knowledge from both food web, plastics and other adsorbed
pollutants and their chemical impacts at individual level are required to depict paths of
biomagnification along trophic networks connecting land and sea.

3.4. Entanglement

Entanglement is often caused by ghost fishing gear, being one of the most damaging
effects of litter particularly for the megafauna [40,87,88]. We have only limited knowl-
edge about the risks of entanglement that marine litter on the sand surface exert on less
charismatic invertebrates inhabiting beaches. However, many invertebrates are mobile
and have surface activity (e.g., ghost crabs), being at imminent risk of entanglement on
derelict fishing gear, for instance (Figure 5). A recent study quantified the density of fishing
lines and hooks deposited on a Mediterranean beach and found 120 animals entangled
belonging to seven taxa, though most of them were not sandy beach species [33].
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Figure 5. Invertebrates entangled in fishing gear. (a) Pachygrapsus marmoratus (Fabricius, 1787);
(b) Ocypode quadrata (Fabricius, 1787). Pictures by Maurizio Pinna and Leonardo Costa.

In particular, vertebrates that use sandy beaches for resting, nesting, staging and for-
aging are exposed to being entangled in large debris [89,90]. For instance, turtle hatchlings
emerging from nests have been entangled in fishing nets and entrapped in plastic contain-
ers (experimentally deployed), possibly causing a significant decrease in nest numbers
in the long term [91]. Worryingly, turtle hatchlings are not able to avoid contact with
litter or reverse their direction to escape, increasing risks of adverse effects [91]. Several
studies reporting pinnipeds entangled in fishing gear on sandy beaches exist, dating back
to the 1980s (show in the table at the end of text). Some of those studies presented very
insightful approaches, linking the patterns recorded with the implementation of strategies
(e.g., MARPOL annex V) from Government and industry to reduce the problem of derelict
fishing gear. Recent and specific reviews have been published on pinnipeds entanglements,
so further discussion was not expanded in this manuscript [21,40].

3.5. Entrapment

Similar to studies that report entrapment of turtle hatchlings on containers during
manipulative experiments [91], some authors have shown that invertebrates are becoming
stuck inside plastics. For instance, large amounts of litter created a significant barrier in
which the strawberry hermit crab Coenobita perlatus H. Milne Edwards, 1837 encounter
during their daily activities [92]. The authors quantified the number of hermit crabs
entrapped in plastic containers in Australia, estimating that an average of 2 crabs/m2

and 1 crab/m2 become entrapped in debris and die each year on Henderson Island and



Microplastics 2022, 1 562

the Cocos Islands, respectively. Decaying hermit crabs inside containers can attract other
individuals to replace their shells (and possibly to scavenge on dead crabs), thus amplifying
the observed negative effects. Similarly, discarded containers on beaches act as pitfall traps
for sand-dwelling beetles [93]. A total of 18 sand-dwelling beetles species from various
trophic guilds were found entrapped, mostly in glass bottles, capturing more than 50% of
the individuals found.

3.6. Individual Trait Changes and Consequences on Populations

Stranded or half-buried marine litter is a barrier for surface activity of organisms
crawling on sand. An innovative in situ baiting experiment was applied to quantify
the efficiency of the gastropod Nassarius pullus (Linnaeus, 1758) in locating and moving
toward food according to the level of plastic cover [94]. The authors found prolonged
food searching time and decreasing accuracy of orientation towards the bait as the level
of plastic cover increased. The consequence seems to be the reduction in the gastropod
abundance frequently observed during periods of deposition of large amounts of litter
on the intertidal sandflat areas of Talim Bay, Philippines [94]. Changes in surf zone fish
feeding behavior had also been supposed, because of a positive correlation between litter
pollution and insect ingestion by pompanos (Trachinotus spp.) [95]. This is evidence that
human disturbances deplete natural prey, and the amount of litter is instead attracting
synatropic insects for the beach.

Large debris deposited on the sand also impose adverse effects on sea turtle nest-
ing females and hatchlings [90,96,97]. The ratio between the amount of hatchling tracks
reaching the end of the permanently wet area line and the total number of eggshells was
used as a proxy of success rates of the green turtle Chelonia mydas (Linnaeus, 1758) in
Turkey beaches [97]. A strong negative correlation between litter amount and the number
of hatchlings reaching the sea was found [97]. Disorientated turtle hatchlings may be easier
prey, with litter playing a role in reducing seawards orientation, though this hypothesis
remains untested. Similarly, the highest concentrations of plastics along the tracks of loop-
ing (i.e., females crawling on sand and returning to the sea without nesting) green turtles
was observed, compared to tracks where turtles successfully nested (i.e., eggs laid in a
completed chamber) [90]. Large natural and anthropogenic debris were experimentally
removed from one of three sections of loggerhead sea turtle Caretta Linnaeus, 1758 nesting
beaches in northwest Florida, and as a consequence, the number of nests increased by
200% [96]. These is strong evidence that macroplastics have adverse impacts on sea turtle
nesting behavior, and removal of large debris from nesting grounds could be an effective
management action.

3.7. Marine Litter, Beach Fauna, and Active Citizenship Populations

Beach cleaning is an important requirement, especially when it comes to beach quality
awards and beach perception [15]. Certainly, the removal of marine litter benefits both
tourists and fauna [98]. However, ecological concerns were raised, especially when (i) there
is no discrimination between marine litter and natural inputs such as stranded wrack or
carrion, and (ii) beach cleaning is carried out using mechanical machinery to rake and sieve
the beach sand (grooming), usually to the size of a cigarette butt [99,100]. Indeed, ecologists
report that grooming with wrack removal and heavy machine traffic has an impact on the
beach biodiversity. These impacts are usually neglected for the sake of aesthetic benefits
and public health aims without considering the importance of benthic biodiversity along
beaches in sustaining functional environments.

Zielinski et al. (2019) [98] reviewed the ecological effects of beach cleaning and ar-
gued that most studies are centered on the impact of wrack removal (habitat loss and
food depletion). However, when beaches with low macroalgae inputs are targeted in
impact assessments, the negative effects of cleaning are weakened. This corroborates a
meta-analysis conclusion that taxa such as talitrid amphipods, which include both sand-
associated and wrack-associated sandhoppers and beachhoppers, respectively [101], are for
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now the unique robust indicators of beach cleaning disturbance on sandy beaches [26]. Me-
chanical beach cleaning further includes the impact of beach compaction, and carries along
confounding effects of stressors. Therefore, this is considered an unreliable management
action to mitigate litter pollution, even though the most applied to recreational beaches.

Beach cleaning imposes a social–ecological conflict [102] that could be partially solved
with scientific studies disentangling the effects of fauna–litter interaction with specific
attention to the conceptual discrimination between anthropogenic and natural litter. It
is well accepted that manual clean-up is more reliable than grooming to reduce litter
pollution and improve aesthetic condition of tourist beaches without exerting dramatic
ecological degradation [98]. This kind of action was also found extremely efficient in
connecting people with beaches, strengthening emotional values [103]. However, even if
this is desirable to raise awareness, it was noted that clean-up events with a high audience
can attract hundreds of people to a single beach, and acute trampling can exert negative
ecological effects from resident invertebrates to nesting and foraging vertebrates [104]. In
addition, removal of debris without sieving could cause substantial sand loss [105].

The role of active citizenship is intertwined with all those aspects, though research
should mark the path to reveal such potential. For instance, citizen science performed
through clean-ups was found to be a major contributor to global repositories and with data
quality comparable to research scientists [106]. Microplastics studies for citizen science
were less developed, also due to instrumental impediments such as the unavailability of an-
alytical tools to citizens, though recent initiatives target to overcome this obstacle [107,108].
When it comes to the study of interaction between beach fauna and marine debris, reviews
point at a relevant activity of citizen scientists and monitors (n = 7 studies) involving
citizen science and targeting the interaction of marine litter with biota (after reference [106]).
The information on species affected by marine litter, in the aforementioned review, was
documented on an interactive website [109]. However, these results do not make it into
scientific literature and were not found in this bibliometric analysis. Whether this depends
on a scarce confidence of research scientists on citizen-sourced data, or on citizen science
protocols to be improved, it remains clear that a tighter dialogue between science and
society is needed, and sandy beaches are a paradigmatic case for that, including their
unique fauna as important tools.

4. Conclusions

While the production of knowledge on plastics contamination and pollution of beaches
is steadily on the increase, specific focus on the interaction between plastic litter and
organisms is still in the beginning. Manuals such as the report on the monitoring of marine
litter [110] included the “litter in biota” chapter, with a focus on sea turtles and birds
and on the two categories “entanglement” and “ingestion”. However, the up-take from
the guidelines to published literature seems to be slower than the urgent demand—both
social and scientific—for information. Herein, we synthetized the main consequences of
litter to beach fauna reported in the scientific literature. Entanglement and entrapment
of beach fauna in deposited litter clearly exert direct mortality. The consequences of
micro- and macroplastics ingestion on beach crustacean, polychaete, fish and birds are still
not well known, though laboratory assays with invertebrates as study models evidence
sublethal negative effects. Possibly, there are many and variable interactions to be reported
from now on.

Interaction of beach fauna with litter can be depicted through a variety of creative,
powerful and logistically viable experimental designs that will yield knowledge beyond
speculative causalities. The number of studies investigating ingestion of plastic by marine
fauna is growing rapidly and the vast list of species reported to uptake this pollutant
remains increasing [9]. On sandy beaches, all resident and transient species are very likely
ingesting microplastic from the sand, water and their prey, and thus, descriptive studies
reporting this interaction is not a novelty anymore. Certainly, the application of sound
methods for inspecting microplastic in digestive tract of beach fauna will often allow the
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detection of colored fibers and other small-sized plastic particles also by non-specialists
such as citizen monitors.

Even so, beaches are very accessible ecosystems, favoring investigation of general
hypotheses such as bioavailability, bioaccumulation, biomagnification, and the role of
individual trait variation in microplastic ingestion. Tested hypotheses will then call for
integration of beach ecology paradigms into studies on plastics [34], adding a meaningful
and necessary information layer. If morphodynamics and touristic pressure drive the
littered plastic dynamics as it does with biodiversity, the physical environment probably
regulates the interaction of these two components and possible consequences at population
and community levels. Bioassays or in situ experiments can disentangle the consequences
of plastic ingestion for beach fauna, mainly through the comparison of body condition,
survival, fecundity, and behavior between individuals with and without microplastics in
their tissues. Possibly, the amount of microplastics available in abiotic compartments of
beaches has already surpassed the threshold in which most organisms are able to avoid
ingestion. Thus, changes in populations’ size and community diversity will hardly be
related to litter pollution level in “compare and contrast” approaches and gradient analysis.
Further designs should consider shifting baselines, and a background of microplastics
continuously bioavailable.

Other interactions of beach fauna with plastic have been reported with creative designs
that in general do not require specialized tools. Thus, entrapment, entanglement, and
putative interactions (e.g., litter surrounding burrows and incorporated in nests) can be
investigated via direct observation and citizen science projects. For that, standardized
protocols are of paramount importance, seeking to gather information of fauna–litter
interaction in broad scales in synchrony with the measuring of key biotic and abiotic
variables that portray a set of information supporting management and mitigation actions.
The success of citizen science projects depends on the strength of the message and its social-
ecological impact [111]. Emerging approaches such as netnography for the analysis of social
media will certainly contribute to support advances in this sense, mainly because beaches
have a widespread online engagement, including quantifiable markers (e.g., engagement
measurements, images and hashtags, toponyms) [112].

In conclusion, in the “Plasticene” age [113], beach researchers should be prone to
provide novel knowledge on beach pollution by litter and consequences on fauna, and keep
presenting sound backgrounds for supporting management and citizen actions. In a context
of sandy beaches seen as commercial products and the presence of litter as damaging its
value, which factors could trigger the behavior of beach users and beach managers? Does
the interaction of beach charismatic species with litter have more appealing information
than the argument of beachgoers deterrence because of the reduction in quality in coastal
scenery? Environmental awareness and active citizenship could be promoted on sandy
beaches, particularly via flagship species (e.g., sea turtles, shorebirds and pinnipeds) that
naturally engage people in conservation initiatives [76]. However, research in the field of
social sciences and conservation marketing is still required to detangle the effectiveness
of negative versus positive messages to build engagement towards the conservation of
social–ecological ecosystems such as beaches [114].

Table 1 shows different types of interaction between marine litter and sandy beach
fauna reported in several studies.
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Table 1. Type of interaction between marine litter and sandy beach fauna reported in several studies.

Taxonomic Group Species Name Marine Litter Type Impact Type Reference

Bivalves

Anadara antiquata

Microplastics Ingestion

[68]
Donax trunculus [62]
Donax cuneatus [63]

Donax semigranosus [67]
Donax spp. [64]

Amarilladesma mactroides [66]
Siliqua patula [65]

Ruditapes philippinarum [77]
Nutallia obscurata

[69]Venerupis phillippinarum
Neopycnodonte cochlear Fishing lines and hooks Entrapment [33]

(Other species) Microplastics
Atactoidea striata Metabolic effects [73]

Gastropods Nassarius pullus Macroplastics Behavioral traits [94]

Crustaceans

Talitrus saltator (Sandhoppers) Microplastics Ingestion [52,54]

Ocypode quadrata (Ghost crabs)
Beach debris Homing [49]

Microplastics and
macroplastics Ingestion [56–58]

Macroplastics Behavior traits [49,53]
Ocypode quadrata Marine litter

Reduction in abundance

[41,45]
Atlantorchestoidea brasiliensis

Marine litter [45]Excirolana braziliensis
Emerita brasiliensis
Platorchestia smithi

Microplastics Behavior traits/shredding [55,70,115]Orchestoidea tuberculata
Orchestia gammarellus
Allorchestes compressa Microplastics Vehiculation of POPs [85,86]

Emerita analoga (Mole Crabs) Microplastics Ingestion [61,71]
Coenobita perlatus (Strawberry

Hermit Crab) Macroplastics Entrapment [92]

Polychaetes

Saccocirrus papillocercus

Microfibers Ingestion [59]
Saccocirrus pussicus
Claudrilus ovarium
Meiodrilus gracilis

(other species)

Nematodes Enoplolaimus spp. Microplastics Ingestion [60]

Insects

Isomira sp.

Beach litter Entrapment [93]
Mogulones aubei
Ammobius rufus
Opatrum obesum
(Other species)
Halobates micans Plastic pellets Oviposition [116]
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Table 1. Cont.

Taxonomic Group Species Name Marine Litter Type Impact Type Reference

Fish

Chelon rischardsonii

Microplastics Ingestion [79,81–83]

Opisthonema oglinum
Bagre marinus Cathorops spixii

Sciades herzbergii
Chloroscombrus chrysurus

Conodon nobilis
Haemulopsis corvinaeformis

Stellifer brasiliensis
Genidens genidens
Arius grandicassis

Menticirrhus americanus
Polydactylus virginicus

Sardinella gibbosa
(Other species)
Trachinotus spp. Marine litter Behavior traits [95]

Reptiles

Sea turtles Beach litter Behavior traits [96]

Chelonia mydas (Sea turtles) Macroplastics Entanglement [90]
Beach litter Behavior traits [97]

Sea turtles Marine litter
Entanglement

[91]
Entrapment

Birds

Arenaria interpres

Microplastics Ingestion [32]

Calidris alba
Calidris alpina

Calidris canutus
Calidris ferruginea

(Other species)

Mammals

Arctocephalus ssp (fur seal)

Marine litter (mainly
fishing gear)

Entanglement [35–38,117–
125]

Arctocephalus forsteri
Neophorca cinerea

Zalophus californianus
Monachus schauinslandi

Arctocephalus ssp.
Mirounga leonine

Callorhinus ursinus
Arctocephalus pusillus
Arctocephalus gazella

Arctocephalus ssp

Callorhinus ursinus Fishing gear Behavioral, energetic and
population changes [38]
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90. Gündoğdu, S.; Yeşilyurt, İ.N.; Erbaş, C. Potential Interaction between Plastic Litter and Green Turtle Chelonia mydas during

Nesting in an Extremely Polluted Beach. Mar. Pollut. Bull. 2019, 140, 138–145. [CrossRef] [PubMed]
91. Triessnig, P.; Roetzer, A.; Stachowitsch, M. Beach Condition and Marine Debris: New Hurdles for Sea Turtle Hatchling Survival.

Chelonian Conserv. Biol. 2012, 11, 68–77. [CrossRef]
92. Lavers, J.L.; Sharp, P.B.; Stuckenbrock, S.; Bond, A.L. Entrapment in Plastic Debris Endangers Hermit Crabs. J. Hazard. Mater.

2020, 387, 121703. [CrossRef]
93. Romiti, F.; Pietrangeli, E.; Battisti, C.; Carpaneto, G.M. Quantifying the Entrapment Effect of Anthropogenic Beach Litter on

Sand-dwelling Beetles According to the EU Marine Strategy Framework Directive. J. Insect Conserv. 2021, 25, 441–452. [CrossRef]
94. Aloy, A.B.; Vallejo, B.M.; Juinio-Meñez, M.A. Increased Plastic Litter Cover Affects the Foraging Activity of the Sandy Intertidal

Gastropod Nassarius pullus. Mar. Pollut. Bull. 2011, 62, 1772–1779. [CrossRef]
95. Costa, L.L.; Zalmon, I.R. Surf Zone Fish Diet as an Indicator of Environmental and Anthropogenic Influences. J. Sea Res. 2017,

128, 61–75. [CrossRef]
96. Fujisaki, I.; Lamont, M.M. The Effects of Large Beach Debris on Nesting Sea Turtles. J. Exp. Mar. Bio. Ecol. 2016, 482, 33–37.

[CrossRef]
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