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Abstract: Genetic instability can result from increases in DNA damage and/or alterations in DNA
repair proteins and can contribute to disease development. Both exogenous and endogenous sources
of DNA damage and/or alterations in DNA structure (e.g., non-B DNA) can impact genome stability.
Multiple repair mechanisms exist to counteract DNA damage. One key DNA repair protein complex
is ERCC1-XPF, a structure-specific endonuclease that participates in a variety of DNA repair processes.
ERCC1-XPF is involved in nucleotide excision repair (NER), repair of DNA interstrand crosslinks
(ICLs), and DNA double-strand break (DSB) repair via homologous recombination. In addition,
ERCC1-XPF contributes to the processing of various alternative (i.e., non-B) DNA structures. This
review will focus on the processing of alternative DNA structures by ERCC1-XPF.
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1. Introduction

DNA damage can occur from both endogenous and exogenous sources, such as
oxidative damage and UV light, respectively [1,2]. DNA damage that is left unrepaired,
or is repaired in an error-generating fashion, can lead to genetic instability which can
contribute to the initiation and/or progression of various diseases, such as cancer [3,4].
Organisms possess DNA repair proteins that are vital in the maintenance of the genome.
ERCC1-XPF is one such protein complex.

ERCC1-XPF is an endonuclease well known for its role in the nucleotide excision repair
(NER) mechanism. In this repair pathway, ERCC1-XPF participates in the removal of bulky
DNA adducts, such as 6–4 photoproducts caused by UV radiation [5–7]. Upon recognition
of the damage and following the unwinding of the DNA duplex around the site of damage,
ERCC1-XPF cleaves on the 5′ side of the damaged strand. Another NER nuclease, XPG,
cleaves on the 3′ side of the lesion on the same strand [5–8]. Depending on the type of dam-
age, cleavage by ERCC1-XPF and XPG typically results in the removal of a 25–30 nucleotide
fragment containing the damage [8]. In addition to its role in NER, ERCC1-XPF is also
known to participate in DNA double-strand break (DSB) repair, DNA interstrand-crosslink
(ICL) repair, base excision repair (BER), and telomere maintenance [5–8].

In humans, individuals with deficiencies in XPF can develop disorders such as Xero-
derma Pigmentosum (XP), XFE progeroid syndrome, Fanconi anemia (FA), and Cockayne
syndrome (CS) [5–8]. Individuals with deficiencies in ERCC1 have been reported to de-
velop cerebro-oculo-facio-skeletal syndrome [5–7]. Mice with deficiencies in ERCC1 show
signs of accelerated aging, while deletion of ERCC1 in mice is lethal [5–7]. Several studies
have also shown that ERCC1-XPF can act outside of canonical DNA repair pathways. For
example, ERCC1-XPF is involved in the mutagenic processing of alternative non-B DNA
structures. Herein, we focus on the roles of ERCC1-XPF in the processing of several non-B
DNA structures.
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2. Non-B DNA

Repetitive sequences in genomic DNA are abundant (>50% of the human genome),
and these sequences have the potential to adopt alternative (non-B DNA) structures that
differ from the canonical right-handed B-form DNA. Numerous alternative structures
have been characterized, including, but not limited to, R-loops, D-loops, hairpin/stem
loops, slipped DNA, cruciform DNA, Z-DNA, H-DNA, and G-quadruplex (G4) DNA
(Figure 1) [9–12]. Non-B DNA structures can form during processes that involve unwind-
ing of the DNA helix, such as replication, transcription, and DNA repair. This affords
single-stranded DNA the opportunity for intrastrand base pairing, forming alternative
structures such as hairpins [9,11,12]. These cellular processes also generate negative su-
percoiling, which provides energy for the formation and stabilization of alternative DNA
structures [9,11,12]. Once formed, these structures can contribute to a variety of biological
processes, such as transcriptional regulation, chromatin remodeling, and genetic instability,
thereby contributing to disease etiology and evolution [11–13].
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Figure 1. Schematic of non-B DNA structures. (A) R-loop, (B) D-loop, (C) hairpin/stem-loop and
slipped DNA (formed at inverted repeat sequences), (D) cruciform DNA formed at inverted repeat
sequences, (E) Z-DNA (formed at alternating purine-pyrimidine sequences), (F) H-DNA (formed
at polypurine and polypyrimidine DNA sequences with mirror symmetry), (G) G-quadruplex (G4)
DNA (formed at G≥3NxG≥3NxG≥3NxG≥3 DNA sequences). Adapted from Wang and Vasquez
(2014) [12].

Importantly, non-B DNA-forming sequences have been found to co-localize with
translocation breakpoint “hotspots” in human cancer genomes, and are also enriched
at sites of DSBs and deletions [9,11,12,14,15], implicating them in disease etiology. For
example, the human BCL-2 and c-MYC genes contain DNA sequences with the capacity to
adopt non-B DNA structures that overlap with areas prone to breakage and chromosomal
translocations found in lymphomas and leukemias [9,11,12]. These mutagenic structures are
resolved by various DNA repair proteins that may act within or outside of their canonical
repair pathways. One such repair protein complex, ERCC1-XPF, will be discussed below
with a focus on its roles in processing non-B DNA structures.
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3. R-Loops

R-loops are comprised of DNA-RNA hybrids that can form when RNA transcripts bind
to complementary DNA templates, resulting in a three-stranded nucleic acid structure with
a single-stranded (ssDNA) section [16–19] (Figure 1A). R-loops can form as intermediates
in various cellular processes, such as transcription, immunoglobulin class switching, and
replication [16–19].

R-loops have been found to increase genomic instability by a variety of mecha-
nisms [16–21]. For example, R-loop formation creates a ssDNA region that may be more
prone to DNA-damaging agents and/or cleavage than dsDNA [17–20]. Proteins that rec-
ognize the R-loop structure, such as activation-induced cytidine deaminase (AID), may
also contribute to genetic instability [16–21]. Additionally, the formation of R-loops during
transcription may interfere with DNA replication, leading to collisions between R-loops
and progressing replication forks [16–21]. R-loops have been implicated in the development
of various neurodegenerative diseases, including, but not limited to, Friedreich ataxia and
Fragile X syndrome [16,20,22]. R-Loops have been found to form on expanded repeats
in the FMR1 and FMX genes, known to be associated with Friedreich ataxia and Fragile
X syndrome [16,20,22]. R-loops within the FMR1 and FXN genes have been found to
colocalize with H3K9me2, a repressive chromatin mark, and have been shown to impede
RNA polymerase II, thereby inhibiting gene transcription [16,22].

Several proteins have been implicated in the resolution of R-loops. For example,
RNase H can remove the RNA in a DNA-RNA complex [20,23–26]. Senataxin (SETX)
and its yeast homolog Sen1 can unwind RNA-DNA complexes [20,27,28]. Topoisomerase
I may suppress R-loop formation by relaxing DNA supercoiling [20,29] and promoting
the assembly of mRNPs (mRNA-particle complexes) in an ASF/SF2 (pre-mRNA splicing
factor)-dependent fashion [29]. Additionally, the NER nucleases ERCC1-XPF and XPG
have been found to cleave R-loops, leading to the formation of DSBs [30,31].

Tian and Alt (2000) have demonstrated that ERCC1-XPF and XPG can cleave R-loops
in immunoglobulin switch regions during class switch recombination [30]. In this study,
plasmid constructs were created where transcription of immunoglobulin switch regions
was inducible by T7 RNA polymerase. R-loop formation was determined via P1 nuclease
cleavage in vitro after transcription was induced. In order to determine the activity of
ERCC1-XPF and XPG on R-loops, an R-loop substrate was created using oligonucleotides
and an in vitro transcribed RNA strand, and incubated with purified human recombinant
ERCC1-XPF and XPG proteins [30]. In this system, ERCC1-XPF was found to cleave at the
5′ side of the R-loop duplex junction in both template and non-template strands. XPG was
found to cleave at the 3′ side of the R-loop duplex junction on only the non-template strand.
Studies were then performed in order to determine whether ERCC1-XPF and XPG could
process R-loops formed in transcribed immunoglobulin switch regions. Using plasmid
constructs, S regions were transcribed and incubated with ERCC1-XPF and XPG. Cleavage
was observed to be more efficient on the non-template strand than on the template strand,
though both were observed. Two mechanisms of R-loop processing in immunoglobulin
switch regions were proposed. In the first, ERCC1-XPF and XPG cleave both template
and non-template strands of the R-loop, creating a DSB, which could then result in class
switch recombination or deletions in the switch region upon repair. In the second model,
ERCC1-XPF and XPG cleave on the non-template strand, creating single-strand breaks.
These breaks could then lead to DSBs during replication by replication fork collapse, which,
during repair, could result in class switch recombination products [30] (Figure 2).
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Figure 2. Proposed mechanism for the cleavage of R-loops. ERCC1-XPF and XPG are recruited to R-
loops and can cleave the junctions between the R-loop and the duplex DNA. ERCC1-XPF can cleave 
both the template and non-template strand, ultimately resulting in DSBs. Adapted from Sollier et 
al. (2014) [31] and Tian and Alt (2000) [30]. 
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S9.6, a monoclonal antibody used to detect RNA-DNA hybrids. This increase in RNA-
DNA hybrids, suggested to be R-loops, led to increased DNA damage responses (DDR) 
as assessed by upregulation of γH2AX; phosphorylation of KAP1, CHK1, and RPA-2; and 
increased DSB formation as measured by neutral comet assays. The authors speculated 
that nucleases that cleave flap structures, such as XPG and ERCC1-XPF, may process R-
loops due to the structural similarities of the substrates [31]. Using XPG- and XPF-defi-
cient fibroblasts from XP patients and isogenic cell lines with added wild-type XPG and 
XPF, knockdown of AQR in cell lines supplemented with wild-type XPF or XPG resulted 
in phosphorylation of KAP1, while phosphorylation of KAP1 was reduced in the XPF- 
and XPG-deficient cell lines, which suggested roles for XPF and XPG in DSB formation 
and the processing of R-loops [31]. This was further confirmed through an immunofluo-
rescence assay using nuclease inactive forms of XPG or XPF, where upon knockdown of 
AQR, the levels of γH2AX were reduced relative to the levels in wild-type cells [31]. In 
order to determine whether similar effects were observed in the absence of other RNA 
processing factors, XPG was knocked down in cells depleted of ASF (a splicing factor), 
SETX (an RNA/DNA helicase), or cells treated with camptothecin (CPT; a topoisomerase 
I inhibitor). Similar results were observed where knockdown of XPG reduced DNA dam-
age responses. Based on these findings, the authors suggested that ERCC1-XPF and XPG 
were involved in the processing of R-loops [31]. Because ERCC1-XPF and XPG are nucle-
ases that function in NER, additional proteins in the NER pathway were studied in order 
to determine whether they also had roles in processing R-loops. Depletion of XPA, XPB, 
or XPD reduced the DDR in the absence of AQR, implicating NER factors in the processing 
of R-loops. Further experiments were conducted in order to determine whether global 
genome repair (GG-NER) and/or transcription coupled repair (TC-NER) were involved in 
processing R-loops. Depletion of XPC (GG-NER) and CSB (TC-NER) were studied in con-
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depleted of CSB, but not XPC, suggesting that proteins in TC-NER process R-loops, lead-
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R-loops and can cleave the junctions between the R-loop and the duplex DNA. ERCC1-XPF can
cleave both the template and non-template strand, ultimately resulting in DSBs. Adapted from Sollier
et al. (2014) [31] and Tian and Alt (2000) [30].

In another study, Sollier et al. (2014) found that R-Loops, induced by the absence
of RNA processing factors such as Aquarius (AQR, an RNA/DNA helicase), could be
resolved by ERCC1-XPF and XPG. Cells depleted of AQR showed a twofold increase in
RNA-DNA hybrids compared to wild-type cells. This was ascertained through the use
of S9.6, a monoclonal antibody used to detect RNA-DNA hybrids. This increase in RNA-
DNA hybrids, suggested to be R-loops, led to increased DNA damage responses (DDR) as
assessed by upregulation of γH2AX; phosphorylation of KAP1, CHK1, and RPA-2; and
increased DSB formation as measured by neutral comet assays. The authors speculated that
nucleases that cleave flap structures, such as XPG and ERCC1-XPF, may process R-loops
due to the structural similarities of the substrates [31]. Using XPG- and XPF-deficient
fibroblasts from XP patients and isogenic cell lines with added wild-type XPG and XPF,
knockdown of AQR in cell lines supplemented with wild-type XPF or XPG resulted in
phosphorylation of KAP1, while phosphorylation of KAP1 was reduced in the XPF- and
XPG-deficient cell lines, which suggested roles for XPF and XPG in DSB formation and the
processing of R-loops [31]. This was further confirmed through an immunofluorescence
assay using nuclease inactive forms of XPG or XPF, where upon knockdown of AQR, the
levels of γH2AX were reduced relative to the levels in wild-type cells [31]. In order to
determine whether similar effects were observed in the absence of other RNA processing
factors, XPG was knocked down in cells depleted of ASF (a splicing factor), SETX (an
RNA/DNA helicase), or cells treated with camptothecin (CPT; a topoisomerase I inhibitor).
Similar results were observed where knockdown of XPG reduced DNA damage responses.
Based on these findings, the authors suggested that ERCC1-XPF and XPG were involved in
the processing of R-loops [31]. Because ERCC1-XPF and XPG are nucleases that function in
NER, additional proteins in the NER pathway were studied in order to determine whether
they also had roles in processing R-loops. Depletion of XPA, XPB, or XPD reduced the
DDR in the absence of AQR, implicating NER factors in the processing of R-loops. Further
experiments were conducted in order to determine whether global genome repair (GG-
NER) and/or transcription coupled repair (TC-NER) were involved in processing R-loops.
Depletion of XPC (GG-NER) and CSB (TC-NER) were studied in conjunction with depletion
of AQR. Phosphorylation of KAP1 was reduced when cells were depleted of CSB, but not
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XPC, suggesting that proteins in TC-NER process R-loops, leading to the formation of
DSBs [31]. One proposed mechanism suggests that upon RNA polymerase stalling, CSB
recruits XPF and XPG to process R-loops [31] (Figure 2). A limitation to such studies is that
direct evidence for the formation of R-loops in cells is technically challenging to obtain, and
thus often only indirect evidence is provided.

4. D-Loops

Displacement loops (D-loops; Figure 1B) are three-stranded DNA structures which,
among other things, can serve as intermediates during homologous recombination. Homol-
ogous recombination, a highly conserved mechanism for DNA repair, uses a homologous
chromosome or sister chromatid for the repair of DSBs. Homologous recombination is
initiated with Replication Protein A (RPA) binding to ssDNA. Rad51 displaces RPA and
forms a filament on the ssDNA molecule in order to search for homology within a homolo-
gous chromosome or a sister chromatid, at which time strand invasion occurs [32,33]. This
creates a structure that contains a new heteroduplex from the invading ssDNA binding to
a complementary sequence, as well as a displaced ssDNA from the DNA duplex (i.e., a
D-loop) [32,33]. Various mechanisms have been identified where ERCC1-XPF participates
in the resolution of D-loops, such as DSB repair and synthesis-dependent strand annealing
(SDSA) [34,35].

In the DSB repair model, Holliday junctions form during strand invasion by the
3′ ssDNA, creating a D-loop intermediate; this 3′ ssDNA can then anneal to the other
end of the double-strand break, creating a double Holliday junction after polymerization.
Resolution of these junctions may result in crossover events, which have been shown to
cause genetic instability by generating deletions, translocations, etc. [35,36]. While several
protein complexes are able to resolve these Holliday junctions (e.g., Sgs1-Top3-Rmi1 in yeast
and BLM-TOPIIIα-RMI1-RMI2 in humans for non-crossover events [35–37], and Mus81-
Mms4 and Yen1 in yeast and MUS81-EME1, GEN1, and SLX1-SLX4 in humans for potential
crossover events [35]), it has been proposed that the yeast complex Rad10-Rad1 (ERCC1-
XPF in mammals) can cleave D-loops to create intermediate products that can be resolved
by Mus81-Mms4 or Yen1 in yeast [35]. In a homology-dependent repair assay in yeast, the
formation of ectopic joint molecules was examined in the presence of a mus81∆yen1∆ double
mutant and a mus81∆rad1∆yen1∆ triple mutant. Results showed higher accumulation of
ectopic joint molecules in the mus81∆yen1∆ double mutant than in the mus81∆rad1∆yen1∆
triple mutant, suggesting that Rad10-Rad1 cleaved D-loops at the heterology barrier. As
depicted in Figure 3A, cleavage of the D-loop by Rad10-Rad1, followed by DNA synthesis
and ligation, could create an intermediate product with a single/nicked Holliday junction
resolved by Mus81-Mms4 and/or Yen1 [35]. It was speculated that Rad10-Rad1 may also
cleave 3′ flaps created when DNA is synthesized beyond the point of homology during
polymerization, prior to annealing (Figure 3B) [35].
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Rad10-Rad1 is represented by scissors. Adapted from Giaccherini and Gaillard (2021) [34], Mazón 
et al. (2012) [35], and Lyndaker and Alani (2009) [38]. 
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been shown that Rad1, the yeast homolog of XPF, can remove nonhomologous DNA ends 
during recombination. Rad1 mutants were unable to complete recombination when there 
was a nonhomologous section of 60 base pairs, yet were able to complete the reaction once 
homology was restored [41]. 

Studies have demonstrated that the recruitment of Rad10-Rad1 to 3′ nonhomologous 
tails can be mediated by the mismatch repair protein complex, Msh2-Msh3 [38,42–44]. In 
Saccharomyces cerevisiae, recombination substrates were used to determine the roles of 
Msh2 and Msh3 in homologous recombination. Various centromeric plasmids, containing 
a HO restriction site, were used to measure DSB repair. Upon cleavage at the HO cut site, 
plasmids possessed either ends with near perfect homology to the donor DNA or ends 
with nonhomology composed of varying lengths. With HO-induced gene conversion, 
plasmids with homology did not require Rad1, Msh2, or Msh3 for successful DSB repair. 
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taining nonhomology showed a significant reduction in DSB repair relative to the control. 
These results implicate Msh2 and Msh3 in the removal of nonhomologous tails, in con-
junction with Rad10-Rad1 [44]. Subsequent studies have determined that Rad1, Msh2, and 
Msh3 can remove nonhomologous tails of 30 bp or more (e.g., up to 610 nucleotides in this 
study) [42]. 
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ERCC1-XPF (Rad10-Rad1 in yeast) has been found to cleave single-stranded flap
structures at heterology barriers. During SDSA, DNA synthesis occurs from the invading
ssDNA, and after DNA synthesis is completed, the invading strand can separate from
the D-loop and anneal to the other end of the break. This results in DNA repair without
crossover events [34–36,39,40]. As depicted in Figure 3C–E, if 3′ nonhomologous tails are
generated in this process, they can be removed by ERCC1-XPF [34,38]. For example, it has
been shown that Rad1, the yeast homolog of XPF, can remove nonhomologous DNA ends
during recombination. Rad1 mutants were unable to complete recombination when there
was a nonhomologous section of 60 base pairs, yet were able to complete the reaction once
homology was restored [41].

Studies have demonstrated that the recruitment of Rad10-Rad1 to 3′ nonhomologous
tails can be mediated by the mismatch repair protein complex, Msh2-Msh3 [38,42–44].
In Saccharomyces cerevisiae, recombination substrates were used to determine the roles of
Msh2 and Msh3 in homologous recombination. Various centromeric plasmids, containing
a HO restriction site, were used to measure DSB repair. Upon cleavage at the HO cut site,
plasmids possessed either ends with near perfect homology to the donor DNA or ends with
nonhomology composed of varying lengths. With HO-induced gene conversion, plasmids
with homology did not require Rad1, Msh2, or Msh3 for successful DSB repair. In the
absence of Rad1, Msh2, Msh3, Msh2 and Rad1, or Msh3 and Rad1, plasmids containing
nonhomology showed a significant reduction in DSB repair relative to the control. These
results implicate Msh2 and Msh3 in the removal of nonhomologous tails, in conjunction
with Rad10-Rad1 [44]. Subsequent studies have determined that Rad1, Msh2, and Msh3 can
remove nonhomologous tails of 30 bp or more (e.g., up to 610 nucleotides in this study) [42].

5. Hairpin/Stem-Loops and Cruciform DNA

Hairpin/stem loop or cruciform DNA structures (Figure 1C,D) can form at inverted
repeat sequences where intrastrand hydrogen bonding can occur [9,11,45]. Depending on
the inverted repeat sequence, these structures may or may not contain a loop of unpaired
nucleotides. The formation of hairpin/cruciform structures involves processes in which
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DNA exists in a single-stranded state (e.g., during replication, transcription, or DNA
repair) [9,45,46]. If left unrepaired or repaired in an error-generating fashion, hairpin and
cruciform structures can lead to genetic instability. For example, during replication, the
ssDNA forming a hairpin may lead to a deletion or expansion within the newly synthesized
DNA, depending on whether it is in the template or nascent strand [9,46]. Inverted repeat
sequences greater than 8 bp are abundant, with an estimated occurrence of ~1 in 5,600 bp in
the human genome, whereas ideal cruciform-forming sequences are found ~1 in 41,800 bp
in the human genome [47]. These sequences have also been shown to be enriched at
mutation hotspots in cancer genomes, implicating them in cancer etiology [14].

Hairpin/cruciform-forming AT-rich palindromic sequences in chromosomes 11q23
and 22q11 can induce genetic instability in the form of duplications, deletions, and translo-
cations in the human genome [9,48,49]. Deletions within chromosome 22q11 can result
in DiGeorge syndrome, velocardiofacial syndrome, and conotruncal anomaly face syn-
drome [49]. Duplications within chromosome 22q11 can cause Cat Eye syndrome [49]. The t
(11;22) (q23;q11) translocation is a recurrent translocation found within the human genome.
Balanced carriers of this translocation have no symptoms; however, their offspring typically
experience fertility issues and chromosomal imbalances. In severe cases, offspring will
develop Emmanuel syndrome, which manifests in developmental disorders and physical
anomalies [48,49].

In E. coli, the SbcCD nuclease can cleave hairpins near the loop and stem junction at
the 5′ end of the loop [9], which can result in DSBs that can be repaired through recombi-
nation [46,50]. Rad50 and Mre11 (yeast and mammalian homologs to SbcC and SbcD) act
similarly on hairpin structures [9]. Studies have demonstrated ERCC1-XPF endonuclease
activity on oligonucleotides which form stem–loop structures using purified ERCC1-XPF
from Chinese hamster ovary (CHO) cells or human recombinant purified ERCC1-XPF.
ERCC1-XPF was shown to cleave the stem of the structure on the 5′ side two, three, and
four phosphodiester bonds away from the loop [51,52], while XPG cleaved the 3′ side of
the loop near the intersection between the stem and loop [52]; see Figure 4A.
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loops at the 3′ side by ERCC1-XPF, which could then be resolved through microhomol-
ogy-mediated end-joining, resulting in large deletions [53]. Habraken et al. (1994) demon-
strated that Rad1, the yeast homolog of human XPF, cleaved four-way junctions (Holliday 
junction) in an in vitro assay using four hybridized oligonucleotides (termed X12); how-
ever, the results have been debated [54,55]. In another study, Bardwell et al. (1994) demon-
strated Rad10-Rad1 activity at junctions between duplex and ssDNA [56]. West (1995) ad-
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resulting in genetic instability. Adapted from de Laat et al. (1998) [51], Sijbers et al. (1996) [52], and
Lu et al. (2015) [53].



DNA 2022, 2 238

Lu et al. (2015) have demonstrated that short inverted repeats, which can adopt
cruciform structures, induce genetic instability in the form of large deletions and insertions
in both replication-dependent and replication-independent mechanisms [53]. In replication-
dependent mutagenesis, Lu et al. found that cruciform structures caused fork stalling
during replication, which could lead to DSBs [53]. Interestingly, in replication-independent
mutagenesis, ERCC1-XPF was recruited to cruciform structures and cleaved on the 3′ side
of the cruciform loop, rather than 5′ of the single-strand double-strand junction, as might
be expected from its cleavage patterns on canonical stem–loop or ”bubble” substrates. This
difference in the cleavage pattern may be due to the sequences/structure of the cruciform.
Genetic studies have confirmed a role for Rad1 (XPF) in the mutagenic processing of
cruciform DNA in both yeast and human cells. When a cruciform-forming inverted repeat
sequence was inserted downstream of a URA3 gene mutation reporter in yeast, mutations
were substantially reduced in the absence of Rad1. These findings were verified in human
cell extracts using purified human recombinant protein, where it was found that ERCC1-
XPF cleaved cruciform structures in vitro several nucleotides from the loop on the 3′ side
(Figure 4B). DSBs could be generated by cleavage of both cruciform loops at the 3′ side by
ERCC1-XPF, which could then be resolved through microhomology-mediated end-joining,
resulting in large deletions [53]. Habraken et al. (1994) demonstrated that Rad1, the yeast
homolog of human XPF, cleaved four-way junctions (Holliday junction) in an in vitro
assay using four hybridized oligonucleotides (termed X12); however, the results have
been debated [54,55]. In another study, Bardwell et al. (1994) demonstrated Rad10-Rad1
activity at junctions between duplex and ssDNA [56]. West (1995) advised caution when
interpreting results using the X12 construct, as it may contain single-stranded regions,
and proposed that Holliday junctions themselves are not the targets of Rad1, but instead
that the targets are the junctions between duplex and ssDNA, referencing the results from
Bardwell et al. (1994) [55,56].

6. Z-DNA

As depicted in Figure 1E, Z-DNA is a left-handed structure where segments of DNA
containing alternating purine-pyrimidine sequences adopt a syn- and anti-configuration,
respectively, resulting in a “zigzag” conformation [9,11,57]. There are two sections of
ssDNA on either side of the Z-DNA structure comprising the B-Z junction, where it has
been reported to have increased sensitivity to S1 nuclease [57–59]. Repetitive CG sequences
are preferred Z-DNA-forming sequences; however, these sequences are not as abundant as
other dinucleotides in eukaryotic genomes. Instead, sequences of CA/TG repeats are found
widely in eukaryotic genomes, and are located in a variety of genes (e.g., actin, globin,
and immunoglobulin genes) [57,60–62]. In eukaryotic genomes, potential Z-DNA-forming
sequences are abundant, estimated to occur approximately once in every 3,000 base pairs
in human genomes [9,63].

Importantly, Z-DNA-forming sequences have been found to be substantially enriched
at or near translocation breakpoint hotspots in human cancer genomes, implicating them
in cancer etiology [14]. For example, Z-DNA sequences have been found to be located
near translocation breakpoints in the c-MYC and BCL-2 genes, implicating them in the
development of lymphomas and leukemias [9,64–66]. Z-DNA has also been shown to
increase mutations in yeast, bacterial, and mammalian systems [67,68]. In bacteria, Z-
DNA was found to increase small deletions within the repeats. In contrast, in mammalian
cells, Z-DNA predominantly stimulated the formation of large deletions and rearrange-
ments. Microhomologies were identified at the breakpoint junctions, indicating that a
microhomology-mediated end-joining mechanism was involved in the mutagenic pro-
cessing of Z-DNA-induced DSBs [67]. Consistent with this mechanism, when E. coli
were engineered to express proteins to reconstitute non-homologous end-joining (which
is lacking in wild-type E. coli cells), Z-DNA-induced mutations mirrored those found in
mammalian cells, with large deletions being ~10-fold more abundant than in wild-type
bacterial cells [69]. The mutagenic potential of Z-DNA has also been investigated in vivo
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via a transgenic mouse model. In this model, mouse oocytes were injected with a lin-
earized reporter-shuttle vector containing either a Z-DNA-forming sequence or a control
B-DNA-forming sequence. Strikingly, upon PCR analysis of genomic DNA, 6.6% of the
Z-DNA-containing F1 offspring contained large deletions and rearrangements, while none
were identified in the control B-DNA mice, demonstrating the mutagenic potential of
Z-DNA in vivo [70].

Various DNA repair proteins have been identified to be involved in the mutagenic
processing of Z-DNA in yeast. Most notable were the NER proteins, Rad1 (XPF) and
Rad10 (ERCC1), and the mismatch repair proteins, Msh2 (MSH2) and Msh 3 (MSH3).
When examined in human cells using mutation reporters containing a control B-DNA or Z-
DNA sequence, the absence of either XPF or MSH2 decreased Z-DNA-induced mutations,
implicating these proteins in the mutagenic processing of Z-DNA. This was examined
further through chromatin immunoprecipitation (CHIP) assays, where the association
of ERCC1-XPF and MSH2-MSH3 were found to be significantly enriched at the Z-DNA
region compared to the control B-DNA region. Additionally, results demonstrated that
the enrichment of ERCC1-XPF at Z-DNA was dependent on MSH2. A mechanism was
proposed, as outlined in Figure 5, in which the MSH2-MSH3 complex recognizes and
binds to the Z-DNA-containing region. Upon binding, ERCC1-XPF is then recruited to the
Z-DNA structure and cleaves it near the B-Z junction, resulting in a single- or double-strand
DNA break. This break can then be repaired in an error-generating fashion, resulting in
genetic instability [68].
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B-DNA and Z-DNA. ERCC1-XPF is then recruited to the site where it can cleave within and/or sur-
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ion, leading to genetic instability. Adapted from McKinney et al. (2020) [68]. 
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hydrogen bonds [11,71,73]. H-DNA-forming sequences are abundant in eukaryotic ge-
nomes, with an estimated occurrence of ~1 in every 50,000 base pairs in the human ge-
nome [47].  

Of clinical relevance, potential non-B DNA structure (PONDS)-forming sequences 
were analyzed against translocation and deletion breakpoints in human cancer genomes 
in computational studies, which revealed that H-DNA-forming sequences were signifi-
cantly enriched at these sites [14,74]. Examples include H-DNA-forming sequences in the 
c-MYC and BCL-2 oncogenes that co-localize with translocation hotspots in lymphomas 
and leukemias [9,11,72,74–76]. Wang and Vasquez (2004) investigated the mutagenic po-
tential of H-DNA in COS-7 mammalian cells using a supF mutation reporter system. In 
this study, an H-DNA-forming sequence from the human c-MYC gene, which maps to a 
translocation breakpoint hotspot in Burkitt lymphoma, as well as various other model H-
DNA-forming sequences, were used. When transfected into COS-7 cells, the mutation fre-
quencies induced by the H-DNA-forming sequences were up to 20 times higher than those 
of the control B-DNA sequence, indicating that H-DNA is mutagenic in mammalian cells. 
When characterized further, it was determined that H-DNA stimulated the formation of 
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7. H-DNA

H-DNA is a three-stranded DNA structure formed at polypurine (R) and polypyrimi-
dine (Y) DNA sequences with mirror symmetry (Figure 1F). This structure can form during
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transcription, replication, and repair, when the DNA duplex unravels and a single strand
folds back and binds to the major groove of the DNA duplex via Hoogsteen hydrogen
bonding. This forms a three-stranded DNA helix as well as a single-stranded DNA sec-
tion [9,11,71–73]. The third strand of the helix can bind to the purine-rich strand of the
underlying DNA duplex to form either Hoogsteen (Y:R:Y) or reverse-Hoogsteen (R:R:Y) hy-
drogen bonds [11,71,73]. H-DNA-forming sequences are abundant in eukaryotic genomes,
with an estimated occurrence of ~1 in every 50,000 base pairs in the human genome [47].

Of clinical relevance, potential non-B DNA structure (PONDS)-forming sequences
were analyzed against translocation and deletion breakpoints in human cancer genomes
in computational studies, which revealed that H-DNA-forming sequences were signifi-
cantly enriched at these sites [14,74]. Examples include H-DNA-forming sequences in the
c-MYC and BCL-2 oncogenes that co-localize with translocation hotspots in lymphomas
and leukemias [9,11,72,74–76]. Wang and Vasquez (2004) investigated the mutagenic po-
tential of H-DNA in COS-7 mammalian cells using a supF mutation reporter system. In
this study, an H-DNA-forming sequence from the human c-MYC gene, which maps to
a translocation breakpoint hotspot in Burkitt lymphoma, as well as various other model
H-DNA-forming sequences, were used. When transfected into COS-7 cells, the mutation
frequencies induced by the H-DNA-forming sequences were up to 20 times higher than
those of the control B-DNA sequence, indicating that H-DNA is mutagenic in mammalian
cells. When characterized further, it was determined that H-DNA stimulated the formation
of DSBs, leading to subsequent deletions [77]. In order to investigate the mutagenic poten-
tial of H-DNA in vivo, a transgenic mouse model was constructed in which a recoverable
mutation reporter shuttle vector was incorporated into the mouse genome. Through PCR
analysis, the mutation frequencies obtained from mice carrying a human H-DNA-forming
sequence, from the c-MYC promoter region, was significantly higher than mice carrying a
control B-DNA sequence. In total, 7.7% of the H-DNA F1 offspring experienced deletions
and rearrangements, while none were detected in the B-DNA control mice [70].

Zhou et al. (2018) found that ERCC1-XPF could cleave H-DNA in both replication-
dependent and replication-independent mechanisms (Figure 6) [74]. Rad1 (XPF), Rad10
(ERCC1), and Rad27 (FEN1: flap endonuclease 1) were found to be involved in the pro-
cessing of H-DNA in yeast and human cells. Interestingly, while depletion of Rad1 (XPF)
or Rad10 (ERCC1) decreased H-DNA-induced mutations, a deficiency in Rad27 (FEN1)
increased H-DNA-induced mutations. These findings suggest that ERCC1-XPF is involved
in the mutagenic processing of H-DNA and FEN1 in its error-free processing. Using a
radiolabeled H-DNA-forming substrate in human XPF-proficient and XPF-deficient cell
extracts, it was shown that ERCC1-XPF cleaved H-DNA in the loop formed between
Hoogsteen hydrogen-bonded strands. Both XPG and FEN1 were found to cleave H-DNA
in the single-stranded region near the DNA duplex [74]. Recruitment of Rad27 (FEN1),
Rad1 (XPF), and Rad2 (XPG) to H-DNA sequences was confirmed through ChIP assays
performed in yeast. Interestingly, depletion of Rad14 (XPA) reduced the recruitment of
Rad1 (XPF) to H-DNA, but not Rad27 (FEN1), suggesting that functional NER was involved
in the mutagenic processing of H-DNA. This was also supported by mutagenesis assays
performed in human XPA-proficient and XPA-deficient cells [74].

The effects of ERCC1-XPF and FEN1 on H-DNA-induced mutagenesis were further
investigated in DNA replication-proficient and replication-deficient systems. An increase
in H-DNA mutations was observed in both replication-proficient and -deficient systems.
However, the absence of XPF impacted H-DNA-induced mutations to a greater extent in
non-replicating systems than in replicating systems. In contrast, in replication-proficient
systems, FEN1 depletion increased H-DNA-induced mutations, possibly through stabi-
lization of the structure and subsequent processing by ERCC1-XPF and XPG. Thus, two
mechanisms were proposed for the processing of H-DNA, as outlined in Figure 6. FEN1
reduces H-DNA-induced genetic instability in a replication-dependent manner by allow-
ing continuous replication through stalled replication forks via cleavage of the H-DNA
structure. In contrast, ERCC1-XPF and XPG contributes to the mutagenic processing of
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H-DNA. In the replication-independent mechanism of H-DNA processing, ERCC1-XPF
and XPG are recruited to the structure by XPA and cleave the H-DNA structure, which can
lead to subsequent DSBs and genetic instability [74].
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Figure 6. Replication-dependent and replication-independent cleavage of H-DNA. (A) In replica-
tion-independent processing of H-DNA, ERCC1-XPF and XPG are recruited to H-DNA. ERCC1-

Figure 6. Replication-dependent and replication-independent cleavage of H-DNA. (A) In replication-
independent processing of H-DNA, ERCC1-XPF and XPG are recruited to H-DNA. ERCC1-XPF
cleaves the loop between Hoogsteen hydrogen-bonded strands, and XPG cleaves ssDNA near
the DNA duplex. (B) In replication-dependent processing of H-DNA, the structure can impede
progressing replication complexes. FEN1 can cleave H-DNA to prevent mutations by allowing for
continuous replication. However, ERCC1-XPF and XPG may also cleave this structure, which can
then be processed in a mutagenic fashion. Adapted from Zhao et al. (2018) [74].

8. G-Quadruplex (G4 DNA)

Formed in guanine-rich DNA containing a G≥3NxG≥3NxG≥3NxG≥3 sequence pattern,
G-quadruplexes (G4s) are stacked structures consisting of square planar arrays, with each
array consisting of four guanine molecules (Figure 1G). Within each array, a guanine is
Hoogsteen hydrogen-bonded to the neighboring guanine [11,78]. G4 DNA can form a
variety of intramolecular or intermolecular conformations (e.g., parallel and antiparallel)
based on DNA sequence and strand orientation [11,78–81]. Similarly to other non-B
DNA structures, cellular functions in which DNA exists in a single-stranded state, such
as replication, afford the opportunity for structure formation [78]. As a consequence of
structure formation, G4s can also impede replication and transcription complexes, which
may increase genetic instability [78,82].

G4-forming sequences have been associated with a variety of human diseases, includ-
ing ataxia and Fragile X syndrome [83–85]. Nucleotide repeats found in the FMR1 gene
involved in Fragile X syndrome (d(CGG)n) have been shown to form G4 DNA, which can
alter replication and transcription of the FMR1 gene [83,84,86]. Additionally, G4-forming
sequences have been found to be associated with translocation breakpoints in human cancer
genomes [14].

Computational studies have been conducted to determine the prevalence of G4-
forming sequences with ~376,000 sequences identified in the human genome [87,88], though
more recent studies indicate that there may be as many as 700,000 potential G4-forming
sequences [89]. These structures have been found to form in telomeres [78,90–92], im-
munoglobulin switch regions [11,93], and in promoters [78,94], among other regions.
Due to the prevalence of potential G4 DNA-forming sequences in promoter regions
of genes [87–89,94], it is thought that G4 DNA plays a role in transcriptional regula-
tion [82,95]. One example is the G4-forming sequence in the promoter region of the c-MYC
gene [78,96,97]. A G4 DNA-forming sequence in the nuclease hypersensitive element III
(NHE III), downstream of the c-MYC promoter region, was shown to suppress transcription
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of c-MYC [78,96,97]. It was found that upon disruption of this sequence to prevent G4
structure formation, transcriptional activity increased by several fold [96].

As G4 structures can impede cellular processes such as replication, cells possess
mechanisms to resolve these structures. For example, several helicases such as FANCJ [98],
BLM [99,100], WRN [99], Sgs1p [100], and Pif1 [101] can resolve these structures. ERCC1-
XPF may also process G4 structures formed at DSBs, through cleavage of the structure
(Figure 7) [102]. Previously, Wang et al. (2018) found that FANCM prevented DSB formation
caused by alternative DNA structures by means of fork reversal [103]. In another study,
Li et al. (2019) found that in the absence of FANCM, mitotic recombination induced by
alternative DNA structures was dependent on XPF, and absence of both FANCM and
XPF resulted in decreased cell proliferation [102]. Using FANCM knockout cells, when
treated with pyridostatin (PDS; a small molecule that stabilizes G4 structures), an increase
in γH2AX formation was observed, indicating an increase in DSBs. Similar results were
obtained in XPF knockout cells. Upon treatment, it was found that XPF knockout cells
had a significant increase in DSBs over that of the wild-type cells, suggesting that XPF
facilitates the repair of DSBs containing G4 structures [102]. Li et al. (2019) then reduced
XPF expression in FANCM knockout cells to a third of its original level, using a lentivirus
encoding XPF shRNA, and treated cells with PDS. Inhibition of XPF significantly reduced
cell viability in FANCM knockout cells when compared to wild-type cells [102]. Consistent
with this study, pyridostatin and TmPyP4, another small molecule known to stabilize G4
structures, were also found to increase DSB formation in neurons [104].
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Figure 7. Cleavage of G-quadruplex (G4) DNA by ERCC1-XPF. G4 structure formation may occur 
during cellular processes, such as replication, causing fork stalling. ERCC1-XPF may cleave G4 
structures to allow replication and/or repair to continue. Adapted from Li et al. (2019) [102]. 

9. Concluding Remarks 
The repair of DNA damage and/or structural alterations (e.g., non-B DNA) is crucial 

for maintaining genome integrity. DNA can be damaged by a variety of endogenous and 
exogenous sources. With the aid of DNA repair proteins, damaged DNA can be repaired 
in an error-free fashion to reduce genetic instability and prevent the development of dis-
eases such as cancer. One critical protein complex involved in the repair of DNA damage 
is ERCC1-XPF, an endonuclease that is known for its role in NER and other DNA repair 
mechanisms. However, ERCC1-XPF has also been found to contribute to the processing 
of alternative DNA structures in the presence or absence of DNA damage. Here, we re-
viewed the various roles that ERCC1-XPF plays in the resolution of non-B DNA struc-
tures. The studies discussed in this review outline a clear relationship between ERCC1-
XPF and non-B DNA structures and provide a mechanistic outline for the processing of 
these mutagenic DNA structures. 
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9. Concluding Remarks

The repair of DNA damage and/or structural alterations (e.g., non-B DNA) is crucial
for maintaining genome integrity. DNA can be damaged by a variety of endogenous and
exogenous sources. With the aid of DNA repair proteins, damaged DNA can be repaired in
an error-free fashion to reduce genetic instability and prevent the development of diseases
such as cancer. One critical protein complex involved in the repair of DNA damage is
ERCC1-XPF, an endonuclease that is known for its role in NER and other DNA repair
mechanisms. However, ERCC1-XPF has also been found to contribute to the processing of
alternative DNA structures in the presence or absence of DNA damage. Here, we reviewed
the various roles that ERCC1-XPF plays in the resolution of non-B DNA structures. The
studies discussed in this review outline a clear relationship between ERCC1-XPF and non-B
DNA structures and provide a mechanistic outline for the processing of these mutagenic
DNA structures.
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