Next Issue
Volume 3, September
Previous Issue
Volume 3, March
 
 

Biomass, Volume 3, Issue 2 (June 2023) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
29 pages, 3622 KiB  
Article
Maximizing Biomass with Agrivoltaics: Potential and Policy in Saskatchewan Canada
by Uzair Jamil and Joshua M. Pearce
Biomass 2023, 3(2), 188-216; https://doi.org/10.3390/biomass3020012 - 02 Jun 2023
Cited by 1 | Viewed by 2674
Abstract
Canada is a leading global agricultural exporter, and roughly half of Canada’s farmland is in Saskatchewan. New agrivoltaics research shows increased biomass for a wide range of crops. This study looks at the potential increase in crop yield and livestock in Saskatchewan through [...] Read more.
Canada is a leading global agricultural exporter, and roughly half of Canada’s farmland is in Saskatchewan. New agrivoltaics research shows increased biomass for a wide range of crops. This study looks at the potential increase in crop yield and livestock in Saskatchewan through agrivoltaics along with its financial implications. Then, the legislation that could influence the adoption of agrivoltaics in Saskatchewan is reviewed. Specifically, experimental results from agrivoltaic wheat production are analyzed for different adoption scenarios. The impact of converting the province’s pasture grass areas to agrivoltaics and using sheep to harvest them is also examined. The results indicate that approximately 0.4 million more tons of wheat, 2.9 to 3.5 million more tons of forage and 3.9 to 4.6 million additional sheep can be grazed using agrivoltaics in Saskatchewan. Only these two agrivoltaics applications, i.e., wheat farmland and pastureland, result in potential additional billions of dollars in annual provincial agricultural revenue. The Municipalities Act and the Planning and Development Act were found to have the most impact on agrivoltaics in the province as official community plans and zoning bylaws can impede diffusion. Agrivoltaics can be integrated into legislation to avoid delays in the adoption of the technology so that the province reaps all of the benefits. Full article
Show Figures

Figure 1

25 pages, 8379 KiB  
Article
Yield and Toxin Analysis of Leaf Protein Concentrate from Common North American Coniferous Trees
by Maryam Mottaghi, Theresa K. Meyer, Ross John Tieman, David Denkenberger and Joshua M. Pearce
Biomass 2023, 3(2), 163-187; https://doi.org/10.3390/biomass3020011 - 27 May 2023
Cited by 2 | Viewed by 1366
Abstract
In the event of an abrupt sunlight reduction scenario, there is a time window that occurs between when food stores would likely run out for many countries (~6 months or less) and ~1 year when resilient foods are scaled up. A promising temporary [...] Read more.
In the event of an abrupt sunlight reduction scenario, there is a time window that occurs between when food stores would likely run out for many countries (~6 months or less) and ~1 year when resilient foods are scaled up. A promising temporary resilient food is leaf protein concentrate (LPC). Although it is possible to extract LPC from tree biomass (e.g., leaves and needles), neither the yields nor the toxicity of the protein concentrates for humans from the most common tree species has been widely investigated. To help fill this knowledge gap, this study uses high-resolution mass spectrometry and an open-source toolchain for non-targeted screening of toxins on five common North American coniferous species: Western Cedar, Douglas Fir, Ponderosa Pine, Western Hemlock, and Lodgepole Pine. The yields for LPC extraction from the conifers ranged from 1% to 7.5%. The toxicity screenings confirm that these trees may contain toxins that can be consumed in small amounts, and additional studies including measuring the quantity of each toxin are needed. The results indicate that LPC is a promising candidate to be used as resilient food, but future work is needed before LPCs from conifers can be used as a wide-scale human food. Full article
Show Figures

Figure A1

25 pages, 18198 KiB  
Article
Quantifying Alternative Food Potential of Agricultural Residue in Rural Communities of Sub-Saharan Africa
by Blessing Ugwoke, Ross Tieman, Aron Mill, David Denkenberger and Joshua M. Pearce
Biomass 2023, 3(2), 138-162; https://doi.org/10.3390/biomass3020010 - 10 May 2023
Cited by 1 | Viewed by 1864
Abstract
African countries have been severely affected by food insecurity such that 54% of the population (73 million people) are acutely food insecure, in crisis or worse. Recent work has found technical potential for feeding humanity during global catastrophes using leaves as stop-gap alternative [...] Read more.
African countries have been severely affected by food insecurity such that 54% of the population (73 million people) are acutely food insecure, in crisis or worse. Recent work has found technical potential for feeding humanity during global catastrophes using leaves as stop-gap alternative foods. To determine the potential for adopting agricultural residue (especially crop leaves) as food in food-insecure areas, this study provides a new methodology to quantify the calories available from agricultural residue as alternative foods at the community scale. A case study is performed on thirteen communities in Nigeria to compare national level values to those available in rural communities. Two residue utilization cases were considered, including a pessimistic and an optimistic case for human-edible calories gained. Here, we show that between 3.0 and 13.8 million Gcal are available in Nigeria per year from harvesting agricultural residue as alternative food. This is enough to feed between 3.9 and 18.1 million people per year, covering from 10 to 48% of Nigeria’s current estimated total food deficit. Full article
(This article belongs to the Special Issue Biomass for Resilient Foods)
Show Figures

Figure 1

15 pages, 853 KiB  
Review
The Production of High-Added-Value Bioproducts from Non-Conventional Biomasses: An Overview
by Alcilene Rodrigues Monteiro, Andrei Pavei Battisti, Germán Ayala Valencia and Cristiano José de Andrade
Biomass 2023, 3(2), 123-137; https://doi.org/10.3390/biomass3020009 - 26 Apr 2023
Cited by 5 | Viewed by 2538
Abstract
In recent decades, biomasses from different industrial segments have created new interesting perspectives, including sustainable development. Moreover, reusing waste, such as biomass, also impacts the economy, i.e., the circular economy. The main biomasses and their applications are evident in the energy, food, chemistry, [...] Read more.
In recent decades, biomasses from different industrial segments have created new interesting perspectives, including sustainable development. Moreover, reusing waste, such as biomass, also impacts the economy, i.e., the circular economy. The main biomasses and their applications are evident in the energy, food, chemistry, fine chemical, and pharmaceutical sectors. Several questions should be asked regarding the trending topic of the circular economy, including biomass availability and seasonality, energy demand (processes), and the real environmental impact. Thus, this review focuses on biomass collected from non-conventional (unusual technology at the industrial scale) food-processing residues, particularly from 2016 to 2023, to produce biomaterials and/or bioproducts for the food sector. Full article
Show Figures

Figure 1

15 pages, 2805 KiB  
Article
Closing Data Gaps to Measure the Bioeconomy in the EU
by Vineta Tetere and Sandija Zeverte-Rivza
Biomass 2023, 3(2), 108-122; https://doi.org/10.3390/biomass3020008 - 11 Apr 2023
Viewed by 1511
Abstract
The expansion of bio-based value chains is prioritized through various European Union (EU) policy initiatives. Due to the growing awareness of the importance of a sustainable bioeconomy in Europe, the need to increase the availability and quality of statistics is increasing. There are [...] Read more.
The expansion of bio-based value chains is prioritized through various European Union (EU) policy initiatives. Due to the growing awareness of the importance of a sustainable bioeconomy in Europe, the need to increase the availability and quality of statistics is increasing. There are several essential aspects lacking, including (i) comprehensive databases and statistics for bio-based sectors; (ii) transparent methodology for bio-based data collection; and (iii) integrated value chain data and indicators that illustrate the flows of different bio-based commodities. The aim of this paper is to develop a bio-based material flow monitor to measure the physical contribution of industries to the bioeconomy. The material flow monitor describes physical material flows (including biomass) to, from, and within the economy. It is recorded in the form of supply and use tables. To measure the bioeconomy, the BioSAM database, along with disaggregated commodities and activities, are used. Data regarding waste generation/treatment and CO2 emissions/sequestrations are added to assess the impact on climate change. The results indicate that the bioeconomy in the EU is underreported due to a lack of data, leading to an insufficient understanding of its contribution to the economy. It can also be concluded that the data from the BioSAM tables are the most complete and have the highest disaggregation level for commodities and sectors, allowing one to measure the significance of the bioeconomy. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop