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Abstract: The aerobic oxidation of biomass transformations into valuable chemical products via a
green catalytic process is one of the most important protocols because of its low reaction tempera-
ture and high productivity rate. Recently, the introduction of small-sized Cu and Au nanoparticles
(e.g., 1–3 nm) upon the surface of oxides can provide more catalytic active sites and then enhance the
catalytic activity of aerobic oxidations significantly. The introduction of these metal nanoparticles
is a kind of perfect catalyst for enhancing the efficiency of the activation of oxygen molecules and
the separation of photo-generated holes and electrons during the photo-oxidation reactions. In
this account, we summarize recent progress of the aerobic oxidation of biomass alcohol toward
the production of highly valuable chemicals over supported catalysts of metal nanoparticles (NPs),
including methanol conversion into methyl formate via photo-oxidation over CuOx/TiO2 nanocom-
posites, biomass ethanol transformation with biomass furfural to produce hydrocarbons biofuels over
Au/NiO catalysts, and glucose oxidation to gluconic acid using Au/activated carbon (Au/AC) as
catalysts. Furthermore, at the atomic level, to understand the structure-property correlations, insights
into molecular activations of oxygen and biomass, and the investigation of active catalytic sites on
photo/catalysts will be detailed and discussed. Finally, future studies are needed to achieve more
exciting progress in the fundamental revealing of the catalytic reaction mechanisms and conversion
pathway and the future perspective in industrial applications.
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1. Introduction

With the increase in the energy demands for future societies, biomass methanol
and ethanol as sustainable energy attract enormous attention as a secure method for
solving energy demands [1,2]. Methyl formate (HCOOCH3) produced from methanol
and hydrocarbons from biomass ethanol with biomass furfural has been considered an
environmentally benign valuable chemical product with the novel area called “green
chemistry”, which has been used as an important precursor to produce pharmaceuticals
and pesticides and as an additive to petroleum in the chemical industry [3–5].

Traditionally, methyl formate was industrially produced via carbonylation and de-
hydrogenation processes with methanol as raw material at high elevated temperatures
(>100 ◦C), which is usually with low selectivity as the generation of many different by-
products, e.g., formaldehyde (HCHO), dimethoxymethane, dimethyl ether (DME), carbon
oxides (CO and CO2), etc., thereby posing a major issue for further separation and extra
expenses [6–8]. Thus, the green photo-oxidation of methanol at ambient temperature
showed great advantages and considerable prospects for the large-scale synthesis of methyl
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formate due to the green and energy saving nature of the pathway with a few CO2 for-
mations (e.g., <5%) [9]. Of note, the CO2 formation is more than 10% at a higher reaction
temperature in the thermal conversions of methanol.

As a kind of liquid fuel, hydrocarbons are the outmost important source of motive
power energy in the field of the transportation sector, being produced on an industrial scale
from nonrenewable fossil-based resources now. With the depletion of oil, the manufacture
of sustainable biofuels from biomass has attracted particular interest. Bioethanol is a kind
of important biomass that is renewable and a green chemical and commonly known as
“cellulosic ethanol”, which can be produced from various plant materials [10] and react with
an aldehyde via aldol condensation that is an effective protocol for C−C bond formation to
produce biofuels [11–14]. Therefore, these conversion pathways by the ethanol oxidation
condensation may provide an important breakthrough for diversification and sustainable
development of hydrocarbon biofuels production [15–17].

With the aim of minimizing the consumption of fossil fuels and reducing CO2 emission,
the transformation of renewable biomass-derived natural resources into corresponding
high valuable biofuels and bio-chemicals is also another appealing and sustainable proto-
col [18–22]. For instance, the catalytic selective aerobic oxidation of glucose into gluconic
acid or salts is one of the most important green chemical reactions [23]; it is an important
commercial chemical that could be widely applied in many fields, such as food additives,
raw material for the medicine, polymer manufacture, a few to name. At present, the
industrial production of gluconic acid and its salts depends on microbial production or the
aerobic oxidation process of glucose catalyzed by the Pd-based catalysts with loading Bi or
Pb [24,25]. The Bi and Pb additives would contaminate the gluconic acid products (e.g., the
residual Bi and Pb cations from the catalysts) [25], and it results in further purifications and
the generation of waste.

Herein, we introduce recent progress in the green transformations of biomass to
valuable chemicals, including the photo-oxidation of methanol toward the production of
methyl formate over CuOx/TiO2 catalysts in the gas phase and the production of glucuronic
acid from glucose via aerobic oxidation over Au/AC (AC: activated carbon) in a liquid
phase and the hydrocarbon production from ethanol with furfural via a one-pot cascade
reaction catalyzed by Au/NiO, viz., cross aldol condensations and then hydrogenolysis
process. Moreover, the extrapolate catalytic mechanisms, and reaction pathways are
thoroughly discussed based on systems developed mainly in our lab till April 2022.

2. Methanol Conversion to Methyl Formate

Methyl formate is one of the most important chemicals, which is widely used as
synthesis intermediates, solvent for cellulose, and fumigants and fungicides in industrial
productions [26,27]. Global consumption has largely increased by an average of ~9%/year
from ~6.2 million tons in 2015 to 8.4 million tons in 2019, Figure 1.

2 CH3OH + O2 → HCOOCH3 + 2 H2O ∆H = −102.5 kcal mol−1 (1)

As can be seen from Equation (1), the value of ∆H for methanol oxidation into methyl
formate product is −102.5 kcal mol–1, so it is a strongly exothermic reaction, indicating
that the photocatalytic methanol oxidation is feasible [28]. The gas phase photocatalytic
methanol oxidation process was schematically illustrated in Figure 2 [29]. The bare anatase-
TiO2 showed inferior photoactivity [30,31], although the apparent energy of activation
is some low (~6.1 kJ mol−1), which is much lower than these over the transition metal
oxides in the thermal oxidation (39–126 kJ mol−1). Thus, the extent of photocatalysis to the
Cu/TiO2 system was developed [32]. As the work function of Cu (ϕCu = 4.60 eV [33]) is
very close to that of TiO2 (ϕTiO2 = 4.70 eV), an Ohmic contact can be formed on the surface
of TiO2 and Cu in the Cu/TiO2 complex nanomaterial.
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Figure 1. The global consumption of methyl formate update to 2019. 

 
Figure 2. Schematic system of photo-oxidation. Reproduced with permission from Ref. [29]. Royal 
Society of Chemistry, 2019. 

The previous studies only focused on anatase-TiO2 or P25 (a mixture of anatase phase 
and rutile phase of TiO2) as support for metal nanoparticles (NPs), which cannot be used 
to go insight the interfacial perimeter of the oxide supports and metal NPs. Note that the 
interfacial perimeter of the oxide supports and metal NPs is often deemed as the catalyti-
cally active sites during the metal NPs-catalyzed reactions. In the past decades, the TiO2 
with various shapes (such as nanorods (R), nanosheets (S), nanospindles (P), nanotube (T), 
etc.) has been successfully synthesized [34,35]. These well-defined TiO2s have specific ex-
posing facets. For example, TiO2{001} and TiO2{101} surfaces are observed in the TiO2-S 
sample (Figure 3A), which has been widely used as photocatalysts [36,37], and very re-
cently, CuOx/TiO2-S heterojunction was prepared via a reduction-deposition method as a 
well-defined and efficient photocatalyst and used for the photo-oxidation of methanol to 
methyl formate with oxygen (O2) gas as the oxidant [29]. The CuOx particles with small-
sized (~3.5 nm, Figure 3A) were selectively supported on the TiO2{101} interface of ana-
tase-TiO2-S, which can reduce the recombination of photo-generated electrons/holes dra-
matically under the situation of light irradiation. The CuO/TiO2-S heterojunction catalysts 
exhibited an excellent catalytic behavior under mild conditions for the catalytic photo-
oxidation of methanol. The conversion is promoted by increasing reaction temperatures, 
and simultaneously the selectivity for methyl formate decreases. 
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The previous studies only focused on anatase-TiO2 or P25 (a mixture of anatase phase
and rutile phase of TiO2) as support for metal nanoparticles (NPs), which cannot be used
to go insight the interfacial perimeter of the oxide supports and metal NPs. Note that
the interfacial perimeter of the oxide supports and metal NPs is often deemed as the
catalytically active sites during the metal NPs-catalyzed reactions. In the past decades,
the TiO2 with various shapes (such as nanorods (R), nanosheets (S), nanospindles (P),
nanotube (T), etc.) has been successfully synthesized [34,35]. These well-defined TiO2s
have specific exposing facets. For example, TiO2{001} and TiO2{101} surfaces are observed
in the TiO2-S sample (Figure 3A), which has been widely used as photocatalysts [36,37],
and very recently, CuOx/TiO2-S heterojunction was prepared via a reduction-deposition
method as a well-defined and efficient photocatalyst and used for the photo-oxidation of
methanol to methyl formate with oxygen (O2) gas as the oxidant [29]. The CuOx particles
with small-sized (~3.5 nm, Figure 3A) were selectively supported on the TiO2{101} interface
of anatase-TiO2-S, which can reduce the recombination of photo-generated electrons/holes
dramatically under the situation of light irradiation. The CuO/TiO2-S heterojunction
catalysts exhibited an excellent catalytic behavior under mild conditions for the catalytic
photo-oxidation of methanol. The conversion is promoted by increasing reaction tempera-
tures, and simultaneously the selectivity for methyl formate decreases.

Then, the concentration of the CuOx loading was further investigated. It could be
found that CuOx/TiO2 photocatalyst with 5 wt% showed the best catalytic performance
(~95% conversion and >85% selectivity for methyl formate), as shown in Figure 4. Interest-
ingly, CO2 and formaldehyde by-products were observed in the reactions in the presence of
0.3% O2, and more CO2 was found when the O2 concentration improved to 0.75% and 1.0%,
based on the conversion and selectivity in this photocatalytic reaction system, 0.5% O2 is
the most suitable concentration. The reaction rate for methyl formate production at the
optimal conditions can reach up to be 10.8 mmol·g−1·h−1 at ambient temperature, which
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is remarkably higher than only used bare CuOx oxides or TiO2-S. The robust CuOx/TiO2-S
nanocomposites showed excellent durability for over 20 h. The unique electronic structure
of oxide catalysts led to superior activity, and the synergistic effects of CuOx/TiO2 also
improved the activity effectively.
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Next, Shi et al. further deposited the CuOx nanoclusters onto the side TiO2{101} plane
of the TiO2-P (Figure 3B) [38]. Note that there was not enough space on the top of TiO2-P
to anchor the CuOx nanoclusters. Methanol-TPD experiments showed methanol could be
chemisorbed on the surface of the CuO/TiO2 catalyst. It means the CuO/TiO2 should be
an excellent candidate for the methanol oxidation reactions. An > 97% conversion and 83%
selectivity were obtained over the CuO/TiO2–P under mild conditions. Interestingly, the
surface oxygen vacancy (OV) species have a big influence on catalytic activity during the
CuO/TiO2-P catalyzed reactions [39,40], Figure 4E. Thus, the small-sized CuO particles
can optimally tune excitons recombination by OV generation and then promote its catalytic
activity. Further, for the first time, in situ attenuated total reflection infrared (ATR-IR)
spectroscopic analysis reveals the adsorbed methoxy (CH3O*) was converted to adsorbed
formaldehyde (CHO*) species in the presence of oxygen (Scheme 1, (3)) in the methanol
conversion, Figure 5A,B. Then formed CHO* species further reacted with a neighboring
CH3O* to provide methyl formate [38].
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Further, Figure 5C figured out the proposed mechanism over CuO/TiO2 composites.
The electrons are formed at TiO2’s valence band by the UV irradiation, which transfers to
its conduction band, resulting in electrons and holes. The accumulated electrons would
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be transferred to the CuO surface via a p-n heterojunction, which largely improves the
separation efficiency of photo-generated electrons and holes. The generated holes promote
the HCHO* formation by CH3OH oxidation. In contrast, the dissociation of oxygen
occurred over CuO particles with the aid of the generated electrons to refill TiO2 oxygen
vacancies (Scheme 1), which is the rate-determining step during the methanol photo-
oxidation [39,41].

Table 1 summarizes and compares the catalytic performances, including CH3OH
conversion, selectivity toward methyl formate, and formation rate of methyl formate, over
these reported photocatalysts in the selective photo-oxidation of methanol into methyl
formate (in the gas phase at room temperature). Surprisingly, the CH3OH conversion was
largely promoted when the IB metal NPs, particularly the Cu species, were immobilized on
the surface of TiO2.

Table 1. Comparison of the methyl formate synthesis via photo-oxidation at ambient temperature
(25 ◦C).

Photocatalysts CH3OH
Conversion

Methyl Formate
Selectivity

Methyl Formate
Formation Rate

(mmolCH3OH
gcat.−1 h−1)

Refs.

A-TiO2 10% 91% 1.5 [30]
P25 27% 56% 1.8 [42]

Ag/TiO2 75% 80% 7.3 [42]
Au/TiO2 65% 75% 5.9 [42]
Cu/TiO2 65% 55% 4.4 [32]

CuO/CuZnAl 80% 60% 5.8 [43]
Pd–Cu/TiO2-P90 53% 80% 5.7 [44]

CuO/TiO2-S 95% 84% 10.8 [29]
CuO/TiO2-P 97% 83% 10.5 [38]
CuO/TiO2-T 93% 90% 22.9 [39]

3. Ethanol Conversion
3.1. Hydrocarbons (Biofuels) via Thermal Reactions

In the transportation sector, liquid fuel is one of the important sources of energy. It
can be traditionally achieved from fossil-based resources on an industrial scale. In recent
decades, with the rapid emergence of renewable biomass energy, the plant-based industry
is a new opportunity for producing sustainable biofuels with a high-energy density. It
exhibits a similar chemical structure to liquid fuel [45–48]. The production of biofuels has
attracted particular interest. Bioethanol, known as “cellulosic ethanol”, appears as a green
and important chemical, which can be obtained from various plant materials [10], and
the ethanol can react with aldehydes via the cross-aldol condensation in the presence of
various base catalysts [49]. The cross-aldol condensation usually is viewed as an effective
method to synthesize biofuels via C−C bond formations. Currently, this method extends
to oxidation condensation, which could provide a new platform for hydrocarbon biofuels
production [50,51].

The preparation of C9-C13 biofuels with cellulosic ethanol in the liquid phase has
emerged as a promising and versatile protocol, Figure 6. The supported nanogold catalysts
exhibited excellent catalytic activity in ethanol oxidation with cinnamaldehyde. It finally
gave the C11-C13 hydrocarbons [52]. A selectivity as high as 70% for C11-C13 hydrocarbon
could be achieved by the Au/NiO catalyst via a one-pot cascade reaction, viz. cross
aldol condensations using K2CO3 as cocatalyst, Figure 7 [53]. Then it was via a full
hydrodeoxygenation with hydrogen gas. The ethanol was activated to acetaldehyde
(CH3CHO*) at the sites of NiO oxide’s oxygen vacancies, supported by EtOH-TPD and
TGA analyses. Then the CH3CHO* reacts with cinnamaldehyde at the interfacial perimeter
of the Au/NiO composite during the cascade reactions. The whole catalytic conversions
were monitored by in situ infrared spectroscopy investigations.
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3.2. Ethanal via Photocatalysis

The atomically precise metal nanoclusters with certain crystal structures have been syn-
thesized as a kind of well-defined model nanocatalysts in selective oxidations [54–56]. The
mono-dopant into a metal particle at a specific position can well tailor its electronic property
and thus modify its catalytic performances. For example, Qin and coworkers developed a
strategy to dope a mono-Ag-atom at the central site of rod-shaped Au13Ag12(PPh3)10Cl8 nan-
oclusters to a “pigeon-pair” cluster of {[Au13Ag12(PPh3)10Cl8]·[Au12Ag13(PPh3)10Cl8]}2+ [57,58].
The single-atom exchange between Au13Ag12 and Au12Ag13 nanoclusters induced a signifi-
cant perturbation to the electronic structure, which can result in a difference in catalytic
activity [59–61]. Thus, Au13Ag12 and Au13Ag12·Au12Ag13 clusters, both being supported
on TiO2, were used in the photocatalytic conversion of ethanol in order to compare the
catalytic performance [62]. The cluster catalysts were evaluated in the selective aerobic
oxidation of ethanol gas under a UV irradiation at 30 ◦C. Au13Ag12·Au12Ag13 clusters gave
a higher ethanol conversion (34%), which is ~1.5-fold over that of the Au13Ag12 clusters
(23%), Figure 8B. Further, the selectivity toward ethanal on the Au13Ag12-Au12Ag13 clusters
(79%) is slightly higher than that on Au13Ag12 clusters (72%), but the product distribution
is very similar for two catalysts, suggesting that the conversion mechanism over both
catalysts should be same. In all, the single-atom exchange (Au for Ag) in M25 clusters lead
to distinct electronic properties indeed makes a significant influence on the catalytic activity.
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4. Oxidation of D-Glucose to Gluconic Acid

The activated carbon (AC) supported Au nanoparticles have previously been reported
as a catalyst for selective aerobic oxidation of D-glucose to gluconic acid [63–66]. This result
prompted the investigation of the catalytic performance of AC-supported Au38(SR)24 for
the oxidation of D-glucose [67]. Impressively, the annealed sample of Au38(SR)24/AC-120
catalyst showed high activity and better catalytic performance than Au38/AC-150 and
Au38/AC-300 (120, 150, and 300 ◦C indicates the annealing temperature in the air). It has
been demonstrated that the desorption of thiol occurs at ~200 ◦C, which suggests that
the partial removal of thiols in Au38(SR)24/AC-120 catalyst provides highly active sites
than more thiol ligands removal at 150 ◦C or the complete removal of thiols at 300 ◦C. The
turnover frequency (TOF) for Au38(SR)24/AC-120 was ~5440 h−1, which is found to be
even higher than the commercially available Pd/AC, Pd-Bi/AC, and Au/AC. Furthermore,
excellent recyclability also could be found with Au38(SR)24/AC-120 catalyst.

The reasonable reaction mechanism for the above-described aerobic oxidation of
D-glucose catalyzed by Au25(SR)18/AC is shown in Figure 6. Here, the terminal -CHO
group of D-glucose molecule first selectively adsorbs on the staple of Aun(SR)m clus-
ters, and O2 is activated on activated carbon in the presence of bases simultaneously.
Subsequently, –CHO is selectively oxidized to the –COOH/–COO− group. In the last,
gluconates desorbed and detached from the Au clusters in the alkaline medium. Thus,
the staple motif has a critical role to play here in enhancing the catalytic activity. Further,
Au25(SR)18 (1.1 nm), Au38(SR)24 (1.2 nm), and Au144(SR)60 (1.7 nm) were used to exem-
plify the size dependence of Au nanocluster catalysts [68]. Experimental results showed
that all clusters have excellent catalytic activity with 98% selectivity and follow the order:
Au144(SR)60/AC > Au38(SR)24/AC > Au25(SR)18/AC (equal moles of nanoclusters, the mo-
lar ratio of glucose/NC was fixed at 18,000:1). Rationally, the above size dependence is
attributed to the effect of the core size of metal nanoclusters.

At the same time, Guo et al. [69] prepared TiO2-supported ultrasmall gold cluster
catalysts (particle’s size: 1.2–1.7 nm) with a simple incipient wetness method and used
anthranilic acid as a stabilizing agent. Surprisingly, The Au/TiO2 with surface Auδ+ species
(annealed at 200 and 500 ◦C in the air), corroborated by XPS and Operando-DRIFTS analy-
ses (Figure 9B), showed inactive in the base-free reaction condition for oxidation of glucose.
However, the Au/TiO2 with only surface metallic Au0 species (annealed at 150 and 200 ◦C
in the presence of H2 gas) exhibited salient catalytic performance (87–92% conversion and
95–97% selectivity for gluconic acid), revealing that the metallic Au0 sites are very impor-
tant for glucose oxidation in this reaction system. Note that the by-product in the oxidation
was fructose by isomerization of glucose (Figure 9A). The turnover frequency of Au/TiO2
could be achieved to 1908 molreacted glucose molAu

−1 h−1, which is 1.5-fold of the com-
mercial Pd-Bi/C catalysts with alkaline existence (TOF: 1298 molreacted glucose molPd

−1 h−1,
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NaOH solution with a pH 9.5), and the apparent activation energies are comparable to the
unsupported Au clusters, also indicating that the oxidation should occur at Au surface
rather than at the perimeter interface between Au clusters and supports (Figure 9C). This
study gave some clues that the metallic gold particle is the catalytically active center for the
aerobic glucose oxidation conversion to gluconic acid.
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5. Conclusions, Challenges, and Future Perspective

We fabricated the aerobic oxidation of biomass into highly valuable chemicals via
green catalytic systems over the supported copper and gold nanoclusters catalysts, which
led to some significant breakthroughs, as highlighted below:

(1) Three types of oxidations were achieved, photo-oxidation of methanol to methyl
formate over CuOx/TiO2 nanocomposites, ethanol to hydrocarbons biofuels over
Au/NiO, and glucose oxidation to gluconic acid catalyzed by Au/activated carbon.

(2) The titania supports copper oxide clusters with different morphology of nanosheets,
nanospindles, and nanotubes have been designed to investigate the catalytic perfor-
mance in the photo-oxidation reaction of the method.

(3) The active-site identification and creation in the aerobic oxidation were exemplified.
The CuOx/TiO2{101} interface was identified in the photo-oxidation of methanol, and
only the metallic Au0 clusters were clarified to be active-site for the glucose oxidation.

(4) It has been observed that the single-atom-exchanging in the metal clusters largely
affects the catalytic activity instead of product selectivity. However, the detailed
mechanism is still unknown.
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(5) By the ATR-IR spectra method, we clearly mapped out the whole conversion pathway
and worked out the controversy in this photocatalysis.

However, there are still some following points for utmost consideration:

(1) In the future, more efforts must be put into creating novel photo/catalysts with
specific active reaction sites for biomass conversions [70,71].

(2) In the future, sincere efforts will be put forward to develop more biomass conver-
sion systems.

(3) DFT studies with in situ characterizations must be advanced to establish plausible
reaction mechanisms.

(4) Attempts must be made to increase the reaction scales to meet the industrial needs,
especially the photo-oxidation reactions [72].

(5) Alloy metal nanoparticle catalysts need to be exploited in the biomass conversions, as
the electronic property can be well modified to tailor their catalytic performances.

(6) Finally, in the near future, we will try to expand our horizons in other different fields
of catalysis [73–75].
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