
Citation: Ta, D.; Booth, S.;

Dudukovich, R. Towards

Software-Defined Delay Tolerant

Networks. Network 2023, 3, 15–38.

https://doi.org/10.3390/

network3010002

Academic Editors: Hakim Mellah,

Filippo Malandra and Xinrong Li

Received: 27 September 2022

Revised: 17 November 2022

Accepted: 24 December 2022

Published: 28 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Towards Software-Defined Delay Tolerant Networks
Dominick Ta 1,* , Stephanie Booth 2 and Rachel Dudukovich 2

1 Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
2 NASA Glenn Research Center, Cleveland, OH 44135, USA
* Correspondence: domta@cs.washington.edu

Abstract: This paper proposes a Software-Defined Delay Tolerant Networking (SDDTN) architecture
as a solution to managing large Delay Tolerant Networking (DTN) networks in a scalable manner. This
work is motivated by the planned deployments of large DTN networks on the Moon and beyond in
deep space. Current space communication involves relatively few nodes and is heavily deterministic
and scheduled, which will not be true in the future. It is unclear how these large space DTN
networks, consisting of inherently intermittent links, will be able to adapt to dynamically changing
network conditions. In addition to the proposed SDDTN architecture, this paper explores data
plane programming and the Programming Protocol-Independent Packet Processors (P4) language
as a possible method of implementing this SDDTN architecture, enumerates the challenges of this
approach, and presents intermediate results.

Keywords: delay tolerant networking (DTN); disruption tolerant networking; bundle protocol;
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1. Introduction

Space communication has largely been restricted to a bent-pipe architecture that allows
nodes on Earth to communicate with science assets in space by sending data through a series
of relay satellites. Although this is an effective method of communication at a small scale,
it is not feasible for large-scale communications. In the near future, the number of nodes in
space is going to exponentially increase as the number of science missions on the Moon
increases. NASA’s LunaNet architecture and ESA’s Moonlight initiative aim to address
this issue by developing the infrastructure required to provide robust communication
and navigation services for assets on the Moon. The enabling technology that will be
used to improve this communication is the Delay Tolerant Networking (DTN) computer
networking architecture [1,2].

DTN is an architecture that enables communication over links that are expected to
be unreliable, intermittent, and have high latency [3]. Environments that exhibit these
link characteristics include underdeveloped or low-resource regions, areas impacted by
natural disasters, and outer space [4]. DTN enables communication by forwarding data
in a store-and-forward manner, so that data are not dropped but simply delayed when
links are intermittent or have high latency. Currently, the deployment of DTN in space
has only been executed on the small scale, such as on the International Space Station (ISS)
and its communications with ground stations via a DTN network [5]. DTN networks face
issues with scalability that are not seen in traditional networks due to the core issue of
having intermittent links. For example, the inability to quickly receive acknowledgements
or propagate information about links that unexpectedly went down makes reliably routing
data a difficult task. One large class of DTN routing algorithms tackles this issue in
a deterministic manner by providing contact plans to nodes in the network that dictate
at what times links will be available [6]. However, this assumes that either the contact
plan will always be accurate, or that when link behavior changes a contact plan can be
updated and reliably distributed to the nodes in the network, ironically over high-latency

Network 2023, 3, 15–38. https://doi.org/10.3390/network3010002 https://www.mdpi.com/journal/network

https://doi.org/10.3390/network3010002
https://doi.org/10.3390/network3010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/network
https://www.mdpi.com
https://orcid.org/0000-0001-9640-9107
https://orcid.org/0000-0003-4406-0200
https://orcid.org/0000-0002-7305-0688
https://doi.org/10.3390/network3010002
https://www.mdpi.com/journal/network
https://www.mdpi.com/article/10.3390/network3010002?type=check_update&version=3


Network 2023, 3 16

and intermittent links. While this may work on the small scale for small DTN networks,
this is not a practical method for large-scale networks that span multiple network operators
over several intermittent links. A solution must be found in order to enable the eventual
deployment of the Solar System Internet, a cross space agency collaboration that aims to
deploy a DTN network that spans all planets in our solar system [7].

To tackle this issue of management of large DTN networks, we propose a Software-
Defined Delay Tolerant Networking (SDDTN) architecture that adapts Software-Defined
Networking (SDN) techniques, an approach to managing large traditional networks in
a centralized manner, to the DTN environment. This SDDTN architecture tackles the
issue of reacting to changes in the network in a challenged networking environment
through a hybrid approach where networking decisions can be determined, distributed,
and executed at both a local-neighborhood scale and at the individual node level.

Additionally, in this paper we examine one possible path towards implementing a SD-
DTN architecture via data plane programming. In traditional SDN networks, networking
switches are deployed that communicate with a centralized controller to send telemetry and
receive decisions. However, there is currently no hardware that is able to understand the
protocols behind DTN, as all implementations of the DTN protocols have been in software.
We attempted to use the Programming Protocol-Independent Packet Processors (P4) (P4 is
a registered trademark of Open Networking Foundation (ONF) and is a programming
language used under Open Source license) language to create a program for a networking
switch that would enable the switch to (1) understand the requisite DTN protocols and
(2) communicate with an SDN controller. The specific program we aimed to create is a
network middlebox that would be able to translate between the two primary versions
of the Bundle Protocol (BP) in use by current and future DTN networks (BP version 6
and version 7), for reasons discussed in Section 4.2. A proof-of-concept BP translator was
developed that enabled DTN nodes to communicate despite utilizing different BP versions.

This paper is laid out as follows: Section 2 provides necessary background details on
DTN, Bundle Protocol, and routing within DTN networks; Section 3 explains SDN and our
proposed SDDTN architecture; Section 4 describes and provides context for our approach
towards implementing a SDDTN; Section 5 presents our proof of concept, details the
challenges we faced, and evaluates its capabilities; and Section 6 contains our concluding
thoughts and recommended next steps.

2. Delay Tolerant Networking Background

This section contains background information on DTN and related work. Section 2.1
provides an overview of the history, architecture, and implementations of DTN used for
experiments in this paper. In Section 2.1, the two versions of Bundle Protocol are explained
and their differences highlighted. Lastly, Section 2.1 discusses the current state of DTN
routing from the perspective of scalability.

2.1. DTN Overview

In 2003, the DTN architecture was introduced in [8] to provide network connectivity
to environments that the TCP/IP model failed to address, such as low-resource regions,
outer space, or areas impacted by natural disasters that have intermittent and high latency
links [3,4]. DTN is an overlay network with the primary protocol being BP and the protocol
unit of data being bundles. BP is analogous to a more robust version of Internet Protocol
(IP), featuring endpoint identifiers, intermittent links, store-and-carry forwarding, security,
and extendability. BP can run over any underlying network with a respective convergence
layer adapter, including the TCP/IP suite of protocols [3]. Figure 1 provides an overview
of what the network stack of a DTN network looks like when overlaid on a TCP/IP
network. The bundle layer is able to utilize various transport layer protocols such as
the User Datagram Protocol (UDP), the Transmission Control Protocol (TCP), and the
Licklider Transmission Protocol (LTP) through the use of a protocol specific convergence
layer adapter, e.g., the TCP Convergence Layer (TCPCL) [9].
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Figure 1. Bundle Protocol network stack. Blue dotted lines show OSI model layer 4 and up for a typi-
cal DTN network stack. Red dashed lines show the typical layer 4 and up for Earth communications
(without BP). Black solid lines show the underlying network layers.

A formal document detailing the DTN architecture was introduced in 2007 [3], fol-
lowed by the specification of experimental BP version 6 (BPv6) [10], the first documented
version of a protocol for DTN. Throughout the years, BPv6 was implemented, deployed,
and tested in an experimental manner, leading to the first officially standardized version of
the protocol in January 2022, with the introduction of BP version 7 (BPv7) [11].

The tests described in this paper use two DTN implementations developed by NASA.
The first is the Interplanetary Overlay Network (ION) implementation developed by
NASA’s Jet Propulsion Laboratory [12]. ION has been deployed on the ISS [5] as a DTN
gateway and has served as a reference implementation for many space-related DTN projects.
To this reason, it was designed with resource-constrained flight-like hardware in mind.
It features Bundle Protocol version 6 and 7, Licklider Transmission Protocol (LTP) [13],
Contact Graph Routing (CGR) [14], and many space-related applications.

The High-rate Delay Tolerant Networking (HDTN) project was developed by NASA
Glenn Research Center [15]. HDTN is focused on developing a performance optimized, mod-
ular DTN architecture capable of supporting rates of 1 Gigabit per second and greater [16–19].
Similar to ION, HDTN supports Bundle Protocol version 6 and 7, LTP, CGR, file transfer
applications, and related tools. In addition, HDTN has been shown to be interoperable
with ION and HDTN is able to detect what version of BP it received but can only send or
respond with the BP version it have been configured to use.

2.2. Bundle Protocol

BPv6 and BPv7 are similar in their core layout. Bundles are made up of various blocks
of information that are necessary for nodes in a DTN network to execute store-and-carry
forwarding. There are only two required blocks in a bundle: a primary block (the beginning
of a bundle) and a payload block (the end of a bundle). Between these required blocks, there
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are optional extension blocks that can include information such as hop limits, information
about the previous/sender node, and class of service [10]. While BPv6 and BPv7 bundles
have the same abstract bundle structure, the way bundles are encoded and the specific
fields included in each block varies greatly.

BPv6 uses the Self-Delimiting Numeric Value (SDNV) scheme to encode fields within
bundles [10,20]. Compared to network protocols that have fields with pre-defined bit
widths, SDNV preserves channel capacity (by avoiding a minimum bit width) and allows
for future extensibility and scalability (by avoiding a maximum bit width) at the overhead
cost of an additional bit for every seven bits. The SDNV encoding scheme encodes any data
into several octets of bits, where the seven least significant bits (LSB) encode the original
data, and the most significant bit (MSB) of an octet determines whether or not it is the last
octet of data. An MSB with a value of 0 indicates that it is the last octet of data, with all other
octets having an MSB of 1. Figure 2 shows an example of the decimal value 86,400 encoded
using SDNV. Most fields within BPv6 bundles are encoded using the SDNV format, such
as the bundle processing flags, block lengths, and endpoint identifiers (EID).

Figure 2. Example SDNV encoding where the blue, yellow, and green highlights a group of 7 bits
that is modified to become an octet of bits. The Most Significant Bit (bolded and underlined) in the
first two octets are a 1 indicating that this is not the last octet within this piece of data.

EIDs are the names used for various parties within a DTN network such as the source
and destination nodes. It is important to note that EIDs are names and not addresses,
meaning an EID does not provide any hierarchical information. EIDs are represented
as Uniform Resource Identifiers (URI) and can be arbitrarily long. BPv6 utilizes EID
Dictionaries, an array of value pairs representing EIDs (a scheme name and scheme-specific
value), to minimize overhead [10]. EID Dictionaries act as a single source of information
for all EIDs that will be referenced within a given bundle so that subsequent fields can
reference an EID by simply referencing offsets within the dictionary rather than encoding
the full EID.

Introduced four years after the BPv6 specification, Compressed Bundle Header En-
coding (CBHE) is a mechanism to further preserve bandwidth, by avoiding encoding EID
dictionaries entirely [21]. In a situation that meets the requirements for CBHE, encoding
a dictionary can be skipped, with EID information encoded as ipn scheme (ipn is one of the
URI schemes used to encode EIDs) EIDs in the primary block’s source EID, destination EID,
report-to EID, and custody EID offset field. With CBHE, bundles can be transmitted without
a dictionary, and the dictionary can then be rebuilt at the receiving node. Figure 3 provides
a general diagram of two layouts of BPv6 bundles: a standard bundle, and a bundle using
CBHE. Here one can view the Extension and Payload blocks are the same but the Primary
block of CBHE removes the dictionary and its counterparts. BPv6 CBHE format was used
for the experimentation portion in this paper.
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Figure 3. Layout of BPv6 bundles. Very few fields have a defined bit width (denoted with a solid
outline). Most fields have a bit width that is only known until it is parsed using the SDNV encoded
scheme (denoted with a bold dashed outline). Other fields have a width encoded by a field preceding
it (denoted with a non-bold dashed outline).

BPv7 changes the encoding of bundles from being SDNV-formatted to using Concise
Binary Object Representation (CBOR) [11]. CBOR provides a structured serialization
format, while maintaining flexibility and compactness. The layout of the CBOR data
model is a superset of JavaScript Object Notation (JSON), containing several data types,
e.g., integers, strings, maps, and arrays. An instance of a CBOR data type is a data item [22].
In BPv7, a single bundle is a CBOR indefinite-length array, comprised of an indefinite
number of blocks which are encoded as CBOR definite-length arrays [22]. The end of a
bundle is terminated by a stop code (0xFF). An example BPv7 bundle and a decoding of
its primary block is shown in Figure 4, which demonstrates how BPv7 bundle fields are
encoded as a nested array of various data types rather than the flat representation of SDNV
fields that was seen in BPv6.
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Figure 4. Decoding of BPv7 bundle (left: Wireshark capture of BPv7 bundle with primary block bytes
highlighted; right: A manual decoding of the CBOR-encoded bundle fields).

Alongside an encoding change, a couple of components were relocated away from the
official BP specification in BPv7 and may be moved to other sections of the DTN protocol
suite. One feature moved away from BP in BPv7 is class of service [11]. BPv6 bundles were
able to request a certain class of service through bundle processing flags in the primary
block, such as bulk, normal, or expedited class of service [10]. According to an Internet
Engineering Task Force (IETF) draft (See the Bundle Protocol Extended Class of Service
draft: Available online: https://datatracker.ietf.org/doc/html/draft-burleigh-dtn-ecos-00,
accessed on 1 September 2022), class of service may be handled as a BPv7 extension
block. Another feature moved away from the BPv7 specification is custody transfer, also
implemented through bundle processing flags, which is used to request another node
to take responsibility for a given bundle. An IETF draft indicates that custody transfer
may be placed within the bundle-in-bundle encapsulation (BIBE) specification (See the
Bundle-in-Bundle Encapsulation draft: Available online: https://datatracker.ietf.org/doc/
html/draft-ietf-dtn-bibect-03, accessed on 1 September 2022).

Lastly, BPv7 adds optional error detection to bundle blocks through the form of Cyclic
Redundancy Check (CRC) error-detecting codes (CRC-16 and CRC-32). This enables DTN
nodes to verify the data integrity of received bundles [11]. A general diagram of the layout
of BPv7 bundles is shown in Figure 5, showcasing the various CBOR data types that each
bundle block and block field is encoded as. Note that while BPv6 and BPv7 look similar,
there are significant differences in how they are encoded and the fields that are included.

https://datatracker.ietf.org/doc/html/draft-burleigh-dtn-ecos-00
https://datatracker.ietf.org/doc/html/draft-ietf-dtn-bibect-03
https://datatracker.ietf.org/doc/html/draft-ietf-dtn-bibect-03
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Figure 5. Layout of BPv7 bundles. A bundle is encoded as an indefinite–length array of blocks,
and blocks are encoded as definite–length arrays of fields. The size of each field is determined by its
data type and defined length in its initial byte (shown in parentheses).

2.3. Space DTN Routing and Scalability

DTN routing algorithms can vary based on the amount of knowledge assumed by
the algorithm [23]. For example, there are flooding-based algorithms that send replicated
bundles throughout the DTN network to reach its destination at the cost of congesting the
network, at the benefit of not needing any detailed information about the structure of the
network [24]. On the other hand, there are algorithms that take advantage of pre-existing
knowledge of the network topology to make smarter decisions about where bundles should
be sent, assuming one is able to acquire up-to-date and accurate network state information.
Contact Graph Routing (CGR) is a routing method that assumes DTN nodes have access
to contact plans that provide information about when links are available to determine the
best route to send bundles.

CGR has become the de facto choice for routing within space DTN networks due to
current space DTN networks consisting of nodes with heavily scheduled and deterministic
behavior and CGR’s ability to provide reliable bundle delivery [6]. An active area of
research is scaling CGR to work on large and nondeterministic DTN networks. A CGR
relies on the assumption that DTN nodes will always have access to up-to-date contact
plans, which may not necessarily be true if unexpected events occur or space network nodes
are no longer heavily scheduled and deterministic. CGR also relies on the assumption that
given a contact plan, a best route can be computed in a reasonable amount of time, which
may not be true if the contact plan grows with the size of the network.

Opportunistic Contact Graph Routing (OCGR) was introduced in [25] as a middle-
ground between algorithms that assume full knowledge of the network and algorithms
that assume zero knowledge of the network. In OCGR, nodes can learn new contacts in an
opportunistic manner and add these contacts to their contact plan. This reduces the need
for carefully scheduled contact plans and enables on-the-fly adaptation. OCGR would be
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useful for the increasingly growing space network environment, in which creating contact
plans for the entire network may no longer be feasible.

To reduce contact plan size and route computation time, the idea of hierarchical and
inter-regional routing was introduced in [26]. In this hierarchical system, the network would
be divided into regions (that are possibly operated by separate entities), and each region
would have its own contact plan. The problem of global contact routing is then subdivided
into intra-regional routing problems and inter-regional routing problems. Experimental
testing of this hierarchical format showed promising results as a possible solution to
CGR scalability.

In addition to the drawback of contact plan distribution and scalability, many DTN
routing methods are typically implemented at the application layer, meaning that IP-layer
routing is not addressed and must be handled by another mechanism. This detail will
depend on the complexity of the network(s) and the number of network interfaces a given
node has. SDN can help alleviate this issue in several ways. An intelligent SDN switch can
be aware of both the DTN application-level routes and the IP-level routing. The switch
could also independently route packets at the hardware level and abstract this decision
away from the client node, simplifying the DTN routing decisions. Previous work has
explored using SDN to implement IP-layer load balancing for DTN networks [27].

3. Software-Defined Delay Tolerant Networking Architecture

Given that the scaling of space DTN routing is still an active area of research, an SDN
approach to managing scalability in space DTN networks is proposed. SDN is a technique
used by network operators to manage their large networks in a scalable manner by dividing
their networks into a control plane and data plane, and centralizing the control plane.
The data plane consists of network routers that handle the task of forwarding data through
the network; however, the routes and policies of this data forwarding are dictated by
a centralized SDN controller. A benefit of this architecture is that it enables network
operators to monitor and rapidly change the behavior of large portions of the network,
assuming a control plane link exists. These are desirable qualities for a space DTN network
operator that may want to change the behavior of their network as needed due to changing
technical or political constraints. However, because SDN requires control plane links
between the SDN controller and the nodes within the network, it is unclear how this can be
applied to the DTN environment where links are inherently intermittent.

There is previous work in applying SDN to DTN networks in a terrestrial military
context in Last-Mile Tactical Edge Networking (TEN) [28]. This is a particular adaptation
of SDN where any node within a local DTN network can become the SDN controller via
an election algorithm. This solves the issue of each node maintaining a link to a SDN
controller by making any node within a local network eligible to become an SDN controller.
However, this architecture was designed for a terrestrial military context which has proper-
ties that may not be desirable for the space environment. Firstly, nodes in this last-mile TEN
can be thought of as highly mobile drones in a harsh battlefield environment where there
are several different types of data flows that require different levels of Quality of Service
(QoS). For example, a live video feed is data that must never be stored and it is imperative
that an SDN controller is available to ensure that this video feed has priority over other data.
This highly dynamic and fast-paced environment are conditions that are not as relevant
in the less dynamic space environment. Secondly, the ability for a controller to always be
present is required in this environment to ensure that these QoS guarantees are always met,
which may not be an important in a space network and too restrictive of a constraint. Lastly,
a downside of this highly dynamic design is that the controller is not a constant device,
which means that a network operator wishing to access the controller and change QoS
policies would not be able to unless they can determine which device is the controller at
any given moment. While this is not something needed for the Last-Mile TEN environment,
the ability to have human intervention in network behavior is a desirable property for space
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networks which are more stable and subject to political and social constraints. The SDDTN
approach we propose keeps the constraints of the space DTN environment in mind.

In our SDDTN architecture, we approach the issue of having reliable links between
the controller and network nodes by dividing the network into clusters. As shown in
Figure 6 within each cluster is a single SDDTN cluster controller and several SDDTN nodes.
Each SDDTN node should have all the behavior of a regular DTN node as specified by
the BP specification, in addition to having a control plane link to its respective cluster
controller. Through this link SDDTN nodes are able to report relevant network status
updates to the cluster controller. Subsequently, using local neighborhood information
from nodes within its cluster, the controller is able to make decisions and propagate these
decisions (such as generating and sending contact plans) to the nodes within its cluster.
It is assumed that the clusters are organized in a manner where these control plane links
are mostly reliable, although how this is achieved is outside the scope of this paper. It
should be noted that there is a large body of literature on SDN clustering and controller
placement algorithms [29–31], and that these clusters could also be determined in a similar
manner to regions in the previously discussed DTN inter-regional routing method [26].
This architecture enables decision making that is more optimal than if nodes worked
independently and provides reliable propagation of network updates through the control
plane links. Additionally, while cluster decisions may be suboptimal compared to decisions
made with global knowledge, this clustering approach enables shorter decision making
times for large space DTN networks.

Additionally in this SDDTN architecture, to account for the event that the control
plane link for a given SDDTN node is disrupted, each SDDTN node has its own form
of a local controller that enables it to continue making decisions on its own. This local
controller could potentially always be running providing secondary services alongside the
cluster controller, or it could be used as a backup controller. The services that this local
controller would provide are implementation specific but could include behavior such
as opportunistic learning, e.g., OCGR, flooding algorithms, or routing based on machine
learning methods.

Figure 6. A Software-Defined Delay Tolerant Network architecture, with three clusters, each contain-
ing an SDDTN controller managing SDDTN nodes via control plane links. A SDDTN node has all
the behaviors of a typical DTN node, dictated by the abstract Bundle Protocol Agent, and also has
communication with a local controller.
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4. Proof-of-Concept Background and Setup

We explored implementing such a SDDTN architecture through the development
of a proof-of-concept SDDTN node in the form of a networking switch. Current BP
implementations are software packages and there are no full hardware solutions, possibly
due to the complexity of BP. We primarily investigated a hardware implementation due
to its potential to provide increased bundle processing and forwarding rates compared
to software implementations, which is in line with the goal of HDTN. In Section 4.1, we
provide background information about P4, the language we chose to use to program
the hardware. In Section 4.2, we provide details on the specific P4 program we aimed
to implement. In Section 4.3, we provide information about the setup we used in the
development of our hardware implementation.

4.1. Programmable Data Planes and P4

Traditional SDN network operators configure their control plane to manage the be-
havior of vendor-defined networking switches (the data plane). However, there are no
vendor-defined switches that can understand BP. Therefore, processing bundles natively
within hardware and creating a SDDTN node requires the capability of a relatively new
networking paradigm for network operators: data plane programming. With data plane
programming, network operators are able to customize the data plane for their specific
use case, e.g., to program a data plane that is able to understand custom protocols. One of
the data plane programming languages available is Programming Protocol-independent
Packet Processors (P4). With the P4 language, code can be written to program data plane
behavior and at compile-time a control plane Application Programming Interface (API)
will be generated. Programs written in the P4 language can be compiled for a variety of
targets, e.g., ASICs, FPGAs, and software switches, and have been used to implement
a large variety of novel networking application in topics such as traffic management and
congestion control, routing and forwarding, enabling machine learning, and network
security [32]. For a brief overview of how the P4 language works and P4-specific termi-
nology see Appendix A (Also see Available online: https://p4.org/learn/ (accessed on
1 September 2022) for more learning resources). The P4 language’s ability to configure
both the data plane and control plane, its open source nature and large ecosystem, and its
proven role in creating novel networking applications makes it an attractive choice as a
tool to implement a SDDTN node.

However, P4 has a known limitation in handling variable-width fields that makes
applying it to BP, a protocol with mostly variable-width fields, a non-trivial task (For more
information, see Sections 7.1.6.4, 7.2.2, 8.9, and 13.8.2 of version 1.2.3 of the P416 language
specification). A P4 program treats packets as a collection of headers which are user-defined
and encompass the various header types that the user expects to handle, e.g., Ethernet
headers and IP headers. Headers are a collection of user-defined fields, where a field is
typically declared as a primitive bit<w> data type with a pre-defined field size of w bits.
For example, an IPv4 source address field would be declared as a bit<32>. For packet
fields that have variable-widths, there is a varbit<w> data type with a user-defined upper
bound size of w bits. There are a restricted set of operations that can be performed on
varbits that make it difficult to work with compared to fixed-width bitstrings: a varbit<w>
can be assigned to another varbit<w> if w is the same, and varbits can be compared for
equality [33]. Notable operations that are not currently possible include the ability to read
bits from a varbit, modify bits within a varbit, and the ability to manually initialize
a varbit [34]. These restrictions are not ideal for protocols like BP that rely on variable-
width fields, however there are discussions in the P4 Language Design Working Group to
add more operations to varbit types in future iterations of the language [34].

For handling variable-width fields, the suggested alternative to varbits is to declare
several fixed-width headers, one each for every possible width that is expected to be
encountered [35]. This works because fixed-width fields are less restricted in the operations
that can be applied, however this increases the amount of coding overhead in order to

https://p4.org/learn/
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manually handle all possible cases. A case study for what this looks like in practice can
be seen in the work done to implement Meta4, a P4 application to monitor Domain Name
System (DNS) traffic in the data plane for the Intel Tofino target [36]. Domain names
have variable widths which proved to be a challenge as they had to account for both
hardware memory constraints along with the P4 restrictions. In one of their P4 programs
that contained 1,691 lines of code, there were approximately 800 lines of repetitive code
dedicated towards parsing the domain names up to a maximum size of 90 bytes [37].
As BP has significantly more variable-width fields, and even fields that can be in different
orderings, Meta4 serves as a useful baseline for what may be able to be achieved in parsing
BP headers with P4.

4.2. Proof-of-Concept Motivation

The P4 program we aimed to create is one that would enable a switch to translate
between BPv6 and BPv7. This task was chosen for two reasons. First, it was sufficiently
complex to explore all aspects of the BP protocols, the P4 language, and networking
hardware. A translator would need to be able to parse all BP fields, understand the seman-
tics behind these fields, be able to modify fields as needed, properly update checksums,
and send bundles forward; these are all tasks that a SDDTN node should also be able to do.
Secondly, it would provide a potential real-world application for deployment on the ISS,
which currently uses the ION software with BPv6. Updating software on the ISS can be a
complicated endeavor and ION does not have compatibility between BP versions, so this
translator could serve as a middlebox in communication with future BP nodes. Therefore,
the task of creating a translator serves as an exploration in parsing BP in hardware via P4
programming, and could potentially aid the communications between legacy, current and
future DTN nodes.

4.3. Development Setup

The P4 target used was the Intel Tofino (Available online: https://www.intel.com/
content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.
html, accessed on 1 September 2022) programmable Ethernet switch application-specific
integrated circuit (ASIC). The Tofino ASIC follows the PISA architecture discussed in
Appendix A and is designed to deliver up to 100 GbE speeds. The target used was the first
version of the Tofino ASIC, which is contained inside the Aurora 710 programmable switch
from Netberg (Available online: https://netbergtw.com/products/aurora-710/, accessed
on 1 September 2022). The Aurora switch utilized Intel’s P4 Studio SDE version 9.7.0 to
compile the program. This target was chosen because, according to our experiences, it
was a less restrictive subset of the P4 language and was easier to use compared to other
hardware targets studied. In addition, the Aurora switch receives regular updates from
Intel as updates are released.

The configuration involved two endpoint computers, named Rho and Eta, connected
to hardware ports on the Aurora 710 switch. Rho and Eta acted as DTN nodes generating
or receiving bundles to be sent to its counterpart over UDP, IP, and Ethernet. Version 4.1.1
of the ION software implementation of DTN was installed on both endpoint nodes, which
supports both BPv6 and BPv7 (configured respectively in installation). ION was chosen for
development as it offers an application called bpchat, a command-line interface (CLI) chat
function, which enabled quick confirmation of different bundle payloads. Figure 7 shows
the setup, where the two DTN nodes, each running different versions of BP, are connected
to the programmable switch.

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://netbergtw.com/products/aurora-710/
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Figure 7. Physical configuration of setup.

5. Proof-of-Concept Results

We found that BPv6 and BPv7’s complex encoding scheme made building a protocol
translator which encodes and decodes these protocols a difficult task. Although we were
not able to produce a full set of BPv6 and BPv7 capabilities, we were able to demonstrate a
bundle translator that would be useful for an initial SDDTN node. In Section 5.1 we discuss
the high-level algorithm used for our translator. In Section 5.2 we discuss the constraints of
our proof of concept and their causes. In Section 5.3 we showcase the capabilities and test
the behavior of our proof of concept in different scenarios.

5.1. The P4 Algorithm

Our P4 program consists of three primary stages: (1) the parser stage which is respon-
sible for interpreting incoming bits from bundles and representing them in structured fields,
(2) the match-action pipeline which is where the translation logic is applied and fields
are modified, “digest” data about the bundle is tracked to be later sent to the controller,
and egress ports are determined using match-action tables that are initialized by a con-
troller, and (3) the deparser stage which sends the digest data to the controller, recalculates
and updates checksums, and emits the bundle out the egress port. Note that as shown in
Figure 8, our parser was restricted to only handle the sets of protocols required for our
experimental setup, i.e., Ethernet, IPv4, UDP, BPv6, and BPv7, as parsing other protocols
such as TCP, LTP, and IPv6 were out of the scope of this work.

Figure 8. Parser state machine for Bundle Translator. The parser stage of a P4 program is coded as
a series of states that are transitioned between using data from fields of the packet being parsed.

The details of these individual stages are explained here, with an overview of these
steps shown in Algorithm 1 (Code to be made available pending release process). After
Ethernet, IPv4, and UDP are appropriately parsed, in Step 1.4, our program uses the
lookahead functionality to examine the upcoming 8-bits of data, which sends the parser
to either the BPv6 parsing (if 0x06 is seen), or BPv7 parsing (if 0x9F is seen, the start code
of a CBOR indefinite-length array). Implementing Step 1.5, where our parser actually
interprets bundle bits and stores them into P4 fields, is where we faced the most issues
due to the variable-width nature of BPv6 and BPv7 bundles; we explain this further in
Section 5.2. As a result of these issues, the P4 fields and headers are fixed-width and are in
a specific format that is not generalizable to all possible bundle configurations; a diagram
of the bundles that our program is able to accept is shown in Figures 9 and 10. After Step
1.5 is completed, the P4 program sets a flag that communicates to future stages of the
P4 program which version of the bundle that was ingested. Step 1.7 marks the end of
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the parser stage where the bundle is accepted and the bundle is sent to the match-action
pipeline for further processing. If any of the previous steps experienced an issue in parsing
a bundle, the bundle would be rejected and dropped.

The match-action pipeline handles several important components for verifying parsing,
initializing data to be sent to the SDN controller, modifying bundles, and applying logic
received from the controller via match-action tables. Verifying the validity of bundle
headers to ensure it was parsed or not parsed, Step 2.1, is something that in actuality
happens throughout the various next steps of match-action pipeline as various fields are
attempted to be used, but it is placed first for simplicity. Step 2.2 is responsible for storing
any data that should be sent to the controller in a P4 struct, this can include data from
any fields such as the bundle age or EIDs. Step 2.3 is where translation begins, new BP
headers are declared (BPv7 if BPv6 was ingested into the switch, or vice versa), and data
are transferred from one version of the BP headers to the new BP headers. Once the new
headers are ready, in Step 2.4, the old BP headers are invalidated and the new BP headers
are validated so that the translated bundle will be sent (An implementation detail to note
is that only the headers for the payload data are reused for both BPv6 and BPv7, so that
they have no need to be invalidated and copied over). Then, the length fields in the IPv4
and UDP headers are updated to accurately reflect the new bundle size (since BPv6 and
BPv7 headers have different sizes). Lastly, an egress port for this bundle is determined by
matching data to the match-action table entries; this table is filled by the SDN controller.

In the deparser stage, data are sent to the controller and final updates are done before
sending bundles out of the switch. In Step 3.1, the struct of data that were initialized in
Step 2.2 is finally sent out of the switch via the control plane link to the SDN controller.
In Steps 3.2 and 3.3, the IPv4 and UDP checksums are updated because the bundle was
modified and the checksums are the bundle’s integrity by the endpoint. Finally, the bundle
is sent out of the switch using the egress port that was determined in Step 2.7.

Algorithm 1 P4 Bundle Translator Algorithm

Step 1: Parser
1: Parse Ethernet header
2: Parse IPv4 header
3: Parse UDP header
4: Examine first byte after UDP header to determine if it is BPv6 or BPv7
5: Parse BPv6 or BPv7
6: Set a metadata flag indicating which BP version was ingested
7: Accept the bundle and transfer it to the match-action pipeline

Step 2: Match-Action Pipeline
1: Verify validity of bundle headers
2: Store digest data with information about/from the ingested bundle
3: Declare new headers for the translated version of the bundle and move data from

original BP headers
4: Invalidate the original BP headers and validate the translated BP headers
5: Update the IPv4 Total Length field
6: Update the UDP Length field
7: Apply IPv4 forwarding logic and determine egress port

Step 3: Deparser
1: Pack and send digest data to the control plane
2: Recalculate and update IPv4 checksum
3: Recalculate and update UDP checksum
4: Emit bundle through egress port
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Figure 9. Expected format for incoming BPv6 bundles. A Previous Hop Insertion Block and Bundle
Age Block are the only extension blocks expected, in this specific order. Additionally, currently only
payloads up to 13 bytes are expected. There is undefined behavior for any bundles sent to the bundle
translator that do not match this format.
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Figure 10. Expected format for incoming BPv7 bundles. Note that in the primary block, the creation
timestamp can be between 88 to 96 bytes. A Previous Node Block, Experimental Class of Service Block,
and Bundle Age Block are the only extension blocks expected, in this specific order. Additionally,
currently only payloads up to 13 bytes are expected. There is undefined behavior for any bundles
sent to the bundle translator that do not match this format.

5.2. Design Constraints

One complexity faced was the parsing of SDNV fields due to the inability to determine
the width of a SDNV field unless the entire field is examined. This is different from other
protocols that use variable-width fields, in which there is usually a fixed-width field that
provides information about the actual width of the variable-width fields. For example,
in IPv4 there are optional fields and the total size of these optional fields can be deduced
by examining the Internet Header Length (IHL) field. With SDNV-encoded fields, the P4
parser would need to use the lookahead function and recursively examine octets of bits
until it encounters an octet with an MSB of 0, up to a maximum of eight octets for each
field. Once the actual size of a field is determined, it would need to be assigned to the
fixed-width header that handles the case of the exact size needed for that specific BP field
(using the variable-width P4 workaround). In our attempts to implement the parsing of a
basic SDNV field using lookahead we found that there was undefined behavior occurring
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in the parser stage that broke the piece of our deparser stage where the checksums are
calculated. This bug was discovered to be internal to the Intel software and will be fixed
in SDE 9.11.0. Therefore, in the proof of concept several BPv6 fields were assumed to be a
certain size to avoid this bug and having to handle all possible lengths for SDNV fields.

Initially, the plan was to use incremental checksum calculations, where if certain
fields are modified the checksum only needs to be updated to account for these modified
fields rather than recomputing the checksum from scratch [38]. Incremental checksum
calculations are a built-in functionality (extern in P4 terminology) of the Tofino target,
however, it was not interacting properly with the lookaheads used in the attempts to parse
SDNVs (as a result of the bug). As an alternative to these incremental checksums, we
resorted to calculating the entire checksum from scratch. A downside of this approach is
that the entire bundle must then be parsed, including the entire payload, to incorporate
these fields into the checksum calculations. This is an issue as payloads are inherently
variable-width, which means that the fixed-width workaround must be used to parse these
payloads; therefore, the size of a payload that can be accepted in the bundle translator is
limited by 13 bytes. Handling payloads of any size would be possible if an incremental
checksum approach was able to be used.

Parsing the CBOR encoded fields of BPv7 also posed a challenge. In the CBOR specifi-
cation, it is stated that “A CBOR decoder implementation can be based on a jump table with
all 256 defined values for the initial byte (Table 7). A decoder in a constrained implementa-
tion can instead use the structure of the initial byte and following bytes for more compact
code (see Appendix C for a rough impression of how this could look)” [22] suggesting
that either a hardcoded jump table can be used to quickly determine the CBOR data type,
or the provided compact algorithm can be used if memory is a limitation. However, due
to the limited memory available and lack of a table data type available in the parser stage
of the Aurora 710 switch, a jump table would not be possible to implement in our target.
Therefore an adaptation of the compact decoding algorithm was attempted. However,
the limited control flow structures available in the parser stage within the P4 language
made adapting this algorithm a nontrivial task: conditional branching can only occur at
the end of every parser state, and any looping must be done in a recursive manner through
the various parsing states. Additionally, in the Tofino target, although there are variables
available for use to keep track of state, there is only “write-once” functionality, meaning
that executing code analogous to i = i + 1 multiple times has undefined behavior as to
what the value of i is. Fortunately, there is a ParserCounter Tofino extern available for use
as a counter variable in the parser stage. Attempts to utilizing this extern to loop through
parsing of a CBOR field led to strange behaviors. For example, where certain fields were
being modified and parser states were executed in conditions where they should not have
been. It is not clear if this was due to user error or an issue with the environment and
therefore another compromise was made to assume the size of most of the BPv7 fields,
as done with BPv6 fields.

5.3. Proof-of-Concept Evaluation

Despite these design constraints, our proof-of-concept translator is able to execute
the basic functionality required to enable communication between two incompatible DTN
nodes. The accepted bundles must be of a specific format which is based on the format of
bundles outputted by ION’s bpchat program, the environment used in the development
of this program (Although this iteration of the translator was designed for one specific
bundle format, the translator can be adapted to work with other bundle formats). The proof
of concept handles variable-widths for the bundle payload as well as the BPv7 creation
timestamp: payloads up to 13 bytes are supported, which can be extended by repeating
the code pattern, along with the maximum possible width of a BPv7 creation timestamp.
The outputs of the translator are the primary block and the payload block which are the
required bundle blocks. The current state of the implementation represents the first steps
towards SDDTN.
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We evaluated the translation capabilities by determining whether Rho and Eta would
be able to communicate in their respective bpchat programs despite being DTN nodes
utilizing different versions of the BP. From the end user perspective, this was a success
as Rho and Eta could interactively chat in bpchat without any sign of an error (as long
as each message was kept to under 14 bytes long). However, upon further inspection
of the packet captures, shown in Figures 11 and 12, we sometimes saw a “Malformed
Packet” error displayed in Wireshark in the BPv6 to BPv7 translation that may be caused by
a slight formatting error from the translator’s output bundle mismatching a detail in the BP
specification. Despite this, the end node was still able to receive and decode the translated
bundle. Additionally, Wireshark marked a BPv7 extension block in yellow to indicate an
unknown node; this was due to ION using an unofficial extension block type. An important
aspect to note is that IPv4 and UDP checksums were properly updated, which was required
for the end-nodes to properly receive the bundle.

Figure 11. Translation of BPv6 to BPv7. The bundle layer bytes are highlighted in blue.

Figure 12. Translation of BPv7 to BPv6. The bundle layer bytes are highlighted in blue.

In addition to the above tests which were based on the experimental setup using in
the development of this program, we also examined how the translator would behave
with a node utilizing HDTN as its DTN implementation instead of ION to understand its
interoperability with other systems. To do this, Eta had both ION and HDTN with BPv6
installed, and Rho had both ION and HDTN with BPv7 installed. Then we ran various
basic interoperability tests and examined if bundles could be sent and properly decoded
after passing through the translator, testing configurations such as ION BPv6 to HDTN
BPv7 and HDTN BPv6 to ION BPv7. As expected, if an HDTN node generated bundles
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to send to the translator, the translator failed to produce a valid bundle for ION. This is
because the format of bundles generated by HDTN did not perfectly match the bundles
that the translator expected to see. However, when an HDTN node received a translated
bundle that originated from an ION node, it was able to receive and decode the bundle;
this was a success in terms that HDTN could understand the specific BP version.

Although this proof of concept was unable to handle bundles in all cases, certain
promising capabilities were demonstrated. Notably, this device was able to parse bundle
fields, understand the semantics behind these fields, modify fields as needed, update UDP
and IPv4 checksums, send telemetry to a SDN controller, and coordinate with a SDN
controller to make forwarding decisions. These are all primitive functionalities that would
be required for a SDDTN node that needs to process bundles, communicate information
about the bundles and network behavior to a controller, and respond accordingly to
decisions made by an SDDTN controller. Additionally, further development of this proof of
concept could make it a useful tool to aid interoperability when deployed as a middlebox
between two nodes using different versions of BP, as an alternative to updating the nodes
to have the same version of BP (which may or may not be possible due to various physical
or social limitations). These are promising results that make further investigation in using
P4 for DTN a worthwhile endeavor.

6. Discussion

Both SDDTN and the BP translator have a lot of potential for improvements. Past
work in improving the scalability of DTN was explained, i.e., OCGR, inter-regional routing,
SDN IP-layer load balancing, and the Last Mile TEN SDN for DTN architecture. These
ideas are not necessarily incompatible with the proposed SDDTN architecture, as many
of these concepts can be incorporated as components within the SDDTN architecture.
For example, a SDDTN node can use OCGR and send this new information to the SDDTN
controller which can propagate this information effectively. There is future work to be done
in exploring how these various approaches to scaling DTN networks can be combined
in a synergistic manner. Additionally, the details of how clusters would be organized in
a SDDTN network were not explored. There are numerous ways this could be performed,
such as through manual human planning, machine learning algorithms, or game theory.
There is a significant amount of work in the field of SDN tackling this issue of controller
placement and clustering, and adapting these advancements to the space DTN environment
would aid a SDDTN network in its ability to scale.

Although the proof-of-concept P4 DTN implementation was able to demonstrate novel
capabilities, several components should be improved before deploying to the field. This was
largely due to the issues we faced with the variable-width fields of BP, however the ideas
we presented and the different implementations attempted are not exhaustive. Therefore,
we believe it is still possible to use P4 to implement hardware that is able to more rigorously
handle BP. This could be possible through the use of other P4 targets, modified algorithms,
through improvements of the Tofino target and provided externs, or through improvements
in the P4 language itself. Alternative tools to programming or creating hardware should
also be considered. Details of BP that were not handled in this proof-of-concept translator
include a general codec for SDNV and CBOR fields, BPv7 cyclic redundancy checks (CRC)
for each block, accounting for both standard and CBHE encoded BPv6 bundles, handling
different orderings of extension blocks, and determining what a proper mapping of data
between BPv6 and BPv7 should look like. Important aspects of DTN and BP that were
outside the scope of this work include handling other transport layers such as TCP and
LTP, handling Bundle Protocol Security (BPSec), and improving bundle routing through
learning of contacts, EIDs, IP addresses, and MAC addresses. Additionally, there is exciting
work to be done in the far future if a fully featured DTN node was able to be implemented
in P4. For example, previous work has demonstrated it is possible to use P4 to implement a
router that can use machine learning to learn network behavior at both the individual node
level and at the SDN controller level [39]. Successful application of these router machine
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learning concepts to a SDDTN node could enable a cognitive DTN (CDTN) node that is able
to sense, react, and dynamically respond to changes in the network that lead to significantly
improved routing that may not be possible with traditional routing algorithms. A CDTN
and other cognitive forms of network communications in the space DTN environment are
desirable technology for NASA and its mission to improve space network scalability [40].

7. Conclusions

A SDDTN architecture is proposed as a solution to the scalability issue that space
DTN networks currently face. Current space DTN networks rely on CGR and proper
distribution of contact plans to ensure that DTN nodes are able to route bundles in the
challenged space networking environment. The SDDTN architecture aims to solve the
issue of contact plan distribution in this highly dynamic environment with intermittent
links by dividing the network into smaller clusters. Benefits of this clustering approach
that SDDTN provides includes more reliable contact plan distribution, reduced CGR
computation runtime, and the ability to accumulate information from individual nodes
within a cluster to make more optimal decisions.

The BP translator proof of concept showed one way that SDN hardware, P4, and the
BP headers are able to coexist with one another. This served as both a test for what P4
may be able to contribute to DTN network programmability and also as a potential real-
world application in aiding interoperability between DTN nodes using different versions
of BP. We showed that a switch can be used as more than just a bundle relay device,
but as a component in the DTN network that provides additional routing and protocol
translation capabilities.

A fully featured implementation was ultimately not able to be produced due to
a myriad of issues that stem from a design incompatibility between BP’s complex encoding
scheme and flexible bundle layout, and the P4 languages support for variable-width fields.
The details of these issues and the underlying cause are enumerated which may serve as a
useful reference for those interested in the impact of BP’s encoding scheme on resource-
constrained development environments.

Future directions of research in further improving this hardware implementation,
space DTN scalability and SDDTN are also shared. A successful execution of a SDDTN and
with a fully programmable DTN network stack would advance the future of large-scale
space DTN networks by enabling cognitive nodes, elimination of network bottlenecks,
and reliable routing capabilities at large scale.
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Appendix A. Overview of P4

The most current iteration of the P4 language and abstraction specification is P416,
introduced in 2016. The P4 language has a core library that provides a minimal set of
functionality by design. This language is extended by vendors providing externs to provide
extra functionality to users creating P4 programs for a specific compiler target (e.g., different
hardware architectures, software switches, etc.). These externs can include things such
as registers, counters, meters, hash generators, and checksum calculators. The existence
of externs and target limitations means that P4 programs are not necessarily compatible
between targets. However, there are standardized data plane processing architectures to
promote cross-compatibility between targets by providing a common abstraction model,
like Protocol Independent Switch Architecture (PISA). The PISA architecture divides the
data plane programming process into three main pieces: a parser, match-action pipeline,
and deparser [32].

The parser is a finite state machine that takes an incoming packet and parses it into
well-defined data types based upon the network headers provided. A P4 program must
specify the headers that it expects to encounter and support in any incoming packet.
Headers are groups of fields, where fields have a name and a data type. See Figure A1 for
an example declaration of an Ethernet header. All packets begin in the “start” parser state
and either end in the "accept" state to be sent to the match-action pipeline, or to the “reject”
state to be dropped. As packets flow through the state machine, fields of the packet are
extracted into the P4 header variables from top to bottom. As these headers are extracted
and read, the state machine can make conditional state transitions based on information
extracted from packet headers [32]. For example, after Ethernet headers are extracted,
the Ethertype field can be examined to determine whether to transition to the IPv4 or IPv6
parsing state. Or a P4 program can examine bits that have not been extracted, such as
peeking into the beginning of a bundle to determine whether to transition to the BPv6 or
BPv7 parsing state. Figure A2 shows an example of P4 parser code.

This packet is then sent to the match-action pipeline where the majority of the pro-
cessing logic is held. The match-action pipeline contains the primary processing and
forwarding logic of the data plane. It is in this stage of the program where tables can be
created to rows of keys and actions. An incoming packet is matched to a row with its
designated matching key (e.g., IPv4 address matched to keys with longest-prefix match
(LPM)), and then actions are performed here on the packet (e.g., dropping the packet or
declaring what egress port this packet should go to). The actions that can be performed are
custom defined and can involve manipulating the entire packet. This match-action pipeline
is also where the control plane can directly interface with the data plane to manipulate a
switch’s behavior. Once a P4 program is compiled and running on a target, the control
plane is able to send messages to the data plane via an API to manipulate the rows of
these tables. It is in this way that the control plane is able to control the logic of the data
plane, however it is up to the data plane programmer to provide tables that provide the
sufficient amount of control required by the control plane [32]. The P4 program in Figure A3
showcases a match-action pipeline that has a simple table for IPv4 forwarding. This table
matches packets to rows based on IPv4 destination addresses. When a match is found, it is
assigned a specified egress port.
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Figure A1. Example P4 Header Declaration.

Figure A2. Example P4 Parser Code.

After a packet exits the match-action pipeline, it is sent to the deparser [32]. The de-
parser stage handles any final packet processing logic and emits the packet onto the wire.
For example, the deparser can perform checksum updates, e.g., TCP, UDP or IP checksums,
if the packet was manipulated at any point in the pipeline. Packets are sent out by simply
calling a final emit function. Note, any work to specify the egress port for the packet would
have been done in an earlier stage. Figure A4 shows a simple deparser that emits all valid
extracted headers and any data that follow the headers.
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Figure A3. Example Match-Action Pipeline.

Figure A4. Example Deparser.
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