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Abstract: In the area of low-power wireless networks, one technology that many researchers are
focusing on relates to positioning methods such as fingerprinting in densely populated urban areas.
This work presents an experimental study aimed at quantifying mean location estimation error in
populated areas. Using a dataset provided by the University of Antwerp, a neural network was
implemented with the aim of providing end-device location. In this way, we were able to measure
the mean localization error in areas of high urban density. The results obtained show a deviation of
less than 150 m in locating the end device. This offset can be decreased up to a few meters, provided
that there is a greater density of nodes per square meter. This result could enable Internet of Things
(IoT) applications to use fingerprinting in place of energy-consuming alternatives.

Keywords: IoT; localization; LoRaWAN; deep learning

1. Introduction

The growing interest of the telecommunications market for IoT technologies is driving
research to develop different Low-Power Wide-Area Network (LPWAN) standards. Simply
put, LPWAN should be to IoT what WiFi is to consumer networks. Base stations provide
(very) wide radio coverage and adjust transmit power, transmit rate, modulation, duty
cycle, etc., so that end devices experience little energy consumption from the connection [1].
Ultralow power consumption, as well as ubiquitous outdoor and indoor connectivity, are
fundamental aspects to ensure that the network of IoT devices is reliable over the years.
To ensure smooth operations on IoT networks, it is necessary to take into account various
elements such as network topology, modulation techniques, complexity of the hardware,
the use of the radio spectrum and regulations [2]. From this point of view, it follows
that context awareness is a key element in IoT applications [3]. In order to set up context
awareness, device location should be determined with minimal location error. The simplest
way to achieve this would be to use the GPS tracker. Unfortunately, however, the GPS
receiver can consume up to 50 mA when detecting the position [4]. Added to this is the fact
that, once the position has been obtained, it is necessary to transmit it to the gateway, and
this further step produces an additional energy consumption. A further element to consider
is the high accuracy of a GPS measurement, an accuracy that is often not required in an IoT
sensor network. So, in the face of a high energy consumption, we would have an excessively
detailed measure in the context under analysis. A particularly interesting technique has
been developed in [5], in which a simplified implementation of interferometry is presented,
obtaining high accuracies. This technique does not require additional hardware, but it
cannot be implemented with all communication devices, as it strongly depends on the
modulation mechanisms used and the freedoms left to users. Wireless localization based on
LPWAN communication is therefore an interesting alternative for localization in low-power
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networks [6]. These techniques estimate transceiver location by analyzing the physical
characteristics of the transmission link, such as received signal strength (RSS) values,
packet arrival time information and so on [7]. This paper aims to verify if, by applying
deep learning methodologies to fingerprint techniques, it is possible to obtain interesting
results in terms of minimizing the localization error. The performance of fingerprint-
based methods depends on the number of reference points (RP) per room unit. However,
since RSS measurements are onerous and time-consuming, increasing the number of RPs
increases the positioning cost [8]. The remainder of the paper is structured as follows.
Section 2 describes the LoRaWan standard used to collect the dataset. Section 3 shows how
the dataset has been built. Section 4 illustrates the machine learning approach that we
used to estimate the location of end devices. Section 5 shows the results of our technique.
In Section 6, we discuss these results. Finally, Section 7 shows the conclusions and the
intended future work.

2. LoRaWAN Standard

LoRaWAN technology provides two-way communication, but the transmission from
node (also known as end devices) to gateway (also known as concentrator or base station)
or uplink message is the most frequent one, compared with that from gateway to node or
downlink. This is due to the purpose of the nodes, which is to collect data and then send
them to the Network Server. Lastly, data will be sent to the Application Server.

Nodes send radio frequency uplink messages to the gateway using LoRa modulation.
The gateway forwards the message to a network server over an IP connection routed via
Ethernet, Wi-Fi, or 3/4/5G, adding information about the quality of the communication.

The nodes send messages in uplink to all gateways in their transmission range in
broadcast mode. The Network Server takes care of the management of duplicate uplink
messages and the selection of the best gateway to use if a downlink message is to be sent to
the node.

The Network Server also manages the bit rate of the nodes through the ADR (Adaptive
Data Rate) mechanism to maximize the network capacity and extend the battery life of
the node. For example, the TTN Network Server uses the 20 most recent uplink messages,
starting from the moment the ADR bit is set, to determine the optimal data rate [9]. These
measurements include the number of frames, signal-to-noise ratio (SNR) and number of
gateways that collected each uplink message.

The Application Server instead takes care of receiving and analyzing the data sent by
the nodes and determining the actions that must be performed by the nodes.

LoRaWAN is based on CSS (Chirp Spread Spectrum) technology [10]. Chirps (also
known as symbols) are the data carrier. The Spread Factor (SF), i.e., the number of bits in a
chirp, allows to control the length of the chirp and thus to control the data transmission
rate [6]. The lower the spreading factor, the faster the chirp and the higher the data rate.
Every time the spreading factor is doubled, the chirp sweep rate and data transmission
rate are halved [10]. In this paper, we do not address the trade-off between the SF, bit
rate, network coverage and energy consumption. LoRaWAN uses the ISM (Industrial,
Scientific and Medical) frequency bands reserved for noncommercial radio communication
applications, such as industrial, scientific and medical use. In particular, depending on the
geographic area and related regulations, the two most common frequencies are 868 MHz
in Europe and 915 MHz in North America. Figure 1 shows a picture of the LoRaWAN
network architecture.
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Figure 1. LoRaWAN network architecture.

3. Dataset Analysis

In the period between November 2017 and February 2018, the dataset on which our
study is based was collected by the Faculty of Applied Engineering of the University of
Antwerp [11]. Hardware consisting of a GPS receiver and LoRaWAN end device was
installed on about twenty cars from the Antwerp postal service. While the 20 cars drove
around in the city center, the location information was sent in a LoRaWAN message. A
callback function was configured on the LoRaWAN backend server to forward the payload
of each message along with additional network information to the local data server. In
the dense urban area explored, 72 LoRaWAN gateways were detected. Figure 2 shows a
picture of the Antwerp Urban Area and message locations.

Figure 2. LoRaWAN dataset collected in Antwerp city center.

The urban dataset contains 130,429 messages and is available at [12]. Every record
represents one of the 130,429 messages collected in the urban dataset, see Table 1. In the
last four columns appear the receiving time, the spreading factor, latitude and longitude of
a message. The previous column shows which of the 72 base stations in the metropolitan
area received the message. An RSSI of −200 dB is reported in the cell if the base station
does not receive the message. Received Signal Strength Indicator (RSSI) is a measure of the
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power present in the received radio signal. This requires no additional power, hardware,
or bandwidth. These properties of RSS measurements make them relatively cheap and
easy to implement, making this technique attractive [13]. In previous works, a basic kNN
fingerprinting localization technique was used. A parameter sweep was analyzed, varying
k from 1 to 15. Considering that the optimal value of k was the one which produces the
lowest mean location error, it emerged that the optimal value for k was 11 nearest neighbors.
Applying this value of k, the LoRaWAN dataset returned a median error of 273.03 m and a
mean error of 398.4 m.

Table 1. Structure of the urban LoRaWAN dataset. Each row is a LoRaWAN message showing the
receiving base station (BS) with RSSI value, message reception time (RX time), LoRa spreading factor,
latitude and longitude at time of transmission.

BS 1 BS 2 . . . BS 72 RX Time SF Latitude Longitude

−200 −200 −200 −200 “2019-01” 8 51.23399. . . 4.42610. . .
−200 −118 −200 −97 “2019-01” 7 51.20718. . . 4.40368. . .

. . . . . . . . . . . . “. . . ” . . . . . . . . .

By reproducing the same approach, it is possible to find the matrix of the centroid
locations. Plotting the centroids on a map, as in Figure 3, it emerges that the resolution
achievable with this technique is exactly the one indicated above. Calculating the distance
of the centroids in the most densely urbanized area, it can be seen, in fact, that the values
are around 796 m. This result confirms what we have seen so far, namely that in this densely
urban context, using the kNN resolution technique, resolution does not drop below 398 m.

Is it possible to obtain a mean location error lower than that obtained with the kNN
technique using the dataset as input in a neural network designed for deep learning
attribute data classification? With the aim of answering this question, we started with a
detailed analysis of the densely urbanized area. This area, in the specific case of Antwerp,
is contained in a rectangle whose vertices have coordinates between [4°20′ East, 4°27′ East]
and [51°11′ North, 51°15′ North]. We therefore divided the area subtended by the rectangle
into subareas. Within each of these subareas, we can place a subset of the original dataset.

Figure 3. Geometrical Medians of Clusters obtained with kNN Technique.

This allows us to reconstruct the dataset with a further column whose information is
related to the subarea which our message belongs to. For each of these subregions, we used
a distance-based clustering function for a set of (x, y) coordinates [14]. The function returns
clusters in a set of spatial points represented by (x, y) coordinates. The grouping operation
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is based on the distance between points and does not require knowing the number of
groupings in advance. Then, if the distance between two points is less than a custom
threshold, for example 150 m, each point is clustered with its nearest neighbors.

The function returns basic summary statistics, such as the number of clusters, maxi-
mum, minimum and the average cluster sizes, as well as numbers showing the clusters,
see Figure 4, the centroid points, see Figure 5, and the geometric median points of each
groupings. It also yields two text files that contain the coordinates of all centroid points
and geometric median points. For every cluster, the output variables return the (x, y) coor-
dinates of the geometric median point and of the centroid, as well as the (x, y) coordinates
of each point that composes the cluster. See an example in Table 2.

Figure 4. This figure shows the clusters obtained with the function for distance-based clus-
tering of a set of XY coordinates in the coordinate range Lat ∈ [4◦23′00′′, 4◦24′00′′]–Long ∈
[51◦12′00′′, 51◦13′00′′], which represents the subarea corresponding to the central area of the city
of Antwerp.

Figure 5. This figure shows the centroids of clusters obtained in the central Area of Antwerp: (see
Figure 4) Lat ∈ [4◦23′00′′, 4◦24′00′′] – Long ∈ [51◦12′00′′, 51◦13′00′′].
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Table 2. Output of the distance-based clustering function in the central area of Antwerp: Lat ∈
[4◦23′00′′, 4◦24′00′′] – Long ∈ [51◦12′00′′, 51◦13′00′′].

Number of
Clusters

Size of
Smallest
Cluster

Size of
Largest
Cluster

Mean
Cluster

Size

Median
Cluster

Size

Number of Points
Not Part of Any

Cluster

13 14 880 212 78 10

In [15], location experiments were performed in outdoor locations near a building.
The Path Loss Factor (PLF) results show that it is possible to achieve good performance
even in the presence of errors in the intersensory measurements.

4. Machine Learning Approach

Deep neural networks rely on large amounts of high-quality data to achieve satis-
factory performance. Data quantity and quality are very important when training large
and complex architectures. This is because deeper models typically have huge parameter
sets that need to be trained and configured. This issue still applies to mobile network
applications [16]. Using the MATLAB suite, we then configured a neural network that
would take as input the RSSI data received from each of the 72 base stations, the values
of the coordinates (latitude and longitude) of the message and the categorical value of
the assigned subarea. This operation was recursively applied to all the subareas. To train
a network using categorical features, we had to first transpose the categorical attributes
to numeric using the convertvars function by defining a string array which contains the
names of all the categorical input variables. The dataset was split into training, valida-
tion and test datasets, with 15% of the data used for validation and 15% for testing. The
neural network was defined with a feature input layer (BS1, BS2, . . . , BS72, lat, long and
subarea), normalizing the data using the Z-score method. Then, a fully connected layer
with an output size of 70 was added, followed by a batch normalization layer and a ReLU
layer. Another fully connected layer with an output size equal to the number of classes
was specified for classification, followed by a softmax layer and a classification layer, see
Algorithm 1.

In Figure 6, the architecture of the neural network used in this work is shown.

Figure 6. Architecture of the Neural Network.
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Algorithm 1 Neural Network Architecture and Training Options.

layers = [
featureInputLayer(numFeatures,’Normalization’, ’zscore’)
fullyConnectedLayer(70)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];

miniBatchSize = 20;
options = trainingOptions(’adam’, ...

’InitialLearnRate’,0.0007,...
’MiniBatchSize’,miniBatchSize, ...
’Shuffle’,’every-epoch’, ...
’ValidationData’,tblValidation, ...
’Plots’,’training-progress’, ...
’Verbose’,false);

In Table 3, a comparison of localization precision that can be achieved with various
available techniques is shown.

Table 3. Comparison of different techniques for localization.

Technique Range (m) Power Precision (m) Source

OwLL 500 Low ≈9 [17]
Prior LP-WAN >500 Low >100 [18,19]
Sensor-based ≈50 Low ≈5 [20,21]

Cellular ≈50 High 0.085 [22,23]
Wi-Fi ≈15 Medium <0.05 [24,25]

Using Table 3, we can see that the closest solution to the desired accuracy goal (with
the same power) is the sensor-based approach. Therefore, the next step is to compare
the neural network approach with the sensor-based one regarding the aspects of power
consumption and computational complexity.

4.1. Comparative Analysis between Computational Complexity of Neural Network and
Sensor-Based Approach

Ref. [26] shows that the RTT delay for messages sent from the end device to the
controller and for responses returned from the controller to the end device over LoRaWAN
ranges from 1.12 s to 6.59 s. Considering that, once the neural network has been trained,
the response time is of the order of a few milliseconds [27]; therefore, the overall delay
depends on the propagation (RTT) and not on the neural network architecture.

In [28], it is shown how the computational complexity of a neural network can be
calculated. Looking at the inference part of a feedforward neural network, we have
forward propagation.

Finding the asymptotic complexity of forward propagation can be performed similarly
to how we found the runtime complexity of matrix multiplication.

Assume the input vector can be written as x ∈ Rn.
The input is treated like any other activation matrix and has the following indices:

x = w(0), the zeroth element, and w(0)
0 is a bias unit with a value of 1, as usual. Forward

propagation can be written as (see Figure 7).

z(k) = θ(k)w(k−1) (1)
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z(k) ∈ R1×(m|θ(k)∈Rm×n) (2)

w(k) = g(z(k)) (3)

From where g(x) is the activation function, which is evaluated element-wise. So, we
know w(k) are the same dimensions as z(k). We can see that the matrix multiplication and
activation functions for each layer are computed. From [28], the asymptotic execution
time for simple matrix multiplication is O(n3); since g(x) is an element-wise function, the
execution time is O(n). Analyzing the dimensionality of the feedforward neural network
reveals the following:

θ(0) ∈ Rn(0)×1 (4)

θ(1) ∈ Rn(1)×n(0)
(5)

θ(2) ∈ Rn(2)×n(1)
(6)

More generally:

θ(k) =

{
Rn(k)×1, if k = 0
Rn(k)×n(k−1)

, if k > 0
(7)

where n(k)is the number of neurons containing bias units in the layer k.

Figure 7. Neural Network Layers.

From [28], we know that
w = n(k) (8)

z = n(k−1) (9)

d = n(k−2) (10)

From this, we can see that:

nmul =

nlayers

∑
k=2

(n(k)n(k−1)n(k−2)) + (n(0)n(1)1) (11)
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ng =

nlayers

∑
k=1

(n(k)) (12)

where nmul is the number of multiplications performed and ng is the number of times the
activation function g is applied.

Note, however, that we assumed the following approximation, that is, w(k) has the
same dimensions as θ(k), but clearly it is not because w(k) ∈ Rn(k)×1. This returns:

time = nmul + ng ⇐⇒ (13)

time =
nlayers

∑
k=2

(n(k)n(k−1)n(k−2)) + (n(0)n(1)1) +
nlayers

∑
k=1

(n(k)) (14)

When analyzing matrix algorithms, it is common to assume that the matrix is square.
That is, they have the same number of rows and columns. This leads to

nmul = nlayers · n3 (15)

Assuming again that each layer has the same number of neurons, and that the number
of layers equals the number of neurons in each layer, we obtain

nmul = O(n · n3) = O(n4) (16)

Moreover, for the activation:

ng = nlayers · n = O(n2) (17)

So, the total execution time for the neural network will be in the order of

O(n4 + n2) ⇐⇒ O(n4) ∵ ∀n ≥ 1|n4 + n2 ≤ 2n4 (18)

which, for a large value of n, is approximable with

O(n4) (19)

As far as the algorithm at the basis of the “sensor-based” approach is concerned, we
can refer to [20], where the solution is obtained by minimizing the restricted function{

E = ∑ N
i=1 ∑ N

j=1(ki,jai,j(ri,j − r0
i,j)

2)

ri,j = d(i, j), where i, j are anchors
(20)

where N is the number of nodes, ai,j is the index variable (1 if a connection exists, 0 other-
wise), d(i, j) is the known distance between anchors and ri,j is the distance between nodes.

Minimization of this function is obtained using Sequential Quadratic Programming (SQP).
In [29], it is shown that this problem is a convex quadratic optimization problem that

can be solved in polynomial type, and the complexity is about

O(n3) (21)

In essence, the time complexity of a sensor-based algorithm is an order of magnitude
more efficient than a neural-network-based algorithm.

4.2. Comparative Analysis between Power Consumption of Neural Network and
Sensor-Based Approach

Using the training data, the Matlab Code trained the network and, using the validation
data, it returned the accuracy at regular intervals in the course of the training process.
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It is also important to add some observations about the computational overhead
introduced by the neural networks [30]. Using the MIT Deep Neural Network Energy
Estimation Tool [31], we were able to quantify the energy estimation. The tool generates:

• A txt file where each row gives the estimated energy dissipation for each layer in
terms of the data movement and of the three data types (input feature map, weight
and output feature map) and the computation. Energy units are normalized in terms
of the energy for a MAC (multiply-and-accumulate) operation (that is, 102 = energy of
100 MACs). The output total energy is the energy required to process the dataset.

• A png file which visualizes the energy estimation result. See Figure 8.

MAC operations in CONV and FC layers account for more than 99% of the total
operations in a modern CNN [31] and therefore dominate both processing time and power
consumption. The results in Figure 8 show that the energy consumption is comparable
with that of a standard CNN.

Both of the two approaches we are comparing belong to the class of centralized
systems, i.e., the systems in which the calculation takes place at the network level and not
on individual nodes. In [32], it is reported that for the centralized case, the total energy
dissipated per sensor is 132.7 µJ, regardless of the type of localization algorithm used. At
the network level, instead, the energy complexity of the algorithm (see [33]) is obtained as

OE( fe(n)) = Oc(Ec · fc(n)) + Op(Ep · fp(n)) + Os(Es · fs(n)) + On(En · fn(n)) (22)

where Oc( fc(n)) is the CPU complexity equal to the known runtime, and Oc(Ec · fc(n))
is the order of magnitude of runtime complexity multiplied by the energy required to
operate. In the same way, Op( fp(n)) handles primary memory usage complexity, the
class Os( fs(n)) characterizes the energy consumption of secondary storage and On( fn(n))
can represent the energy complexity of network resources. In [32], the comparison of
communication and processing energy using the centralized architecture is reported. It
shows that communication contribution is negligible when the number of sensor nodes
exceeds 50 units, so we approximate the equation this way:

OE( fe(n)) = Oc(Ec × fc(n)) + Op(Ep × fp(n)) + Os(Es × fs(n)) (23)

In the standard “sensor-based” case, we therefore have

OE( fe(n)) = Oc(Ec × n3) + Op(Ep × fp(n)) + Os(Es × fs(n)) (24)

For all Strassen-like algorithms (that is, those based algebraically on upper bounds
on the rank of matrix multiplication) [34], the space usage is at most O(n2). Assuming
that energy consumption on primary and secondary memory is comparable, using some
experimental results of energy consumption, as in [32], and neglecting the contribution of
n2, we obtained this equation:

OE( fe(n)) = 0.0009271406 · n3 (25)

In the case of the neural network, we obtain

OE( fe(n)) = Oc(Ec · n4) + Op(Ep · fp(n)) + Os(Es · fs(n)) (26)

In [35], it is shown that layer depth, epoch and batch size are variable by trail and
do not affect memory consumption. Regarding the learning rate, the smaller the learning
rate, the higher the memory consumption. So, we must take into account the learning rate
that we used in the simulation, that is 0.0007. In this situation, the memory usage is about
2700 Megabytes. In [36], it is reported that the effective read/write energy of one bit is
≈10−9 J/bit = 1 nJ/bit
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So, we obtain

OE( fe(n)) = 0.0009271406 · n4 + 10−9 × 2.7× 109 × n (27)

simplifying and approximating, we obtain

OE( fe(n)) = 0.0009271406 · n4 (28)

As we can see, the most important contribution is given by the computational process.
It appears evident that the energy consumption, at the network level (Figure 9), in the
case of standard architecture is an order of magnitude lower than that achieved with the
neural network, although at the network-level power consumption is not an issue, while
the power consumption at the sensor level, as seen before, is the same in both architectures.

Figure 8. This figure shows the energy estimation result due to the introduction of the neural network.

Figure 9. This figure shows the energy consumption at the network level for both the architectures.

5. Results

The results obtained show that it is possible to reach an average localization error
lower than that obtained with the kNN technique. In fact, we obtained an error of less than
150 m. The keystone is linked to the ratio between the number of clusters and the mean
cluster size.

λ =
number_o f _clusters
mean_cluster_size

(29)
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If this ratio, named “crowding index”, is greater than 5%, the accuracy is not guaran-
teed, because the number of clusters is too high compared with the mean cluster size. On
the other hand, when the value is less than 5%, we find a very high accuracy. Accuracy is
the ratio of correct predictions and the total number of classes. That is,

Accuracy =
TruePositive + TrueNegative

TruePositive + TrueNegative + FalseNegative + FalsePositive
(30)

5.1. Low Accuracy

When λ, the crowding index, is greater than 5%, the poor accuracy in the localization
measurement emerges. The results are distributed as the following example:

1. Number of clusters: 4;
2. Size of smallest cluster: 13;
3. Size of largest cluster: 123;
4. Mean cluster size: 50.500000;
5. Median cluster size: 33;
6. Number of points that are not part of any cluster: 9.

Another example of poor accuracy occurs in the middle eastern area of the city, where
we find the following values:

1. Number of clusters: 5;
2. Size of smallest cluster: 10;
3. Size of largest cluster: 67;
4. Mean cluster size: 36;
5. Median cluster size: 26;
6. Number of points that are not part of any cluster: 18.

In Figures 10 and 11, we can see, respectively, the behavior of the training process and
the confusion matrix in the case of λ = 8%. The confusion matrix table briefly describes
the predicted outcome for the classification problem. In this case, it shows that it predicts
81% of data correctly, and 19% of the data were mislabeled in the validation dataset. In
Figures 12 and 13, the behavior of the training process and the confusion matrix in the case
of λ = 13% are shown, respectively. The confusion matrix returns the predicted outcome
for the classification problem. In this second case, it shows that it predicts 75% of the data
correctly, and 25% of the data were mislabeled in the validation dataset.

Figure 10. This figure shows the trend of the training progress in the case of a subarea in which the
lambda value is equal to 8%.
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Figure 11. This figure shows the confusion matrix in the case of a subarea in which the lambda value
is equal to 8%.

Figure 12. This figure shows the trend of the training progress in the case of a subarea in which the
lambda value is equal to 13%.

Figure 13. This figure shows the confusion matrix in the case of a subarea in which the lambda value
is equal to 13%.
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The big variance in the cluster size is linked to the type of journey made by the vehicles
of the Antwerp postal service and to the different times spent in the single subareas.

5.2. High Accuracy

In the case of high accuracy in the localization measurement, the results are distributed
as the following example:

1. Number of clusters: 15;
2. Size of smallest cluster: 16;
3. Size of largest cluster: 1175;
4. Mean cluster size: 359;
5. Median cluster size: 350;
6. Number of points that are not part of any cluster: 6.

In this case, Figures 14 and 15 show that the neural network predicts 95% of the data
correctly, and 5% of the data were mislabeled in the validation dataset.

Figure 14. This figure shows the trend of the training progress in the case of a subarea in which the
lambda value is equal to 4%.

Figure 15. This figure shows the confusion matrix in the case of a subarea in which the lambda value
is equal to 4%.

Another example of a lambda value lower than 0.05 is the following:

1. Number of clusters: 10;
2. Size of smallest cluster: 12;
3. Size of largest cluster: 1784;
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4. Mean cluster size: 299;
5. Median cluster size: 121;
6. Number of points that are not part of any cluster: 18.

In this last case, λ = 0.03.
In this case, Figures 16 and 17 show that the neural network predicts 95% of the data

correctly, and 5% of the data were mislabeled in the validation dataset.

Figure 16. This figure shows the trend of the training progress in the case of a subarea in which the
lambda value is equal to 3%.

Figure 17. This figure shows the confusion matrix in the case of a subarea in which the lambda value
is equal to 3%.

6. Discussion

According to the literature, the initial results of a basic fingerprinting implementation
show an average location estimation error of 398.40 m for the urban LoRaWAN dataset
using the standard kNN algorithm. The purpose of this work was to verify whether a
lower location estimation error level could be achieved with a machine learning approach.
The results of this work show that it is possible to achieve greater accuracy as long as
the lambda ratio has values lower than 0.05, that is, the ratio between the number of
clusters and the mean cluster size (crowding index) is less that 5%. The average position
estimation error obtained with the machine learning approach is less than 150 m, and
this is an important milestone for the growing relevance of the Internet of Things and
location-based services. The precision can be increased up to a few meters (∼5 m), but this
is only possible by increasing the sensor density per space unit. Figure 18 shows the case in
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which, with the neural network, we set a precision of a few meters (∼5 m). The accuracy of
the measurement drops drastically to values around 55%. This phenomenon is explained
by the “crowding index”, which in this case assumes values of 2.16, significantly higher
than the critical threshold. In Table 4, the accuracy results obtained with different values
of lambda are represented. The outcome of the simulation with different lambda values
confirms what was previously stated. In any case, the proposed solution is substantially at
no cost, as it does not require implementations of dedicated networks but uses networks
that have already been created (for example gas meters, electricity meters, water meters,
etc.) simply by integrating a few lines of code on each firmware, an operation that can be
performed remotely. In [37], a performance comparison of RSS- and TDoA-based location
approaches in an outdoor public LoRa network is presented. The raw location estimates of
the TDoA approaches outperform all RSS approaches examined, with median errors on
the order of 200 m versus median errors on the order of 1250–2500 m [3]. With the present
work, we instead demonstrated that, by using a neural network applied to an RSS dataset,
it is possible to go far below that threshold. A completely different approach is presented
in [17], where through the OwLL, a LoRa localization system, it is possible to reach an
accuracy of a few meters ∼9 m. Obviously, this is a specific and proprietary solution and
which by its nature has costs associated and needs a specific business case analysis.

Figure 18. This figure shows the accuracy obtained in the case of an average position estimation error
of 5 m.

Table 4. Comparative table of different lambda values and relative accuracy results.

Lambda Accuracy Result

0.006 98%
0.01 95%
0.03 95%
0.16 84%
0.3 59%

7. Conclusions

A localization algorithm with an estimation error of this magnitude is suitable for
many applications. Advanced systems that improve and automate processes within cities
will play a leading role in smart cities. From intelligently designed buildings that col-
lect rainwater for later use to intelligent control systems that can autonomously monitor
infrastructure, the potential improvements enabled by sensor technology are immense.
Ubiquitous sensing inherently poses many technical and social challenges [38]. Improved
localization ensures security and up-to-dateness where needed. A study in France assumes
that the average parking space search time in large cities is up to 40 min, which equates to
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70 million hours or EUR 700 million in costs per year [39]. Another possible application
is related to the customized signaling of escape routes in shopping centers or stadiums in
case of adverse events. Once the threat has been identified, the system can guide users in a
dynamic and personalized way, providing the necessary actions to keep them safe (e.g.,
finding the safest way out, not necessarily the closest one). Unmanned Aerial Vehicles are
another interesting application set. Measurements are important both for drone motion
and the performance of the drone’s intended mission. The sensors used to collect the data
required to operate unmanned vehicles vary widely in terms of technology, performance
and the measurement accuracies to consider. The range of applications for these systems is
constantly increasing in number and complexity, requiring new measurement options and
methods [40]. Location-based services are a growing market. Location-based services not
only bring commercial benefits, they can also improve the quality of life for people with
disabilities and save lives in emergency situations. Future work will be focused on sensor
localization with UAVs and, in particular, on UAV tracking techniques and cooperative
control of multiple UAVs.
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