
Citation: Al-Allawee, A.; Lorenz, P.;

Abouaissa, A.; Abualhaj, M. A

Performance Evaluation of

In-Memory Databases Operations in

Session Initiation Protocol. Network

2023, 3, 1–14. https://doi.org/

10.3390/network3010001

Academic Editors: Alessio Giorgetti

and Alexey Vinel

Received: 11 November 2022

Revised: 5 December 2022

Accepted: 23 December 2022

Published: 28 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Performance Evaluation of In-Memory Databases Operations
in Session Initiation Protocol
Ali Al-Allawee 1,2 , Pascal Lorenz 1,* , Abdelhafid Abouaissa 1 and Mosleh Abualhaj 3

1 IRIMAS, University of Haute Alsace, 68000 Colmar, France
2 Computer Science Department, University of Mosul, Mosul 41001, Iraq
3 Department of Networks and Cybersecurity, Al-Ahliyya Amman University, Amman 19628, Jordan
* Correspondence: pascal.lorenz@uha.fr

Abstract: Real-time communication has witnessed a dramatic increase in recent years in user daily
usage. In this domain, Session Initiation Protocol (SIP) is a well-known protocol found to provide
trusted services (voice or video) to end users along with efficiency, scalability, and interoperability.
Just like other Internet technology, SIP stores its related data in databases with a predefined data
structure. In recent, SIP technologies have adopted the real advantages of in-memory databases as
cache systems to ensure fast database operations during real-time communication. Meanwhile, in
industry, there are several names of in-memory databases that have been implemented with different
structures (e.g., query types, data structure, persistency, and key/value size). However, there are
limited resources and poor recommendations on how to select a proper in-memory database in SIP
communications. This paper provides recommended and efficient in-memory databases which are
most fitted to SIP servers by evaluating three types of databases including Memcache, Redis, and
Local (OpenSIPS built-in). The evaluation has been conducted based on the experimental performance
of the impact of in-memory operations (store and fetch) against the SIP server by applying heavy
load traffic through different scenarios. To sum up, evaluation results show that the Local database
consumed less memory compared to Memcached and Redis for read and write operations. While
persistency was considered, Memcache is the preferable database selection due to its 25.20 KB/s for
throughput and 0.763 s of call–response time.

Keywords: SIP; in-memory; cache; NoSQL; memcache; Redis

1. Introduction

Recently, the Internet has grown so rapidly with the big involvement of multimedia
communication of end users’ devices. That is, it became a daily requirement in ever-
increasing applications such as social media, education, businesses, health, and other
sectors. The IP Multimedia Subsystem (IMS) is an architecture that has been used to control
and handle such kinds of multimedia communication [1]. Generally, the main aim of an
IMS system is to offer network-controlled multimedia services such as voice and video
communication. Specifically, IMS utilizes Session Initiation Protocol (SIP) [2] as a session
control protocol that handles end-to-end call setup. SIP gains much consideration in
communication technologies due to its simplicity, flexibility, and voice quality [3]. The
main aim of SIP is to handle call sessions by initiating, manipulating, and terminating calls
between end-to-end devices.

SIP technologies provide essential concepts of session control such as user registration,
user location, call routing/forwarding, transaction/dialog management, and session negoti-
ation [4]. Just like other internet technologies, SIP stores related data (user location, user-ID,
passwords, flags, and domains) in a database server. Usually, by default, a database is
co-hosted with an SIP server on the same machine, to ensure interoperability [5]. How-
ever, real-time services require SIP to operate with high performance to offer high service

Network 2023, 3, 1–14. https://doi.org/10.3390/network3010001 https://www.mdpi.com/journal/network

https://doi.org/10.3390/network3010001
https://doi.org/10.3390/network3010001
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/network
https://www.mdpi.com
https://orcid.org/0000-0003-3108-9098
https://orcid.org/0000-0003-3346-7216
https://orcid.org/0000-0003-0459-8081
https://orcid.org/0000-0002-7465-8038
https://doi.org/10.3390/network3010001
https://www.mdpi.com/journal/network
https://www.mdpi.com/article/10.3390/network3010001?type=check_update&version=2

Network 2023, 3 2

quality. One of the performance degradations is that the database obtains a penalty during
real-time communication [6]. For this, the NoSQL in-memory database is an alternative
solution to improve data retrieval by caching the important and most frequently used data
in memory [7,8].

In industry, there are over 25 NoSQL database systems deployed with different
structures—to name a few, Memcached, Redis, Cassandra, Aerospike, Monogo, Hazelcast,
Voldemort, RiakKV, etc. [9]. This research has selected three different cache database
engines for evaluation, which are Local (OpenSIPS built-in) [10], Memcached [11], and
Redis [12]. The selection is carried out based on a (1) Local cache engine deployed in a local
shared memory in an SIP server (built-in). (2) Memcached is widely adopted by a range of
Internet application companies (e.g., Facebook, Twitter, Zynga, and others) [13]. (3) Redis
is also known to be utilized by Github, Snapchat, Weibo, and Flicker [14]. In particular, SIP
(OpenSIPS) has already deployed the two databases as complete modules inside the server.
Redis and Memcached are implemented inside the SIP server with high integrity and
are well documented. By nature of the design, in-memory databases have different keys
and value sizes, which yield various performance levels to SIP. In general, SIP technology
uses this kind of database differently compared to web-based and cloud technologies. SIP
only stores usernames/passwords during registration and retrieves (reads) them back for
authentication. In other words, caching website components occurs in different ways of
caching SIP data during real-time communication. The key problem in this research is
that there are very limited guides or resources on how to select a recommended NoSQL
database in SIP communication and how it affects SIP proxy performance.

The aim of this paper is to provide the recommended and most efficient in-memory
database technique most suitable to SIP. The paper provides an experimental performance
study on the impact of in-memory operations (store and fetch) against the SIP server. We
evaluate the selected in-memory database engines through two different scenarios using
three parameters: memory utilization, call response time, and throughput.

The paper begins by providing a background on SIP technology in Section 2. Details
are provided about in-memory databases and their types in Section 3. Section 4 shows the
implementation part followed by experimental results in Section 5. Finally, the conclusions
are presented in Section 6.

2. Session Initiation Protocol

SIP is a signaling protocol defined and adopted by the SIP Working Group, under
the umbrella of the Internet Engineering Task Force (IETF). The protocol was published
with the first issue of RFC 3261 [15] toward the status of a proposed standard. SIP operates
jointly with SDP (Session Description Protocol) [16], which is responsible for exchanging
multimedia parameters such as IP version, port numbers, and voice codecs for RTP (Real-
Time Transport Protocol) streams [17]. In general, the SIP server is commonly used to
register new contact users, trigger and control multimedia sessions, modify ongoing calls,
re-establish calls, and terminate calls [18].

One physical SIP server potentially consists of multi-logical servers on the same
machine, each of which is reasonable for certain tasks. The main SIP elements involved in
one SIP server device are below:

• Proxy Server:It is a network element that is responsible for routing incoming re-
quests from a user agent and forwarding it to the next hop. SIP proxies route re-
quests/responses to/from other entities based on URI.

• Registrar Server: It handles registration requests coming from user agents. When
a new user tries to join the SIP network, the registrar server stores the user ID and
password, URI, and location of the user in a database (database types explained in the
next section). The registrar server aims to authenticate clients within their network.

• Redirect Server: It requests and looks up the destination possible addresses in the
location database, which was originally created by the registrar server. The main aim

Network 2023, 3 3

of the redirect server is to provide updated routing information to the proxy server.
The redirect server stores such information in its associated database.

• Location Server: is another logical SIP server that is responsible for providing infor-
mation about the possible destination to proxy and redirect servers. Destination user
potentially updates their addresses regularly when the cases of the clients are in a
mobility network or IP version translation (IPv6/IPv4). The location server stores all
client’s addresses in a database.

We can notice from above that all types of SIP servers are connected to local/remote
SQL databases such as MySQL, MariaDB, Postgre, Berkeley, Oracle, Unix odbc, and many
other names [19]. SIP core or modules can utilize the SQL services through the SQL
interface. For instance, the Avpops module is an SQL interface that offers a direct query
towards the SQL database.

In practice, SQL databases in all Internet applications, especially the real-time service,
are considered to be an expensive operation, which made database hit disk penalty an
existing issue in SIP technology; thus, NoSQL databases are found to make SIP life easier.

3. SIP with NoSQL

NoSQL (Not only SQL) is an umbrella to all database systems other than traditional
SQL databases [20]. NoSQL databases store data models with a different structure than
the traditional row and column table model out there in relational database management
systems [21]. Unlike relational databases, key–value databases do not have a specified
structure. Relational databases store their data in tables in which an individual column
has a pre-assigned data type. However, NoSQL has four different categories of databases,
which are key–value store, document-based, column-oriented, and graph databases. Each
of these is designed for particular data types and requirements. According to SIP, key–value
is the desired store structure to be used generally, enriched with a collection of keys and
value pairs. On one hand, a key is a unique identifier for one or a set of values. On the
other hand, values are real data that SIP retrieves from a database. Values can be any
type of data—numbers, strings, or other complex data structures. For instance, URI has
an identifier of the client as keys and their values can be example.sip.com, IPv4, and/or
IPv6 [22].

Generally, the NoSQL database stores its data in different means of storage, disk
or in-memory (RAM) storage. In-memory databases are purpose-built databases that
utilize memory for data storage, unlike other databases which store data in disk (e.g., SSD)
storage [23]. The main reason for SIP to use in-memory database storage is to operate
with minimal response time during real-time communication—that is, to overcome the
overhead of database operations (read/write) against the disk. Hitting a database during
SIP communication is considered a high impact in terms of time. This is the primary fact
that leads SIP servers to store the most necessary and frequent high-hit ratio data into
cache [24].

The cache is a high-speed data storage layer which is the place where a subset of data
is stored and is transient in nature. The aim of the cache is that, when the subsequence
requests particular data, it will be provided faster than in the disk storage. Data reside
in the cache storage for a period of time depending on the expiration time which can
be assigned prior. Caching provides SIP servers with efficient data retrieval from the
in-memory database. That, in turn, increases SIP performance with high-quality service for
end users.

Technically , the SIP server deals with variant names of key–value cache modules, and
in this research, three different structures will be used, and they are as follows:

• Local : it is a local cache database module used in the OpenSIPS server that resides in
the server’s shared memory. Because it is local, it performs very fast due to the low
external communication. The local cache database requires no package installation,
and it uses the same shared memory of OpenSIPS called shmem class.

Network 2023, 3 4

However, the main issue beyond the Local cache is persistency; it loses all cached data
once the server encounters any failure or restarts. OpenSIPS accesses the Local cache
by using a key–value interface called cachedb_local. For example, to fetch a password
from the local cache stored at the integer, attribute 55 can use: cache_fetch(“local”,
“passwd_$tu”, $avp(i:55))

• Memcached: is a well known in-memory key–value store system used relatively for
light data storage and high-speed data retrieval. Memcached is considered one of the
high-performance caching systems. The main advantage of the Memcached system is
the ability to access data through multi-threaded connections. In other words, a single
thread can be open for accepting a single connection to handle one client. Memcached
copes with simple data structures, integers, and strings, Thus, to store other data types,
pre-processed operations have to be performed to serialize to string or binary before
storing. The good news of SIP is that it utilizes a simple data structure (integers and
strings) in the database; thus, it requires no further data pre-processing in Memcached.
The default size limit in Memcached is 250 characters for key, and 1 MB for value, the
value size can be altered during compilation. For big data, Memcached provides LRU
(Least Recently Used) methodology that aims to remove old data and free up for new
data in cases when the memory is full. SIP can set the expiration time during the use
of Memcached in the script.
cache_store(“memcached”, “passwd_tu”, “avp(i:55)”, 1200); 1200 millisecond time
to expire.

• Redis: found by Salvatore Sanfilippo [25], is a key–value store for cache, database,
and message broker. Redis is a feature-rich data storage system that is able to support
advanced data structures, snapshots, replication, transaction, and Pub/Sub, and well
documented. It supports highly complex data types such as: strings, hashes, sets, and
sorted sets. However, SIP technologies deal with low data complexity; thus, it does
not enjoy all of the Redis features. Moreover, Redis supports a large key and value
size, 512 MB. This guarantees high optimization in a hashing mechanism, leading to
desired performance.
Redis operates in a client/server mechanism, which is able to handle multi clients
concurrently. It also supports sharing clustering mode, which is the case in which the
client library hashes over distributed servers. In contrast to Memcached, Redis does
not support multi-threaded connections even when clustering mode is used. Using
the Pub/Sub feature in the SIP script can be achieved with the key–value interface:
cache_sub(“redis”, “credit _fU”, avp(cost), 0);

4. Related Works

Key–value cache systems have been studied and analyzed in several fields. Web
servers have engaged in this evaluation as key–value cache systems are widely involved in
such fields. Meanwhile, a number of research activities have been conducted for bench-
marks and evaluation.

The work of [26] examined different NoSQL databases and evaluated their perfor-
mance based on data storage and retrieval. In this work, a YCSB tool had been utilized to
measure the performance of three names of databases which are MongoDB, Cassandra,
and Redis. The authors found that MongoDB finally has a superior performance with
the NoSQL database over Redis and Cassandra. MongoDB has significantly decreased
the latency factor for all operation counts. The authors of [27] provided a comparative
study between three solutions widely employed: Cassandra, Redis, and MongoDB by
testing the run-time of read, update, scan, and read–modify–write operations. In sum-
mary, their results show that, with read and write operations, Redis outperforms other
databases due to the use of volatile memory to store and retrieve data. On other hand,
MongoDB performs with higher efficiency in the read operations than Cassandra due to the
registers mapping technique of MongoDB, which helps increase read performance. In an
empirical comparison study between Aerospike, Memcached, and Redis analyzed in [28],

Network 2023, 3 5

the work aimed to present a comparison using variant workloads (read-heavy, balanced,
and write-heavy). The research was conducted based on a multiple-client scenario and
configured Memcached with two thread connections. The authors found that Memcached
had the best performance over others due to the caching layer technique that has been
used in read-heavy and balanced scenarios. In [29], the authors have examined five names
of database systems in the field of health enterprises, and they have evaluated operation
completion time and memory efficiency. The results showed that no winner database
provides the best performance for all data operations. The authors in [30] have provided
a benchmark on Yahoo! Cloud Serving with NoSQL database performance by applying
600,000 records in different workloads. The authors have evaluated five database names
including Redis, HBase, Cassandra, OrientDB8, and MongoDB. They reported that Redis
provides the best performance over others’ column family databases, while HBase and
Cassandra reported better update performance. The author of [31] had implemented a
custom list data type in Memcached over Redis in the web industry, and the main finding
of the thesis is that (1) Redis has superior performance with a small data size of the list
and (2) when data size increases, Redis performance decreases. (3) Horizontal scalability
in Memcached had better performance over Redis for a list of large data sizes. The work
in [32] has examined four MySQL database machines according to access modes by the
SIP server, and the authors analyzed the performance based on system recovery delay,
registration response time, and processing delay. They also found that the response time
is short in memory-only mode, and the response time of the write-back mode is the same
as in memory-only mode. However, the write-through mode consumes extra time over
memory-only mode.

At the time of writing, there are no studies or benchmarks completed in the field of
SIP and NoSQL databases. In fact, the NoSQL database has gained wide consideration in
the field of web industries and research, but not in SIP.

5. Evaluation Methodology

This section discusses the main methodology steps involved in the evaluation—by
implementing/configuring the three in-memory key–value databases and workload, and
then showing the testing scenario.

5.1. Implementation

In-memory key–value databases have been implemented and configured in the SIP
server. In this research, the OpenSIPS server is utilized as a test bed environment. OpenSIPS
version 3.2 is an open-source server chosen to be a reliable, scalable, and fully compatible
environment with database servers. In this testing, OpenSIPS functions as a proxy, location,
and registrar server, all residing in a single physical machine (Debian 10 server). During
the implementation phase, some noticeable challenges have been encountered. Thus,
workaround configurations have been set in the OpenSIPS server to achieve the desired
testing scenarios, the majority of which are:

The Memcached server has been installed on the same machine as the OpenSIPS
server to eliminate network and external factors. Memcached version (1.5.6) has been
installed along with libMemcached-tools to be used inside OpenSIPS script by pointing
the SIP server to the Memcached server via port 11211 using: mod param(“cachedb
_Memcached”, “cachedb _url”, “Memcached: group1://127.0.0.1:11211/”). Redis version
(5.0.3) is also installed with libhiRedis-dev on the same machine as SIP. The OpenSIPS
server points to the Redis server through its default port 6379 using modparam(“cachedb
_redis”, “cachedb_url”, “redis: cluster1:// 127.0.0.1:6379/”). We disabled the cluster mode
and snapshot option in the Redis server as it is out of this research scope. In addition, we
have disabled the persistence option in Memcached and Redis servers.

Network 2023, 3 6

5.2. Network Elements and Workload

The testing environment has been conducted in a local network, and all testing ele-
ments are isolated in 1000 Mbps to avoid exterior impacts. In general, the OpenSIPS server
includes three entities of SIP (proxy, redirect, and location) and three database servers
(Memcached, Redis, and Local) in a single machine. An SIP server is connected to two legs—
user agent client (UAC) and user agent server (UAS)— each of which is in an individual
machine. The specification of all devices involved in this test is populated in Table 1:

Table 1. Network elements’ specifications.

Entity SIP Proxy Server UAC Machine UAS Machine

Machine Model HP EliteDesk Dell-Vostro Laptop Lenovo B570e Laptop
Operating System Debian 10 Buster server Debian Stretch version 9 Debian Stretch version 9

RAM 16 Giga Byte 2 Giga Byte 4 Giga Byte
CPU Intel Core i7-4790—3.6 GHz 900@2.20 GHz i3-2310M @ 2.10 GHz

SIP software OpenSIPS 3.2 SIPp 3.3 SIPp 3.3
Ethernet 100 Mb/s 100 Mb/s 100 Mb/s

The evaluation is conducted by applying heavy load traffic to gain stress SIP testing.
In this research, SIPp [33] is utilized as an SIP traffic generator, which is a de facto standard
testing tool that aims to generate SIP traffic toward SIP servers. SIPp is installed in end
devices (UAC and UAS) individually. UAC (generator) sends traffic toward the SIP server,
then to be received by the SIP server, and forwarded ahead to UAS (sink). SIPp at UAC
is able to formulate the way of generating messages (Register or Invite) by modifying
messages with highly customized XML language. In this paper, SIPp sends registration
messages to perform user-name and password storage in the desired database. With other
scenarios, SIPp sends an INVITE message to perform read from the database. The next
subsection presents the possible scenarios of this research.

5.3. Testing Scenarios

This research aims to evaluate the SIP server through different key–value databases.
The evaluation was conducted in a variety ways to come up with a big number of possible
scenarios.

5.3.1. Topology

The SIP network builds in two different topologies: First, traffic sends from one UAC
toward the SIP server; then, the SIP server forwards the traffic to one UAS. Second, traffic
is generated from two separated UACs toward the SIP server and then forwards all traffic
to one UAS. The aim of the second topology is to determine the impacts resulting from the
multi-client connections. The test only uses two clients to isolate the database impact from
the network connections. In addition, we have evaluated the SIP server only and not the
clients. Thus, there is no variant notice in traffic distribution because, in the end, the SIP
server will receive 1000 calls. Note that the term multi-clients does not mean cluster mode.
Figure 1 shows testing topologies.

(a) (b)

Figure 1. Testing topology (a) single client (b) multi clients.

Network 2023, 3 7

5.3.2. Load Scenario

SIPp generates SIP message traffic toward the SIP server starting with 100 calls per
second (cps); later, the workload increased dramatically until 1000 cps, which is the desired
load for database connections. Initially, SIPp runs for 1000 calls to warm up the testing
environment prior to the actual test [34].

5.3.3. Operations

Database operations have high impact on our evaluation; in this research, the Fetch
operation is examined as database read, whereas Store operation is for data writing (store)
in a database. Usually, SIP uses the Fetch operation to authenticate against user calls using
cache_fetch. Store operation is used to register users for the first time by storing username
and password via cache_store [35].

5.3.4. Measurement Parameters

Evaluations were conducted based on three parameters including throughput (mea-
sures transmitted data per second), which is to measure data flow in kbps to provide results
from a network perspective calculated using Equation (1):

Thu = Σd ∗ s/t + Σd ∗ r/t (1)

where ds and dr are data send and receive, respectively, in the t second interval.
For memory usage, (RAM) examines the storage footprint of each database [36,37],

OpenSIPS utilized shared memory (shmem) for better statistics, which can be calculated
using Equation (2):

Mem(%) = 100 − (((mf + b + c) ∗ 100)/mv) (2)

where mf = memory free, b = Buffer, c = memory cache, and mv = max value
Call response time (CRT) is calculated by measuring the round trip time in ms spend

for a particular SIP message, and CRT is calculated using (3):

CRT (ms) = 200ok ∗ Rt − Invite ∗ St (3)

where Rt and St are sending and receiving times, respectively.

6. Results and Discussion

This section discusses the main finding of this research by evaluating SIP servers
against three different NoSQL key–value databases, namely, Local, Memcached, and Redis.
The evaluation has been conducted over two different scenarios: one client and two clients.
The parameters used in this test are Memory, Throughput, and Call response time.

6.1. Single Client

Figure 2 shows the impact of key–value databases on OpenSIPS servers when it
performs read (fetch) operation during call testing. Obviously, we can notice that the Local
database consumes less memory than the Memcached and Redis, which is due to the high
integrity between the OpenSIPS server and its own local database. However, the Local
cache has a main structured drawback, which is persistency. The Local-database will lose
the entire amount of data whenever the OpenSIPS server fails or restarts. Memcached
comes second in this evaluation as it hits 6.61% of the memory due to OpenSIPS dealing
with a very simple data structure suitable for Memcached. For overall load, Redis utilized
the highest memory footprint. With the “store” operation, OpenSIPS aims to store some
values in the in-memory database for current calls in real time, for instance, storing user
passwords during registration. In all database structures, writing in the disk/memory
requires extra effort compared to read operation. The reader can notice from Figure 3
that the three databases consume extra memory. Again, the Local database has higher

Network 2023, 3 8

performance than others, with the same reason of read operation; Local database is a local
special database for OpenSIPS. The memcached bar shows that the 0.56% of extra memory
goes to writing operation and 0.58% in Redis.

Figure 2. Memory usage with read operation (Single Client).

Figure 3. Memory usage with write operation (Single Client).

The throughput in the OpenSIPS server is measured based on the amount of network
data being received for a period of 1 s. Clearly notice from Figure 4 that the Local database
gains a high amount of data while processing fetch data, and 35.91 KB/s is the highest
amount of data received in this process compared to other databases. This is due to the
high integration and interoperation between the Local database in shared memory (shmem)
and the OpenSIPS server. Memcached causes the OpenSIPS server to gain only 32.20 KB/s
while reading data. This means that the reading process consumes extra reading time
operation and made the OpenSIPS server slow in receiving data. Despite the high features
and data structure support, Redis performs with lower throughput as the memory structure
requires a higher footprint for data. The write operation in Figure 5 shows the decrease
of data received from UAC as the location server requires extra effort to store UAC user
name and password. Memcached and Redis both received around 25 KB/s, which is not
too much different from read operation. In fact, the write operation costs the server a delay
by receiving 7 KB/s in the Local database; in reality, this is still an acceptable difference

Network 2023, 3 9

in real time as this only happened during the user registration session and not calling. In
real-time communication, user experience is only noticed during the łexchanging of voices
end to end. In other words, during the registration session, a user does not care much
about the registration delay as it only occurred once. It is worth mentioning in this stage
that the data received (throughput) are the SIP signaling messages such as INVITE, ACK,
and BYE. Media (RTP) data are not processed and received in this research as it is out of
the scope. Figure 6 presents the period of time spent on a round trip call, in particular, the
time taken to complete a successful call session starting from the UAC, SIP server, and
UAS, then backward to the source again. When it comes to a millisecond, there is a silly
difference between the three databases; between Local and Memcached, it is less than one
millisecond. This, in fact, is attributed to the power of the OpenSIPS engine, a scalable
and fast server. Redis performs in a very close response time compared to Local and
Memcached. Interestingly, results can also be seen from Figure 7, when store operation
only delays the call with 0.012 ms for a Local database, 0.028 ms for Memcached, and
0.048 ms in Redis, which is the highest. These differences are still in the acceptable range
because, as mentioned earlier, store operation is occurring rarely with users, registration,
or password-change.

Figure 4. Throughput with read operation (Single Client).

Figure 5. Throughput with write operation (Single Client).

Network 2023, 3 10

Figure 6. Call Response Time with read operation (Single Client).

Figure 7. Call Response Time with write operation (Single Client).

6.2. Multi Clients

This section presents the impact of multi clients accessing a single database (in Open-
SIPS server) simultaneously. Two UACs generate the same load divided by two (500 calls
for each) toward the SIP server. In this scenario, two clients read/write data from/in the
NoSQL database at the same time. In Figure 8, the Local database uses 5.76% of memory.
In contrast to the Single-client scenario, multi-clients consume an extra 1.5% of memory in
read-operation. This can be attributed to the network setup and transport operations. Mem-
cached performed as well as Local, which is considered acceptable performance compared
to Redis. This is due to the multi-thread feature in Memcached, which allows for opening
multi connections against clients. This feature is not available in the Redis database, despite
it having a multi-feature. On another side, writing in multi-clients is not affected much, as
the OpenSIPS server itself joins all the connections from upstream and points them to a
single database. However, the extra memory usage is also attributed to network connection
operation while serving the same amount of calls (500 for each).

In this scenario, throughput and Call Response time tests are omitted due to the
redundant finding concept being there. Both tests have been conducted but obtained the
same results of one client plus the network connection setup, which has already been found
and discussed in Figure 9.

Network 2023, 3 11

Figure 8. Memory usage with read operation (multi clients).

Figure 9. Memory usage with write operation (multi clients).

7. Conclusions

SIP service providers, in order to manage their users’ provisions (username, pass-
word, domain name, etc), have to deal with variant means of database machines. SIP can
deal with MySQL, NoSQL, and/or in-memory databases, all depending on the server’s
implementation. However, typical MySQL databases are too costly, especially for real-time
communication, like SIP. Therefore, variant alternative databases have been found to im-
prove database connection by SIP server performance such as the in-memory database,
which utilizes the key–value model. Most databases known in the industry and research
community are Memcached, Redis, and Local (inside the SIP server). However, there
are limited resources and studies regarding in-memory databases with SIP performance,
and how each database affects the SIP server. This paper discusses the main impact of a
key–value database on an SIP server during session setup in real-time communication. The
paper evaluated the performance of SIP servers in different scenarios: single-client and
multi-clients. The evaluation tests were conducted through read and write database opera-
tions under different parameters. The test examined memory usage, network throughput,
and call response time. The general finding of this research is that the Local database
consumes less memory than Memcached and Redis. Memcached consumes 6.61% of the
memory. In addition, we found that Memcached costs the server only 0.56% memory of

Network 2023, 3 12

writing compared to the read operation. For throughput, the Local database, while process-
ing fetch data, received 35.91 KB/s on the server side, which is the highest compared to
other databases. Regarding response time, in store operation, the Local database spends
0.012 ms, 0.028 ms for Memcached, and 0.048 ms in Redis, which are all in the acceptable
range. In summary, without persistency, a Local database is the best choice for SIP. Where
persistency is considered, Memcached is a great choice here. Finally, if advanced data
structure and rich features are required, Redis is a suitable selection for the future. Future
work concerns wider database operations in cluster mode topology. In addition, a remote
database server will be taken as a sharing in-memory database center for several nodes
connecting.

Author Contributions: A.A.-A. and P.L.; methodology, A.A.-A., P.L., A.A.-A. and M.A.; validation,
A.A.-A., P.L. and M.A.; formal analysis, A.A.-A., P.L., A.A. and M.A.; investigation, A.A.-A. and P.L.;
data curation, A.A.-A. and P.L.; writing—original draft preparation, A.A.-A. and P.L.; writing—review
and editing, A.A.-A., P.L., A.A. and M.A.; supervision, P.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CPS Call per Second
CRT Call Response Time
IETF Internet Engineering Task Force
IMS IP Multimedia Subsystem
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
LRU Least Recently Used
MySQL My Structured Query Language
NoSQL Not Only Structured Query Language
RAM Random Access Memory
RTP Real-Time Transport Protocol
SDP Session Description Protocol
SDP Session Description Protocol
SHMEM Shared Memory
SIP Session Initiation Protocol
SIPp SIP Performance
UAC User Agent Client
UAS User Agent Server

References
1. Ilyas, M.; Ahson, S.A. IP Multimedia Subsystem (IMS) Handbook; CRC Press: Boca Raton, FL, USA, 2018.
2. Barz, H.W.; Bassett, G.A. Session Initiation Protocol. In Multimedia Networks: Protocols, Design and Applications; Wiley Telecom:

Hoboken, NJ, USA, 2016; pp. 147–182. [CrossRef]
3. Ahson, S.A.; Ilyas, M. SIP Handbook: Services, Technologies, and Security of Session Initiation Protocol; CRC Press: Boca Raton, FL,

USA, 2018.
4. Semerci, M.; Cemgil, A.T.; Sankur, B. An intelligent cyber security system against DDoS attacks in SIP networks. Comput. Netw.

2018, 136, 137–154. [CrossRef]
5. Ali Abdulrazzaq, K.; Ali, A.K.; Praptodiyono, S. The Impact of Elliptic Curves Name Selection to Session Initiation Protocol

Server. In Proceedings of the International Conference on Advances in Cyber Security, Penang, Malaysia, 8–9 December 2020;
pp. 225–234.

6. Deng, C.; Li, G.; Zhou, Q.; Li, J. Guarantee the Quality-of-Service of Control Transactions in Real-Time Database Systems. IEEE
Access 2020, 8, 110511–110522. [CrossRef]

http://doi.org/10.1002/9781119090151.ch6
http://dx.doi.org/10.1016/j.comnet.2018.02.025
http://dx.doi.org/10.1109/ACCESS.2020.3002335

Network 2023, 3 13

7. Zhao, W.; Du, Y.; Zhang, M.; Liu, M.; Jin, K.; Ausavarungnirun, R. Application-Oriented Data Migration to Accelerate In-Memory
Database on Hybrid Memory. Micromachines 2022, 13, 52. [CrossRef] [PubMed]

8. Zhang, K.; Ou, D.; Jiang, C.; Qiu, Y.; Yan, L. Power and Performance Evaluation of Memory-Intensive Applications. Energies 2021,
14, 89. [CrossRef]

9. Fang, J.; Mulder, Y.T.; Hidders, J.; Lee, J.; Hofstee, H.P. In-memory database acceleration on FPGAs: A survey. VLDB J. 2020,
29, 33–59. [CrossRef]

10. Bogdan, A. OpenSIPS the New Breed of Communication Engine. Available online: https://www.opensips.org/ (accessed on 19
August 2022).

11. Cheng, W.; Ren, F.; Jiang, W.; Zhang, T. Optimizing the Response Time of Memcached Systems via Model and Quantitative
Analysis. IEEE Trans. Comput. 2021, 70, 1458–1471. [CrossRef]

12. Liu, Q.; Yuan, H. A High Performance Memory Key-Value Database Based on Redis. J. Comput. 2019, 14, 170–183. [CrossRef]
13. Ma, W.; Zhu, Y.; Li, C.; Guo, M.; Bao, Y. BiloKey : A Scalable Bi-Index Locality-Aware In-Memory Key-Value Store. IEEE Trans.

Parallel Distrib. Syst. 2019, 30, 1528–1540. [CrossRef]
14. Stjepanovic, D.; Savic, M.; Jokić, J.; Marić, S. Performance measurements of some aspects of multi-threaded access to key–value

stores. In Proceedings of the 2015 23rd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 24–26 November 2015;
pp. 831–834. [CrossRef]

15. Rosenberg, J.; Schulzrinne, H.; Camarillo, G.; Johnston, A.; Peterson, J.; Sparks, R.; Handley, M.; Schooler, E. SIP: Session Initiation
Protocol; Technical Report; The Internet Society: Reston, VA, USA, 2002.

16. Begen, A.; Kyzivat, P.; Perkins, C.; Handley, M. SDP: Session Description Protocol, RFC 8866. 2021. Available online:
https://www.rfc-editor.org/info/rfc8866 (accessed on 19 August 2022) [CrossRef]

17. Khudher, A.A. Sip aspects of ipv6 transitions: Current issuesand future directions. J. Eng. Sci. Technol. 2019, 14, 448–463.
18. Khudher, A.; Ramadass, S. I-TNT: Phone number expansion and translation system for managing interconnectivity addressing in

SIP peering. J. Eng. Sci. Technol. 2015, 10, 174–183.
19. Livingston, K.A.; Chung, M.; Sawicki, C.M.; Lyle, B.J.; Wang, D.D.; Roberts, S.B.; McKeown, N.M. Development of a publicly

available, comprehensive database of fiber and health outcomes: Rationale and methods. PLoS ONE 2016, 11, e0156961. [CrossRef]
20. Davoudian, A.; Chen, L.; Liu, M. A survey on NoSQL stores. ACM Comput. Surv. 2018, 51, 1–43. [CrossRef]
21. Sicari, S.; Rizzardi, A.; Coen-Porisini, A. Security & privacy issues and challenges in NoSQL databases. Comput. Netw. 2022, 206,

108828.
22. Khudher, A.A.; Munther, A.; Praptodiyono, S. Efficient IPv4-IPv6 translation mechanism for IMS using SIP proxy. Int. J. Internet

Protoc. Technol. 2022, 15, 41–52. [CrossRef]
23. Khan, K.; Pasricha, S.; Kim, R.G. A survey of resource management for processing-in-memory and near-memory processing

architectures. J. Low Power Electron. Appl. 2020, 10, 30. [CrossRef]
24. Laghari, A.A.; He, H.; Laghari, R.A.; Khan, A.; Yadav, R. Cache performance optimization of QoC framework. EAI Endorsed Trans.

Scalable Inf. Syst. 2019, 6, e7. [CrossRef]
25. Singh, R.K.; Verma, H.K. Redis-Based Messaging Queue and Cache-Enabled Parallel Processing Social Media Analytics

Framework. Comput. J. 2022, 65, 843–857. [CrossRef]
26. Abu Kausar, M.; Nasar, M.; Soosaimanickam, A. A Study of Performance and Comparison of NoSQL Databases: MongoDB,

Cassandra, and Redis Using YCSB. Indian J. Sci. Technol. 2022, 15, 1532–1540. [CrossRef]
27. Seghier, N.B.; Kazar, O. Performance Benchmarking and Comparison of NoSQL Databases: Redis vs MongoDB vs Cassandra

Using YCSB Tool. In Proceedings of the 2021 International Conference on Recent Advances in Mathematics and Informatics
(ICRAMI), Tebessa, Algeria, 21–22 September 2021; pp. 1–6. [CrossRef]

28. Anthony, A.; Rao, Y.N.M. Memcached, Redis, and Aerospike Key-Value Stores Empirical Comparison. Available online: https:
//anthonyaje.github.io/file/An_empirical_evaluation_of_Memcached_Redis_and_Aerospike_kvstore_Anthony_Eswar.pdf (ac-
cessed on 22 August 2022).

29. Kabakus, A.T.; Kara, R. A performance evaluation of in-memory databases. J. King Saud-Univ.-Comput. Inf. Sci. 2017, 29, 520–525.
[CrossRef]

30. Abramova, V.; Bernardino, J.; Furtado, P. Experimental evaluation of NoSQL databases. Int. J. Database Manag. Syst. 2014, 6, 1.
[CrossRef]

31. Rajbhandari, P. Benchmarking a Custom List Data Type in Memcached against Redis. Ph.D. Thesis, University of Cincinnati,
Cincinnati, OH, USA, 2016.

32. Chen, W.E.; Cheng, S.Y.; Ciou, Y.L. A Study on Effects of Different Access Modes on Database Performance for SIP Server. In
Proceedings of the 2014 Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing,
Kitakyushu, Japan, 27–29 August 2014; pp. 902–906.

33. Richard, G. SIPp a Free Open Source Test Tool Traffic Generator. 2014. Available online: https://sipp.sourceforge.net/ (accessed
on 22 August 2022).

34. Sanka, A.I.; Cheung, R.C. Efficient high performance FPGA based NoSQL caching system for blockchain scalability and
throughput improvement. In Proceedings of the 2018 26th International Conference on Systems Engineering (ICSEng), Sydney,
Australia, 18–20 December 2018; pp. 1–8.

http://dx.doi.org/10.3390/mi13010052
http://www.ncbi.nlm.nih.gov/pubmed/35056217
http://dx.doi.org/10.3390/en14144089
http://dx.doi.org/10.1007/s00778-019-00581-w
https://www.opensips.org/
http://dx.doi.org/10.1109/TC.2020.3011619
http://dx.doi.org/10.17706/jcp.14.3.170-183
http://dx.doi.org/10.1109/TPDS.2019.2891599
http://dx.doi.org/10.1109/TELFOR.2015.7377594
https://www.rfc-editor.org/info/rfc8866
http://dx.doi.org/10.17487/RFC8866
http://dx.doi.org/10.1371/journal.pone.0156961
http://dx.doi.org/10.1145/3158661
http://dx.doi.org/10.1504/IJIPT.2022.122048
http://dx.doi.org/10.3390/jlpea10040030
http://dx.doi.org/10.4108/eai.13-7-2018.156594
http://dx.doi.org/10.1093/comjnl/bxaa114
http://dx.doi.org/10.17485/IJST/v15i31.1352
http://dx.doi.org/10.1109/ICRAMI52622.2021.9585956
https://anthonyaje.github.io/file/An_empirical_evaluation_of_Memcached_Redis_and_Aerospike_kvstore_Anthony_Eswar.pdf
https://anthonyaje.github.io/file/An_empirical_evaluation_of_Memcached_Redis_and_Aerospike_kvstore_Anthony_Eswar.pdf
http://dx.doi.org/10.1016/j.jksuci.2016.06.007
http://dx.doi.org/10.5121/ijdms.2014.6301
https://sipp.sourceforge.net/

Network 2023, 3 14

35. Passing, L.; Then, M.; Hubig, N.C.; Lang, H.; Schreier, M.; Günnemann, S.; Kemper, A.; Neumann, T. SQL-and Operator-centric
Data Analytics in Relational Main-Memory Databases. In Proceedings of the EDBT, Venice, Italy, 21–24 March 2017; pp. 84–95.

36. Munther, A.; Abdulrazzaq, A.; Abualhaj, M.M.; Almukhaini, G. Reduce memory consumption for internet traffic classification.
Int. J. Netw. Virtual Organ. 2021, 24, 144–160. [CrossRef]

37. Abualhaj, M.M.; Al-Khatib, S.N. A New Method to Boost VoIP Performance Over IPv6 Networks. Transp. Telecommun. 2022,
23, 62–72. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1504/IJNVO.2021.114730
http://dx.doi.org/10.2478/ttj-2022-0006

	Introduction
	Session Initiation Protocol
	SIP with NoSQL
	Related Works
	Evaluation Methodology
	Implementation
	Network Elements and Workload
	Testing Scenarios
	Topology
	Load Scenario
	Operations
	Measurement Parameters

	Results and Discussion
	Single Client
	Multi Clients

	Conclusions
	References

