
Citation: Fox, G.; Boppana, R.V.

Detection of Malicious Network

Flows with Low Preprocessing

Overhead. Network 2022, 2, 628–642.

https://doi.org/10.3390/

network2040036

Academic Editors: Hakim Mellah

and Filippo Malandra

Received: 12 August 2022

Accepted: 28 October 2022

Published: 4 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Detection of Malicious Network Flows with Low
Preprocessing Overhead
Garett Fox and Rajendra V. Boppana *

Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX 78249, USA
* Correspondence: rajendra.boppana@utsa.edu

Abstract: Machine learning (ML) is frequently used to identify malicious traffic flows on a network.
However, the requirement of complex preprocessing of network data to extract features or attributes
of interest before applying the ML models restricts their use to offline analysis of previously captured
network traffic to identify attacks that have already occurred. This paper applies machine learning
analysis for network security with low preprocessing overhead. Raw network data are converted
directly into bitmap files and processed through a Two-Dimensional Convolutional Neural Network
(2D-CNN) model to identify malicious traffic. The model has high accuracy in detecting various
malicious traffic flows, even zero-day attacks, based on testing with three open-source network traffic
datasets. The overhead of preprocessing the network data before applying the 2D-CNN model is
very low, making it suitable for on-the-fly network traffic analysis for malicious traffic flows.

Keywords: network security; deep learning; machine learning; convolutional neural networks; raw
packet analysis

1. Introduction

Network security tools utilize machine learning in various ways, but most machine
learning implementations are computationally intensive. For this reason, analysis of large
volumes of network traffic is traditionally reserved for a post-mortem or offline analysis of
attacks. Machine learning solutions for live analysis are done only for a small fraction of the
network traffic. However, by developing a machine learning approach that is comparatively
simple while still maintaining high accuracy, that fraction may be increased, and it may
even be possible to analyze each network flow in the network traffic.

Network traffic consists of different connections, called flows (defined by the 5-tuple
of network protocol and the IP addresses and port numbers of both source and destination),
between programs and services connected to the network. Each flow has one or more
packets which contain the data being sent. One goal of network traffic analysis is to identify
which flows consist of traffic from malicious programs, allowing those flows to be shut
down or even prevented entirely. Therefore, it would be highly advantageous to analyze
every flow in real time and with high malicious traffic detection accuracy.

Machine learning research is ongoing in various fields, but by far, the most researched
forms of machine learning are those related to computer vision. For this reason, converting
network traffic analysis, a traditionally non-visual task, to a computer vision task allows for
more opportunities to apply novel and advanced analysis techniques to it. Convolutional
Neural Networks (CNNs) are a relatively new form of machine learning model with
various applications. Two-Dimensional CNNs (2D-CNNs), which take two-dimensional
arrays of data such as pixels, are frequently used to analyze images for tasks such as object
identification. Recently, several researchers have also used these models to analyze network
traffic in a variety of ways [1–7].

Before analyzing using a machine learning model, the network traffic must generally
undergo feature extraction. In feature extraction, features (attributes) that characterize dif-
ferent types of traffic need to be identified and, if necessary, calculated from the traffic, then

Network 2022, 2, 628–642. https://doi.org/10.3390/network2040036 https://www.mdpi.com/journal/network

https://doi.org/10.3390/network2040036
https://doi.org/10.3390/network2040036
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/network
https://www.mdpi.com
https://orcid.org/0000-0002-3994-8830
https://orcid.org/0000-0001-9195-777X
https://doi.org/10.3390/network2040036
https://www.mdpi.com/journal/network
https://www.mdpi.com/article/10.3390/network2040036?type=check_update&version=2


Network 2022, 2 629

compiled and packaged in a format suitable for machine learning model input. Examples of
commonly used features include packets/second, connections/second, bytes/second, and
packet header fields. This preprocessing of network traffic is a necessary time-consuming
and resource-intensive step before applying an ML model to detect malicious flows.

Selecting the appropriate features is critical to the model’s performance and malicious
flow detection accuracy. The set of essential features varies based on the network and traffic
type that needs to be analyzed. Since it is hard to determine the essential features intuitively,
it is common to start with a large number of features and select a smaller subset based on
the analysis of each feature’s importance using specialized machine learning models or
other approaches. Once the desired features are determined, the data corresponding to
those features are extracted from the network packet capture (pcap) and converted to an
appropriate format for input into the desired machine learning model.

Several research efforts in recent years have consisted of performing this feature
extraction process to input the selected data into CNNs. However, an attractive trait of
CNNs is that they can analyze raw data and identify noteworthy features quickly and
efficiently. Therefore, CNNs are suited to object identification in images, with little or
no image modification. The essential visual features are automatically determined and
used by a CNN. Therefore, the computationally expensive task of identifying essential
features and then extracting them during the data preprocessing stage of analysis may
be unnecessary if a CNN is used to analyze the data. Several recent research efforts have
focused on using One-Dimensional CNNs (1D-CNNs) to analyze network packets as a
single one-dimensional array of bytes.

While these works are shown to detect malicious traffic accurately, the requirements
of these techniques are too great. Their machine learning models are often complex. These
models feature several convolution layers, each capable of being used as a stand-alone
CNN similarly to the first layer in our model, which we will discuss in Section 3. They also
have several large densely-connected layers, where every node in the layer is connected
to every node in the layers before and after it. Moreover, their preprocessing methods
are extensive, generally involving several conversions, calculations, and filters. Many of
them also require a network flow to be completed before its features are extracted and
analyzed. Owing to the high computational requirements, the current methods of detecting
malicious traffic are more suitable for offline or post mortem analysis. Consequently, all
of the analyses presented, which are based on post mortem analysis, are unsuitable for
on-the-fly malicious flow detection.

The problem we address in this paper is to develop images from network traffic
flows with very low overhead and apply deep learning (DL) models for image processing
to detect anomalous flows. Specifically, we develop a simple method to convert raw IP
(Internet Protocol) packet data directly into bitmap files and analyze with computer vision
models such as the 2D-CNN without any significant preprocessing of the raw data. We
evaluate our method’s effectiveness on three different network traffic datasets, including
the popular USTC-TFC2016 dataset [1] used by numerous other research teams in this field
of study, and we compare our results with those presented in the literature.

Our method has several advantages compared to 1D-CNN for raw packet analysis and
2D-CNN analysis based on extracted features or entire pcap file analysis. No extraneous
analysis is required to identify what derived features are useful since all or a specified
number of bytes of the packet are used for analysis. The 2D-CNN model then performs the
work of identifying the useful features during model training; the trained model rapidly
identifies anomalous traffic based on the chosen features of raw data.



Network 2022, 2 630

Since our method uses the DL models developed for image analysis, any improve-
ments in anomalous image detection are easily adapted for anomalous network traffic
detection. For example, the research on 2D-CNN usage is ongoing and plentiful due to
their visual applications, so there are a wide variety of different models to use for analysis.
In contrast, the research into network security has focused mainly on 1D-CNN and other
types of machine learning (ML) models. By efficiently converting packets into a format
suitable analysis by the models used in visual machine learning tasks, any innovation in
the field of computer vision may potentially be applied to network security, as well.

Furthermore, by using raw packet data instead of extracted features, our method
allows for real-time traffic classification as soon as a new connection is initiated. In contrast,
extraction of features requires collecting a minimum amount of network flow data before
the analysis can begin. Therefore, our method uses fewer computational resources than
any similar method that requires extracted features before applying a 2D-CNN model for
analysis. Instead of storing and computing aggregate data, a necessary step for feature
extraction, our method performs as few transformations on the raw packet data as possible
before analyzing it. The binary data of a packet are simply appended to a predefined
bitmap file header; no other changes need to be made.

Therefore, our methodology will likely be superior to the current malicious traffic
detection methods. It allows for real-time analysis with less preprocessing overhead or
specialized configuration and focuses on useful information to identify malicious flows.
There is also a unique potential for further refinement by repurposing any advancement in
computer vision research for use in this methodology.

The contributions we present in this paper are: (i) the proposal and demonstration of
an efficient process for converting raw IP datagrams into bitmap images for analysis using
DL models from computer vision research and (ii) a simple and effective deep learning
model for computer vision capable of analyzing these images. We also (iii) test this method
on several datasets. The first contribution is significant because it allows for accessible live
malicious traffic detection using computer vision analysis. The second is an extension of the
first that provides a practical deployment of the proposed network defense method. The
third contribution demonstrates the effectiveness of this method and allows for comparison
with other methods of live network defense.

The rest of this paper is structured as follows: Section 2 describes background of this
research and related work, Section 3 describes the concept and design of our raw network
analysis method, Section 4 outlines the implementation of our design, Section 5 reports
the results of our initial experiments with this implementation, Section 6 discusses those
results and their merits, and Section 7 summarily concludes the paper.

2. Background

Several researchers have used machine learning to analyze network traffic in ways
similar to our proposed method. In this section we will review their techniques and identify
how ours differs. First we will discuss researchers that have used similar data preprocessing
techniques as ours to classify benign traffic data for network quality assurance. Then we
will examine some malicious traffic detection techniques to use 1D-CNN to analyze streams
of bytes from packets. Finally, we will discuss those who use 2D-CNN to analyze images
generated from malicious packet data, whose techniques most closely resemble our own.

Xu et al. [7] produce images from 784 bytes of each IP datagram payload (transport
layer segments) in the UNB ISCX VPN-nonVPN dataset [8] by treating each byte as an
eight-bit integer grayscale pixel value. These images and their one-dimensional byte-stream
counterparts are then used as input for an ensemble of parallel 2D-CNN, 1D-CNN, and
RNN models. Weighted voting between these three models is used for the final classification
of the traffic type.



Network 2022, 2 631

Lim et al. [2] generate images by using four-bit segments of application layer packet
data from the UPC dataset [9] as four-bit integer grayscale pixel values. A hybrid 2D-
CNN+ResNet architecture is used to analyze these images and classify traffic based on
application type.

These attempts to classify normal network traffic have produced promising results
and high degrees of accuracy, but they have not attempted to identify malicious traffic
types. However, they could potentially be adapted to a network security task. This could
be done by adjusting the input and output parameters to accommodate other categories of
labels, and training these models using labeled datasets containing malicious traffic as well
as benign.

Marín et al. [3] use two different 1D-CNN models to analyze raw packet traces. Their
first model is a complex multi-layer model that takes as input 1024 bytes of the first packet
of each flow in the USTC-TFC2016 dataset [1]. This is shown to perform poorly (77%
accuracy) compared to their second model, a simpler model using only one convolution
layer that takes as input the first 100 bytes of the first two packets per flow, which can
achieve nearly 100% accuracy on both the USTC-TFC2016 and CTU [10] datasets.

Zhang et al. [4] use the USTC-TFC2016 dataset [1] to analyze CPU usage of a 1D-
CNN model while taking multiples of four bytes (between 54 and 784 bytes) from the first
packet of each flow as input. They show that detection accuracy increases as more of a
packet’s header is included, but CPU usage also increases relative to the number of bytes
taken per packet. In order to identify a suitable balance between accuracy and CPU usage,
they propose an implementation of their own CPU analysis to detect CPU utilization in
deployment and adjust the window size accordingly.

Hwang et al. [5] examine the effects of using different numbers of bytes per packet and
packets per flow as input for their 1D-CNN-based analysis on the USTC-TFC2016 [1] and
Mirai-RGU [11] datasets using two 1D-CNN layers and seven densely-connected layers
with between 10 and 1024 nodes in them. They take from each selected packet multiples of
ten bytes, and a range from two to five packets per flow. They show that detection accuracy
does not increase significantly by including more than two packets, and also show that
including more of a packet’s header improves accuracy.

These 1D-CNN analysis methods are capable of achieving near-100% accuracy with
the datasets used [1,10,11], but 2D-CNN is better suited to identifying initially unknown
trends and relationships within the input data, depending on how the data are arranged
within the image. Moreover, by necessitating input as images, it allows for a layer of
abstraction from the original data. This may be a crucial first step towards opening an
avenue for sharing packet-level attack data without compromising privacy.

Wang et al. [1] are the creators of the USTC-TFC2016 dataset used by several teams,
including this one. They also generate .PNG image files by using the SplitCap tool to
separate the dataset .pcap files into unidirectional flows or bidirectional sessions, and
include either entire .pcap files or only application layer data. The first 784 bytes of the
selected data are encoded into integers used to create pixel values. These images are then
input into several types of 2D-CNN. Wang et al. show that the entire .pcap file containing
flow data is best for analysis.

Zhang et al. [6] encode packet data into eight-bit integers in a zig-zag format in the
corner of an image and then run a discrete cosine transform on the image. They then
conduct analysis with a hybrid 2D-CNN and Deep Random Forest model based on the
GoogLeNet model.

All of these techniques have produced near-100% detection accuracy, but they all rely
on either extensive preprocessing methods, intricate multi-layer models with thousands of
nodes, or both. Deep neural networks such as CNN are capable of running as standalone
analysis tools without doing extraneous work to give them the answers, and even a small
network can produce sufficiently high accuracy without as much computational effort.



Network 2022, 2 632

Furthermore, several of these positive results rely heavily on the USTC-TFC2016
dataset, which does not have representative benign TCP flows. The benign traffic categories
within this dataset contain virtually no samples of the traditional TCP connection sequence;
the captured traffic in these categories is almost exclusively taken from connections that
were already in progress at the start of the captures. Therefore, any published results that
depend heavily on USTC dataset will need to be verified with more rigorous datasets.

We present a viable solution to real-time front-line threat detection based on the
concept of minimal requirements. By focusing specifically on transport layer data and
altering that data as little as possible except to add the file header necessary to label it an
image, our model provides a promising starting point from which to develop an accurate,
efficient detection tool.

3. Raw Network Traffic Analysis

Our goal is to create a front-line network security model capable of being used in real-
time malicious flow identification with as little computing resources as possible, ideally
allowing it to be run on individual switches in the data plane of a Software-Defined
Network (SDN). Such an analysis would be well suited to deployment at the perimeter of an
organizational network, but could effectively be deployed anywhere. This would not only
be a powerful network security tool in its own right, but by requiring less computational
resources than similar methods, it would be available to more network operators, thereby
enhancing security across the Internet as a whole.

We are interested in ML/DL models that analyze meaningful raw bits (network
and transport headers and their payloads) from network traffic and classify the flows
as malicious or benign. The most commonly used ML models, such as RF, SVM, and
k-NN [12,13], require extraction of features based on several packets of flows or the entire
flows. Many DL models such as RNN and LSTM [13] also require feature extraction or
aggregation of data over time. To avoid high processing overhead, we do not perform any
elaborate feature extraction. We also avoid collecting data over time as much as possible
to allow rapid detection. Other DL models such as autoencoders [13] can be used on
individual samples of raw data and are suited to anomaly detection, but are not suited
to detecting specific anomalies (such as malicious traffic) without carefully tailoring the
training data to select portions that clearly demonstrate the anomalies, which is difficult to
do broadly with raw packet data.

Neural networks such as Deep Neural Network (DNN) or 2D-CNN are designed to
mimic neurological processes in biology, efficiently performing complex analysis of massive
amounts of raw data. DNN would potentially be a valid model for our analysis as it can
be used with either extracted features or raw data, but we seek to exploit advancements
in image analysis techniques. Furthermore, prior research [14,15] indicates that DNN and
CNN have similar training and detection speeds as well as detection accuracy when using
similarly sized models and the same input features. 1D-CNN is also capable of analyzing
raw data, but as we described in Section 2, 2D-CNN may be preferable for a number of
reasons. Therefore, we focus on image processing models and converting traffic flows into
images for analysis by 2D-CNN models.

To accomplish our goal, we seek to perform as little processing as possible on the data.
Therefore, rather than spending time on each flow waiting for enough data from which
to extract features and performing the necessary calculations for feature extraction, we
simply analyze the raw packet data directly. We extract the raw bits of IP datagrams from
the first packet or two of a network flow and append those extracted bits to a pre-made
bitmap file header to create a bitmap of the flow. We then use a simple 2D-CNN-based
computer vision model to analyze the resulting bitmaps and classify them as either benign
or malicious. The preprocessing steps and model are summarized in Figure 1.



Network 2022, 2 633

Figure 1. The full data pipeline for our analysis. The first half show preprocessing done on PCAP
(network traffic) files to produce separate BMP (bitmap image) files for each flow. IP addresses
in each bidirectional flow are randomized to create the effect of multiple attack sources. The IP
datagrams from each flow are extracted and appended as-is to a predefined BMP file header. The
second half shows the 2D-CNN model used for processing, including information about each layer.
This information is also shown in Table 1. The packet data show the pipeline for a single packet; in
two-packet analysis, the image would be twice the height, with the other half containing the second
packet’s data.

3.1. Proposed Model

Our model consists of a single 2D-CNN layer of 32 filters with a kernel size of 3 and
ReLU activation [16]. (Any negative values output by a neuron in the layer are adjusted
to zero, and any positive values are simply output unchanged by the ReLU activation.)
The configuration of the CNN layer means that 32 windows of 3 × 3 pixels shift across
each bitmap to process it. The output of these filters on each section of the bitmap are
then flattened into a single array suitable for input into a small densely-connected layer of
128 nodes, also with ReLU activation [16], in order to perform some analysis on the pro-
cessed data from the CNN layer. This layer is then connected to a final densely-connected
layer of 5 nodes; these predict the specific categories the model is meant to identify. The
first two predict benign and malicious samples, respectively, while the remaining three
consolidate any data which is not useful for the benign/malicious differentiation. The
hyperparameters of this model are summarized in Table 1.

Table 1. The hyperparameters of the 2D-CNN model. Any values not specified are left as the default
settings for each layer.

2D-CNN Model Details

Layer Hyperparameters

Conv2D 32 filters, kernel size 3, ReLU
Flatten N/A
Dense 128 nodes, ReLU
Dense 5 nodes

The model works with bitmap images created from one or more packets per flow. The
preprocessing complexity increases rapidly as more packets in a flow are used to create
bitmaps. A table must be kept containing the first packet of each flow awaiting its second
packet, methods of correlating each first packet to its second packet must be developed,
protocols for dealing with a filled table must be defined, and a slew of security issues such
as buffer overflows and denial of service attacks on this table need to be addressed. So any
increase in detection accuracy must be balanced against the increase in the preprocessing
complexity. In this paper, we consider two cases: images formed using the first packet of a
flow and images formed using the first two packets of a flow.

By taking a limited number of packets from the beginning of a flow, the actual flow
size and duration is irrelevant to detection speed or processing overhead. This type of



Network 2022, 2 634

analysis could inherently produce results faster than any analysis based on an entire flow,
especially in cases where large volumes of data are passed through a single flow.

3.2. Early Flow Classification

One advantage of using only the first packet of a flow is simplicity. If no packets ever
need to be correlated and analyzed together, the complexity of the required framework is
greatly reduced. For example, for TCP flows, with one-packet images, only SYN packets
need to be analyzed, which can be done without processing additional packets in that flow.
Another advantage is that the time to detect a malicious flow is decreased. By beginning
analysis upon receipt of the very first connection request, there is as little delay as possible
from connection to identification. Waiting for additional packets also introduces additional
delays, which may be crucial in cases of attacks where the damage done quickly, such as
DDoS attacks, where the very act of connecting is the core of the attack.

One advantage of two-packet analysis is that malicious flow detection accuracy based
on the first two packets can be significantly higher in some cases than that based on the
first packet [3,5]. Our results also indicate that certain types of attacks are detected with
a higher degree of accuracy when the second packet is included in analysis. For flows
initiated by the external clients, the second packet of a flow is sent by an internal server
quickly. Therefore, the additional wait time and the extra preprocessing overheads are not
too high.

4. Methodology

In order to test the practicality of our design, we have produced a proof-of-concept
working model which converts packet capture (.pcap) files to bitmap (.bmp) images and
imports them into a 2D-CNN model designed in Keras [17], as shown in Figure 1.

4.1. Preprocessing

First, the .pcap files are processed to pseudo-randomize the IP addresses and source
port numbers while preserving flows, which serves two functions. In small testbed-created
datasets [1,18,19], one or very few internet IP addresses are used for attackers, which is not
the likely scenario in botnet-based attacks. So, randomization of IP addresses eliminates the
possibility that the detection is influenced by a small set of attacker IP addresses. Secondly,
it may also be used to improve privacy in information sharing. In actual live detection, this
randomization would not be needed for normal detection. However, if the bitmaps were to
be shared so that other organizations could train their own models to defend against new
attacks, our randomization step could serve as a layer of protection for the anonymity of
private data that may be contained within.

Following address randomization, a script identifies each flow in each .pcap file,
extracts the IP header and payload from the first n packets, where n is the number of
packets being analyzed together from each flow, and appends them as-is to a bitmap file
header. In this paper, n is 1 or 2.

4.2. Packets as Images

In order to convert raw packet data into bitmap images for 2D-CNN analysis, we
extract individual packets from packet traces and append the IP payload of each packet to
a predefined bitmap file header, which can be edited independently of the packet data to
accommodate different bitmap features such as changing the image dimensions or color
depth. Research into ideal bitmap formats is ongoing, but presently we use a 24-bit image
of 24 pixels wide. Thus, each row of the image can store 72 bytes of data.

Due to the design specifications of the bitmap file format, image width must contain
data in multiples of four bytes, but image height can be arbitrary. We leverage this to allow
for the inclusion of several packets in the same image by tiling them vertically. This allows
for packets in the same flow to be analyzed together by the model.



Network 2022, 2 635

For the commonly used Ethernet frame payloads of 1500-byte packets, the bitmaps
are thus 24 × 21 pixels (1512 bytes) for one packet, or 24 × 42 pixels for two packets. Any
pixels not filled with packet data are set to all zeroes.

This method is particularly useful because the bitmap file header essentially provides
a mapping to the pixel data. Any data can be appended to such a header, and it can be read
as pixel data according to the specifications contained within the header. The data do not
need to be processed in any way to allow for this conversion.

4.3. Model Implementation

The bitmap files, containing the specified number of packets from each flow in each
packet trace, are then labeled as benign or malicious according to the published information
provided with each dataset [1,18,19], and a random sample containing equal numbers of
bitmaps from each of the categories in the data are used as input for the 2D-CNN model
implemented in Keras for binary classification of malicious or benign flows.

We then use this Keras model to train on 90% of the selected bitmaps, and test on the
other 10%, ensuring equal distribution from each category. We report results for ten epochs
of training and testing.

This model is designed to be a simple representative of computer vision models as
a class. This exact model architecture could be used to analyze a variety of input images
for tasks such as reading handwritten characters. Thus, its performance should reflect the
hypothetical performance of similar computer vision models.

4.4. Datasets

Our initial design has been tested on the USTC-TFC2016 (denoted USTC16) dataset
used by several papers which analyze raw network traffic via different methods such as
1D-CNN [1,3–5]. This dataset contains ten categories of benign traffic and ten categories of
malicious traffic, and at least 6000 flows in each category.

We also use the CIC-Denial-of-Service-2017 (CIC17) dataset [18] and the UTSA-2021-
Low-rate-DoS-Attack (UTSA21) dataset [19]. The first dataset (CIC17) contains a benign
category of mixed traffic, and eight categories of malicious traffic. The second (UTSA21)
contains one benign category of HTTP traffic and two categories of low-rate Denial-of-
Service attacks.

We take as many flows as we can from each category of traffic while ensuring that
roughly equal numbers are taken, in order to ensure that each category is well-represented
in the samples and balanced relative to the other categories. Balancing training is important
because machine learning models often have higher classification accuracy when the
training samples are balanced [20]. Thus, we also minimize the difference between the
number of benign and malicious samples, to further ensure balanced training.

We then also combine these datasets, taking less from the categories containing larger
quantities of samples, again so that each category is represented equally. We also limit the
overall number of samples to avoid extending training time too much, as our goal is to
create a model which can be used quickly and efficiently. Thus, when CIC17 is paired with
either or both other datasets, we take fewer samples from each category of USTC16 and
UTSA21, and when UTSA21 is paired with USTC16, we take fewer from the categories in
the latter dataset. The number of samples used for each different combination are shown in
Table 2.

These combinations are meant to create more diverse training and testing sets, allowing
the model to analyze data which are more representative of the wide array of traffic
occurring across the Internet.

4.5. Analysis Specifications

Each of these different analyses is run 30 separate times with different random seeds
for sample selection, sample ordering, and model initialization, and the results of these
30 runs are averaged together to produce our final results for each case. This mimics the



Network 2022, 2 636

cross-validation commonly used in machine learning research [21]. The datasets used
during each of the 30 runs in each analysis are available online [22].

This analysis is run using a 40-core Intel(R) Xeon(R) Gold 6230 CPU @ 2.10 GHz CPU
and 256 GB of RAM. No GPU is used. During the course of analysis, the multi-threaded
program utilizes on average 4 to 5 physical CPU cores (or 8–10 virtual cores).

We examine the results of our analyses using several different metrics: balanced
accuracy, false negative rate, false positive rate, recall, precision, and F1 score [23].

Table 2. The number of training and testing samples taken from each category in each dataset during
each separate instance of analysis. Because the benign category of CIC17 contains mixed traffic,
we take more from that benign category in all analyses. Specifically, we take 15,000 benign CIC17
samples for training, and 1500 for testing. Additionally, because of the imbalance in the number of
benign and malicious categories in the UTSA21 dataset, we take twice as many benign samples for its
individual analysis.

Analysis Sample Selection

Dataset(s) Training Samples per Category Testing Samples per Category

USTC16 4800 1200
UTSA21 3000 250
CIC17 2000 150
CIC+USTC 1500 150
CIC+UTSA 2000 150
USTC+UTSA 2000 200
CIC+USTC+UTSA 1500 150

5. Results

In order to verify the efficacy of our design, we analyze the USTC16 dataset in two
different scenarios. First, we examine a scenario in which the model is both trained and
tested on all attacks, resembling the methods used in literature (Section 2). This allows us
to compare our results to those of prior works directly. The second scenario consists of
training the model using malicious flows from all but one category, and then testing on
the remaining one, mimicking a ‘zero-day’ attack by treating the tested malicious category
as a novel attack. This analysis has not been presented in prior literature referencing this
dataset. However, it reflects an especially difficult case for the model to detect malicious
traffic in live analysis, demonstrating its potential for real-world applications.

Our first analysis scenario consists of feeding a random sample of 6000 flows from
each category into the model, using 90% of flows for training and 10% for testing. When
using either one or two packets per flow, our model achieves greater than 99.95% testing
balanced accuracy after ten epochs of training.

We then create a zero-day attack scenario in which the model encounters a new type
of malicious traffic by only training on nine of the malicious categories, and testing on
the remaining category separately. Our model performs extremely well (>99.5% balanced
accuracy) using only one packet per flow against all malware categories except one (Nsis-
ay). When using two packets per flow it performs better against Nsis-ay while also
performing slightly worse against Htbot. All other categories are identified with nearly
100% recall and precision in either the 1-packet or 2-packet cases. These data are shown in
Table 3. The balanced accuracy values are also shown in Figure 2.

In order to analyze the throughput of our model, we identify the training and testing
times in each scenario of USTC analysis and calculate the flows processed per second
while running experiments on the hardware described in Section 4. On average, for the
one-packet case, training processes 2029 flows per second (fps) and testing 2258 fps. In the
two packet scenario, training processes 1600 fps and testing 2286 fps.



Network 2022, 2 637

This suggests that only training time is significantly affected by image size; the differ-
ence in testing time is not statistically significant. Since image size is directly based on how
many bytes of a packet and packets per flow are analyzed, this implies that once a model
is trained, there is no significant detriment to model throughput when using the full two
packets suggested by prior research.

We then analyzed each of the three previously mentioned datasets alone and in
tandem with each other, the results of which are summarized in Table 4. Analysis of only
the USTC16 or UTSA21 datasets alone or combined with each other yields extremely high
accuracy, but analyses including the CIC17 dataset show poorer detection rates and higher
false positive and negative rates. However, analysis of two packets per flow performs
better than one packet per flow in each of these cases.

Figure 2. Balanced accuracy of simulated zero-day scenario, training for ten epochs on nine malicious
categories from USTC-TFC2016 dataset and testing on the tenth while taking 6000 flows from each
benign category in a 90%/10% split for training and testing. All scenarios except testing on Nsis-ay
are near 100% balanced accuracy after ten epochs of training.

Table 3. An overview of the results of the simulated zero-day scenario using the USTC16 dataset.

Zero-Day Scenario Results Overview

1 Packet per Flow 2 Packets per Flow

Malware Balanced Accuracy Recall Precision Balanced Accuracy Recall Precision

Cridex 100.0 100.0 100.0 100.0 100.0 99.9
Geodo 100.0 100.0 100.0 100.0 99.9 99.7
Htbot 100.0 100.0 100.0 99.2 98.4 100.0
Miuref 100.0 100.0 99.9 100.0 100.0 100.0
Neris 99.9 99.8 100.0 99.7 99.5 100.0
Nsis-ay 76.5 53.1 99.9 83.1 66.4 99.9
Shifu 100.0 100.0 100.0 99.9 99.9 100.0
Tinba 100.0 100.0 100.0 99.8 99.7 100.0
Virut 100.0 100.0 100.0 100.0 100.0 100.0
Zeus 99.5 99.1 100.0 99.9 99.8 100.0



Network 2022, 2 638

Table 4. An overview of the results from training and testing on equal amounts from each category in
each of the three datasets in various combinations as listed in Table 2. In general, any case containing
CIC-DoS17 traffic demonstrates lower accuracy, but every case not containing that traffic has nearly
100% accuracy.

Results Overview (1 Packet per Flow)

Datasets Balanced
Accuracy Recall Precision FNR FPR F1 Score

CIC17 90.6 84.3 95.6 15.7 3.2 89.6
USTC16 100.0 100.0 100.0 0.0 0.0 100.0
UTSA21 100.0 100.0 100.0 0.0 0.0 100.0
CIC17+USTC16 88.4 90.0 86.5 10.0 13.1 88.2
CIC17+UTSA21 91.8 87.6 95.3 12.4 4.0 91.3
USTC16+UTSA21 99.8 99.7 99.9 0.3 0.1 99.8
CIC16+USTC16+UTSA21 89.2 93.8 85.5 6.2 15.5 89.4

Results Overview (2 Packets per Flow)

Datasets Balanced
Accuracy Recall Precision FNR FPR F1 Score

CIC17 93.2 90.8 94.4 9.2 4.4 92.6
USTC16 100.0 99.9 100.0 0.1 0.0 100.0
UTSA21 100.0 100.0 100.0 0.0 0.0 100.0
CIC17+USTC16 95.3 94.0 96.2 6.0 3.4 95.1
CIC17+UTSA21 94.2 92.5 95.6 7.5 4.0 94.0
USTC16+UTSA21 99.9 99.8 99.9 0.2 0.1 99.9
CIC16+USTC16+UTSA21 95.4 94.7 96.0 5.3 3.8 95.3

6. Discussion

The results demonstrate that this method of flow analysis may be a powerful tool
for network security. Considering that this is merely the first iteration of our design, with
virtually no fine tuning, our design produces extremely promising results. This suggests
that our proposed preprocessing method to utilize computer vision may be a viable method
for malicious flow detection in live networks.

6.1. USTC16 Analysis

When analyzing the USTC16 dataset, the model achieves nearly 100% accuracy
with only one packet per flow, demonstrating accuracy approximately equal to that of
prior research.

Our model performed relatively poorly against the Nsis-ay category of malware, but
prior methods which did report per-category performance also reported poor performance
against one or more categories. Furthermore, the two-packet analysis demonstrated im-
proved performance over the one-packet analysis. After investigating the Nsis-ay category
manually, we determine that this category contains UDP flows which closely resemble the
UDP traffic from several of the benign categories, such as Facetime and Skype.

However, we have found that even in most of these cases, most Nsis-ay flows have
closer prediction values from the benign and malicious classifiers in the 5-node final layer
of the model than those of the benign categories. These two prediction values are currently
compared using a simple threshold; whichever value is higher is the prediction which is
accepted. However, given that these values are generally very close for the Nsis-ay flows
and generally not close for benign samples, adjusting this prediction threshold may be
advantageous in future efforts. Analysis of this phenomenon suggests that a dynamic
detection threshold may be able to increase accuracy to approximately 97% in the Nsis-ay
category. Additionally, our two-packet analysis has already partially resolved the issue
without any changes to the model.



Network 2022, 2 639

6.2. USTC16 Results Comparison

A comparison of our proposed model with those of previous works which analyze
the USTC16 dataset is shown in Table 5. Specifically, while our model demonstrates
similar accuracy on the USTC16 dataset, it has lower complexity, less preprocessing, and
is designed to be capable of live analysis. Additionally, since USTC16 proved to not be
very challenging, the model has been tested on other publicly available datasets. These
additional datasets also have a higher degree of attack diversity than those tested by some
of the other prior works [3,5]. The additional datasets we used (CIC17 and UTSA21)
featured a total of ten malicious categories, whereas the secondary datasets used by prior
works only included two and eight categories, respectively.

Table 5. A comparison of our proposed model with related works using the USTC16 dataset. All
works presented achieve approximately 100% balanced accuracy when analyzing this dataset alone.
Model Complexity is reported as a measure of number of layers. The Live column indicates whether
the proposed solution’s design allows for live analysis prior to the end of a flow.

Paper Models Used Packets per Flow Packet Types and Formats Model Complexity Live Datasets Analyzed

This
Paper

2D-CNN First 2 Raw IP
datagrams

4 Yes CIC17 [18],
USTC16 [1],
UTSA21 [19]

Wang et al. [1] 2D-CNN All Entire pcap files 7 No USTC16 [1]

Marín et al. [3] 1D-CNN First 2 Raw packets in pcap files 5 Yes USTC16 [1],
CTU [10]

Zhang et al. [4] 1D-CNN First 1 Raw packets in pcap files 14 Yes USTC16 [1]

Hwang et al. [5] 1D-CNN +
Auto-encoder

First 2 Raw packets in pcap files 11 Yes USTC16 [1],
Mirai-RGU [11]

The works which analyze USTC16 either have a much more complex and thus slower
model [5], involve more in-depth preprocessing [1,3–5], or are inherently incapable of live
detection prior to the end of a flow [1].

In [5], the model in question contains both a 1D-CNN layer with 32 filters of size 6 and
another with 64 filters of size 6. This means that, despite using 1D-CNN, the CNN layers of
their model are still approximately twice as large as the single CNN layer in ours. Their
model also features seven consecutive densely-connected layers with a total of 3363 nodes
within them, meaning over 800,000 connections between the dense layers, whereas our two
small dense layers have only 640 connections between them.

In [1,3–5], extensive preprocessing is used to analyze the USTC16 dataset, involving
multiple conversions and filters on the data such as changing the raw packet data into
different number and vector formats, or performing several file conversion operations. Our
model does not perform any such conversions, directly reading the raw packet data as
pixel data instead.

In [1], the model presented can only achieve high accuracy when using entire pcap
files containing all packets in completed flows as input to the model. Because our model
only requires the first two packets of a flow, ours is able to begin analysis much faster.

Previous research [3] indicates that accuracy would improve when adding a second
packet to analysis, but most of our USTC16 results do not reflect this. This may be because
the prior research used different models for one- and two-packet analysis, whereas our
model architecture is the same between the two cases. Furthermore, whenever the model
does not achieve near-100% accuracy with one packet, two-packet analysis does improve
detection accuracy. This can also be seen in the additional results in Table 4.



Network 2022, 2 640

6.3. Analysis of CIC17 and UTSA21 Datasets

Our model has higher FPR and FNR when training and testing on the CIC-DoS-2017
dataset, where other researchers [14] have been able to achieve near-100% accuracy on this
same dataset. However, our results are not directly comparable to the prior work, as our
model uses only one or two packets per flow, while that work uses extracted features from
entire flows. Despite this limited amount of data, our model is still able to detect malicious
flows with over 90% accuracy after only one packet has been received.

Our results also resemble the near-100% accuracy of the previous work analyzing the
UTSA21 dataset [19], but of the three models presented in that work, only one achieves that
level of accuracy, and all of them require data collection over time and some form of feature
extraction. All three of these models analyze various aspects of the timing of traffic (average
inter-packet arrival time within each flow, inter-arrival time between new flows, and time
slice data in windows of time), and thus must wait for a sufficient amount of temporal
data before analysis can begin. Our analysis, however, is capable of beginning as soon as a
single packet is received, as it is based on the raw characteristics of the packets themselves.

6.4. Confounding Factors

Confounding factors include the fact that within the USTC16 dataset used, most of
the benign TCP traffic was captured from connections established prior to the start of the
capture files. Thus, we are unable to adequately compare benign TCP connection requests
with malicious TCP connection requests. The model is likely able to differentiate easily
between the malicious traffic, which consists entirely of connection requests, and the benign
traffic, which contains almost no connection requests. It is therefore possible that its high
accuracy would not be reproducible on new packet traces where both malicious and benign
categories contain TCP connection requests, though the same can be said of every other
prior result that relies on the benign data in this dataset [1,3–5].

However, after analyzing other datasets, many cases still show high accuracy. This
may indicate that these datasets also include some as-yet-unknown feature that allows the
model to overtrain for them as well. However, it may also indicate that our model is indeed
very useful for detecting malicious flows.

Our analysis has also thus far included packet payloads, which in our current dataset
are unencrypted. We are unable to readily identify what features our model uses to classify
flows due to the complexity of deep learning models. It is possible that one or more of
the key features used by the model can be found within the payload of each packet, and
encryption may obfuscate such features. Therefore, further testing is required to identify if
the model could perform as well when considering encrypted traffic.

6.5. Live Analysis

To achieve our ultimate goal of live, real-time analysis, further work is required to
fully automate the conversion of flows to bitmaps suitable for input into the model. This is
done separately in our current tests, but can be easily automated and streamlined to allow
for real-time conversion.

Real-time analysis would also require us to develop a means of reliably extracting at
least the first packet from each flow. In order to do this, we intend to use the features of
Software-Defined Networking (SDN) [24] which allow packets to be copied and forwarded
to different sources based on configurable flow rules.

Additionally, though we only test IPv4 in this work, it would be advantageous for live
implementation to also include support for IPv6. The model itself could be easily extended
to IPv6, as the structure of IPv4 and IPv6 packets is similar in many respects.

7. Conclusions

In this paper, we have presented a novel form of network traffic analysis which
consists of rapidly converting data packets directly into bitmap images suitable for visual
machine learning analysis models. We then used a popular form of image classification



Network 2022, 2 641

model, the Two-Dimensional Convolutional Neural Network, to analyze these bitmap
images, demonstrating comparable accuracy on a variety of datasets to the models reported
in related work. This suggests that our method, which is computationally simpler and
requires less preprocessing and lower data collection delays than the prior methods, is
more suited to real-time analysis.

We still need to demonstrate that it is efficient enough to use for real-time analysis. To
do this, we will need to do more thorough testing to identify the run time, throughput, and
computational overhead. This will also require some refinements to the preprocessing steps,
and a method of extracting packets directly from live network traffic instead of merely
from .pcap files.

Additionally, further research into training and testing this analysis method on more
datasets and training and testing between datasets is ongoing.

While further research into the practicality and portability of this technique is required,
initial results indicate that this may become an important tool for automating network
traffic analysis.

Author Contributions: G.F.’s contributions include design and implementation of the model used in
this study, analyses of the datasets, and writing the paper. R.V.B.’s contributions include the initial
ideas, selection of datasets, evaluation of the analysis results, and writing the paper. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was partially supported by grants from the US National Security Agency
under contracts H98230-20-1-0392 and H98230-21-1-0171.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. The sources
are cited in the paper. The processed versions of these datasets by the authors were published on
Harvard Dataverse and cited in the paper: https://doi.org/10.7910/DVN/O5A0ZV (accessed on
12 August 2022).

Acknowledgments: The opinions expressed and any errors contained in the paper are those of the
authors. This paper is not meant to represent the position or opinions of the authors’ institution or
the funding agencies.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, W.; Zhu, M.; Zeng, X.; Ye, X.; Sheng, Y. Malware traffic classification using convolutional neural network for representation

learning. In Proceedings of the 2017 International Conference on Information Networking (ICOIN), Da Nang, Vietnam, 11–13
January 2017; pp. 712–717. [CrossRef]

2. Lim, H.K.; Kim, J.B.; Heo, J.S.; Kim, K.; Hong, Y.G.; Han, Y.H. Packet-based Network Traffic Classification Using Deep Learning.
In Proceedings of the 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC),
Okinawa, Japan, 11–13 February 2019; pp. 46–51. [CrossRef]

3. Marín, G.; Casas, P.; Capdehourat, G. DeepMAL—Deep Learning Models for Malware Traffic Detection and Classification. arXiv
2020, arXiv:2003.04079.

4. Zhang, W.; Wang, J.; Chen, S.; Qi, H.; Li, K. A Framework for Resource-aware Online Traffic Classification Using CNN. In
Proceedings of the 14th International Conference on Future Internet Technologies, Phuket, Thailand, 7–9 August 2019; pp. 1–6.
[CrossRef]

5. Hwang, R.H.; Peng, M.C.; Huang, C.W.; Lin, P.C.; Nguyen, V.L. An Unsupervised Deep Learning Model for Early Network
Traffic Anomaly Detection. IEEE Access 2020, 8, 30387–30399. [CrossRef]

6. Zhang, X.; Chen, J.; Zhou, Y.; Han, L.; Lin, J. A Multiple-Layer Representation Learning Model for Network-Based Attack
Detection. IEEE Access 2019, 7, 91992–92008. [CrossRef]

7. Xu, L.; Zhou, X.; Ren, Y.; Qin, Y. A Traffic Classification Method Based on Packet Transport Layer Payload by Ensemble Learning.
In Proceedings of the 2019 IEEE Symposium on Computers and Communications (ISCC), Barcelona, Spain, 29 June–3 July 2019;
pp. 1–6. [CrossRef]

https://doi.org/10.7910/DVN/O5A0ZV
http://doi.org/10.1109/ICOIN.2017.7899588
http://dx.doi.org/10.1109/ICAIIC.2019.8669045
http://dx.doi.org/10.1145/3341188.3341195
http://dx.doi.org/10.1109/ACCESS.2020.2973023
http://dx.doi.org/10.1109/ACCESS.2019.2927465
http://dx.doi.org/10.1109/ACCESS.2019.2927465


Network 2022, 2 642

8. Draper-Gil, G.; Lashkari, A.H.; Mamun, M.S.I.; Ghorbani, A.A. Characterization of Encrypted and VPN Traffic using Time-related
Features. In Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP), Rome, Italy,
19–21 February 2016; pp. 407–414. [CrossRef]

9. Carela-Español, V.; Bujlow, T.; Barlet-Ros, P. Is our ground-truth for traffic classification reliable? In Proceedings of the 2014
International Conference on Passive and Active Network Measurement, Los Angeles, CA, USA, 10–11 March 2014; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 98–108. [CrossRef]

10. Garcia, S.; Grill, M.; Stiborek, J.; Zunino, A. Vedula, V.; Lama, P.; Boppana, R.V.; Trejo, L.A. An empirical comparison of botnet
detection methods. Comput. Secur. 2014, 45, 100–123. [CrossRef]

11. McDermott, C.D.; Majdani, F.; Petrovski, A.V. Botnet detection in the internet of things using deep learning approaches. In
Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018;
pp. 1–8. [CrossRef]

12. Ray, S. Commonly Used Machine Learning Algorithms (with Python and R Codes). 2017. Available online: https://www.
analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/ (accessed on 3 February 2022).

13. Brownlee, J. A Tour of Machine Learning Algorithms. 2019. Available online: https://machinelearningmastery.com/a-tour-of-
machine-learning-algorithms/ (accessed on 3 February 2022).

14. Yungaicela-Naula, N.M.; Vargas-Rosales, C.; Perez-Diaz, J.A. SDN-Based Architecture for Transport and Application Layer DDoS
Attack Detection by Using Machine and Deep Learning. IEEE Access 2021, 9, 108495–108512. [CrossRef]

15. Zhang, Y.; Chen, X.; Guo, D.; Song, M.; Teng, Y.; Wang, X. PCCN: Parallel Cross Convolutional Neural Network for Abnormal
Network Traffic Flows Detection in Multi-Class Imbalanced Network Traffic Flows. IEEE Access 2019, 7, 119904–119916. [CrossRef]

16. Brownlee, J. A Gentle Introduction to the Rectified Linear Unit (ReLU). 2019. Available online: https://machinelearningmastery.
com/rectified-linear-activation-function-for-deep-learning-neural-networks/ (accessed on 3 February 2022).

17. Chollet, F. Keras; Github: San Francisco, CA, USA, 2015. Available online: https://github.com/fchollet/keras (accessed on 22
September 2022).

18. Jazi, H.H.; Gonzalez, H.; Stakhanova, N.; Ghorbani, A.A. Detecting HTTP-based application layer DoS attacks on web servers in
the presence of sampling. Comput. Netw. 2017, 121, 25–36. [CrossRef]

19. Vedula, V.; Lama, P.; Boppana, R.V.; Trejo, L.A. On the Detection of Low-Rate Denial of Service Attacks at Transport and
Application Layers. Electronics 2021, 10, 2105. [CrossRef]

20. Wei, Q.; Dunbrack, R.L., Jr. The role of balanced training and testing data sets for binary classifiers in bioinformatics. PLoS ONE
2013, 8, e67863. [CrossRef]

21. Cross-Validation (Statistics): Repeated Random Sub-Sampling Validation. 2022. Available online: https://en.wikipedia.org/
wiki/Cross-validation_(statistics)#Repeated_random_sub-sampling_validation (accessed on 3 February 2022).

22. Fox, G.; Boppana, R.V. Replication Data for: Detection of Malicious Network Flows with Low Preprocessing Overhead. Harv.
Dataverse 2022. [CrossRef]

23. Precision and Recall: Definition (Classification Context). 2022. Available online: https://en.wikipedia.org/wiki/Precision_and_
recall#Definition_(classification_context) (accessed on 3 February 2022).

24. Kirkpatrick, K. Software-defined networking. Commun. ACM 2013, 56, 16–19. [CrossRef]

http://dx.doi.org/10.5220/0005740704070414
http://dx.doi.org/10.1007/978-3-319-04918-2_10
http://dx.doi.org/10.1016/j.cose.2014.05.011
http://dx.doi.org/10.1109/IJCNN.2018.8489489
https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/
https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/
https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
http://dx.doi.org/10.1109/ACCESS.2021.3101650
http://dx.doi.org/10.1109/ACCESS.2019.2933165
 https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
 https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://github.com/fchollet/keras
http://dx.doi.org/10.1016/j.comnet.2017.03.018
http://dx.doi.org/10.3390/electronics10172105
http://dx.doi.org/10.1371/journal.pone.0067863
https://en.wikipedia.org/wiki/Cross-validation_(statistics)#Repeated_random_sub-sampling_validation
https://en.wikipedia.org/wiki/Cross-validation_(statistics)#Repeated_random_sub-sampling_validation
http://dx.doi.org/10.7910/DVN/O5A0ZV
https://en.wikipedia.org/wiki/Precision_and_recall#Definition_(classification_context)
https://en.wikipedia.org/wiki/Precision_and_recall#Definition_(classification_context)
http://dx.doi.org/10.1145/2500468.2500473

	Introduction
	Background
	Raw Network Traffic Analysis
	Proposed Model
	Early Flow Classification

	Methodology
	Preprocessing
	Packets as Images
	Model Implementation
	Datasets
	Analysis Specifications

	Results
	Discussion
	USTC16 Analysis
	USTC16 Results Comparison
	Analysis of CIC17 and UTSA21 Datasets
	Confounding Factors
	Live Analysis

	Conclusions
	References

