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Abstract: The ever-increasing demand for services of end-users in the Internet of Things (IoT) often
causes great congestion in the nodes dedicated to serving their requests. Such nodes are usually
placed at the edge of the network, becoming the intermediates between the IoT infrastructure and
Cloud. Edge nodes offer many advantages when adopted to perform processing activities that are
realized close to end-users, limiting the latency in the provision of responses. In this article, we
attempt to solve the problem of the potential overloading of edge nodes by proposing a mechanism
that always keeps free space in their queue to host high-priority processing tasks. We introduce a
proactive, self-healing mechanism that utilizes the principles of Fuzzy Logic, in combination with a
non-parametric statistical method that reveals the trend of nodes’ loads as depicted by the incoming
tasks and their capability to serve them in the minimum possible time. Through our approach, we
manage to ensure the uninterrupted service of high-priority tasks, taking into consideration the
demand for tasks as well. Based on this approach, we ensure the fastest possible delivery of results to
the requestors while keeping the latency for serving high-priority tasks at the lowest possible levels.
A set of experimental scenarios is adopted to evaluate the performance of the suggested model by
presenting the corresponding numerical results.

Keywords: self-healing systems; task management; pervasive computing; Fuzzy Logic; task offloading

1. Introduction

A common challenge that the scientific community has to face today is the overloading
of processing nodes, which leads to serving fewer requests, increasing the final latency
and performance. Overloading happens when the resources of a processing node are
depleted to the point where it cannot handle incoming requests; thus, it will not respond to
them accordingly. This phenomenon can be easily met at the edge infrastructure, where
numerous nodes can be ‘connected’ with a high number of Internet of Things (IoT) devices
and the Cloud data centers. It is estimated that by the year 2030, approximately half
a trillion devices will be connected to the Internet. At the same time, every Internet
user is expected to use about 257 GB per month [1]. Edge nodes convey resources that
can be adopted to process data reported by IoT devices, minimizing the latency in the
provision of the outcomes for the requestors. Requests can have the form of the execution
of simple queries upon data or the extraction of machine learning models that can be
adopted for decision making either locally to peers or the Cloud back end. The edge
nodes receive requests that take the form of tasks which are placed in the local queue
before the local resources are allocated for their execution. Tasks, apart from the data
upon which the desired processing should be executed, may have priorities: a common
approach to discern immediate processing activities that are usually requested when real-
time applications should be supported. In this paper, we propose a proactive self-healing
model that maintains a specific number of tasks in the local queue, leaving free room for
hosting high priority processing activities. Our approach focuses on the minimization of
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the latency that high-priority tasks may face in overloaded nodes. The proposed model is
strategically chosen to cover any type of network. Our model does not focus on the network
level, but it is node oriented. We look at the individual behavior of the node, empowering
it to cover the uncertainty when it receives tasks and tries to handle them. In our case, we
are referring to a higher level since we are not looking at network characteristics. We care
about maintaining self-healing in the dimension of QoS at a high level and in this sense,
the self-healing that we do is transparent.

One can find multiple efforts in past studies that try to solve the overloading problem
mainly focusing on activities performed in a network. For instance, in [2], the authors study
an M/M/1 queue subject to alternative behaviors. They assume that the properties of the
queue fluctuate randomly over time. The authors also consider two operational conditions
which allow the modelling of queues based on two modes of arrivals with variable high–
low rates. If the current environment leads to a traffic congestion, the switch to the other
environment (i.e., operational condition) may yield a favorable consequence for the length
of the queue, achieving a stable system. In [3], a self-healing approach is proposed in order
to maintain connectivity in reconfigurable networks. In this paper, the case of the network
being compromised by an attack is studied. The suggested distributed algorithm deletes
the affected node and reconfigures the network structure to maintain its functionality. This
approach, however, is limited only to reconfigurable networks, in contrast to the approach
we propose, which can be functional no matter the type of network and the status of edge
nodes. Both refs. [4,5] focus on a task offloading approach to manage the high load in
mobile devices by offloading computational and heavy tasks to nearby edge nodes. This
way, the presented model aims at reducing the task processing delay and minimizing the
overall service time for latency-sensitive (IoT) applications. In [6], the authors introduce a
framework in which the tasks with high computing requirements are offloaded from the
end devices to the edge nodes. An intelligent task offloading scheme that generates the
corresponding offloading decision profiles in varying scenarios is presented in [7]. This
scheme combines machine learning and a learning-based offloading strategy based on
historical data. In [8], the authors propose a low-complexity, greedy, heuristic algorithm to
cope with the task offloading problem in a multi-cell Mobile-Edge Computing network.

In [9], the authors formulate the offloading of tasks using binary variables to determine
the best task offloading choices for mobile users. A model for simultaneous resource
allocation and offloading decision optimization is suggested for mobile edge computing.
Another task offloading technique for mobile edge computing systems is described in [10].
The authors take a real-world scenario into consideration while optimizing the software
runtime environment with task offloading. A reinforcement-learning algorithm is proposed
in [11] to deal with the resource management issue in edge servers and choose the best
offloading strategy for reducing system costs, such as energy usage and delay. In [12–14],
the authors adopt the principles of Optimal Stopping Theory (OST) to deal with the
challenge of determining when to offload data to edge servers for computing analytics
tasks. At the same time, the authors take into account the overall delay caused by each
server. Furthermore, in [15], the authors extend the aforementioned works, assuring the
Quality of Service (QoS) and reducing the anticipated execution time for tasks. The QoS is
also taken into consideration in [16]. The authors introduce a heuristic algorithm to handle
the offloading decision, and assign priority to nodes that control the order in which they
will perform the task offloading. Finally, in [17], a deep-reinforcement-learning algorithm
is adopted for dealing with the same problem. The purpose is to perform task offloading in
Vehicular Fog Computing, taking into account the priorities of tasks.

In contrast to the aforementioned approaches, the novelty of our paper is that the
proposed model has the ability to keep enough space in the local queue to host high-priority
tasks and tasks that exhibit a high demand avoiding offloading decisions for these tasks.
This way, we ensure that requestors will receive the final response in the minimum possible
time. At the same time, when a node is detected as potentially overloaded, low priority
tasks are offloaded to peer nodes. Our ultimate goal is to minimize the times that the queue
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is full with obvious negative effects in the performance of the node as it is necessary in such
cases to offload all the incoming tasks no matter their priority. We propose the adoption
of a statistical method that reveals the trend and the probability of overloading based on
the rates of incoming tasks and the rate of execution. The probability of overloading is
combined with the trend of the rate of execution adopting a Fuzzy Logic system in order to
handle the uncertainty in decision making. The proposed model works in a self-healing
way since without external intervention, the node achieves high performance in real time,
as it manages to handle the overloading situations in such a way so as to execute locally a
high percentage of high-priority and high-demand tasks, providing results in the shortest
possible time. More specifically, this overload avoidance provides continuous service to the
aforementioned tasks, keeping latency low and QoS high. The following list reports on the
contributions of our work:

• We propose a self-healing model for maximizing the number of high-priority tasks
served by an edge node. We pursue keeping free space in the local queue to host those
tasks in support of real-time applications;

• We ensure the smooth operation of edge nodes under heavy traffic, avoiding over-
loading scenarios;

• We achieve the efficient management of the incoming load by taking the appropriate
decisions for the offloading actions, taking into consideration the priority of tasks
combined with their demand;

• We report on an extensive evaluation process of the proposed model, revealing its
pros and cons.

The rest of the paper is organized as follows. Section 2 outlines our problem and pro-
vides the main notations adopted in our model. In Section 3, we present the experimental
results extracted out of the proposed mechanism. Finally, in Section 4 we conclude our
paper by briefly summarizing the proposed mechanism and its benefits. We also discuss
the findings and their implications, as well as our future research plans.

2. Preliminaries and Scenario Description

The ever increasing need for task servicing within the next years prompted us to
develop a proactive self-healing mechanism that aims to solve the node overloading
problem caused by the large amount of tasks. In the model we developed, we adopted a
statistical method on the one hand and a Fuzzy System on the other. The first one facilitates
the execution rate trend estimation, while the second one can more easily handle the
uncertainty in decision making.

2.1. Scenario Description

We consider a set of nodes N =
{

G1, G2, . . . , Gn
}

which interact between them-
selves and with their environment to collect data and execute various processing activities,
i.e., tasks. The collected data that every Gi locally stores are in the form of d-dimensional
vectors i.e., Xt = [xt

1, xt
2, . . . , xt

d] where the index t depicts the time instance when Gi re-
ceives them. This means that the recording of Xt at the assumed discrete time instances
t ∈ {1, 2, 3, . . .} defines a time series dataset upon which Gi may be requested to execute
various processing activities. Those requests can be initiated by users or applications,
indicating the execution of tasks upon the collected data and the extraction of knowledge.
Apparently, for realizing the desired processing activities, Gi adopts the local resources
to perform the requested execution of tasks and store the outcomes. An additional step
involves the communication with the requestor to deliver the final results.

We assume that Gi maintains an M/M/1/K queue; i.e., we consider a limited capacity
of the local queue where the incoming tasks are placed before the local resources are
allocated for their execution [18]. Gi serves the incoming requests for processing in a First-
Come-First-Served (FCFS) order to apply ‘fairness’ in the allocation of resources. However,
there are multiple scenarios where some tasks could have higher priority than others,
especially when we consider that Gi should be able to support real-time applications. For
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instance, imagine that Gi is an edge node and should respond to a query that demands
information about the traffic in a specific sub-area. Gi should immediately respond to this
query; otherwise, any delay may cause bottlenecks in the decision making, relying on the
outcomes of the processing with clear potential negative consequences in the execution of
the supported applications.

Gi does not want to be overloaded and has to offload the incoming tasks to its peers,
causing additional delays in the provision of results. The research question that governs this
paper is to assist Gi in maintaining the size of the queue below a pre-defined threshold θ,
leaving space for hosting high-priority tasks. A monitoring process should be applied that
will result in alerts when there is an increased risk of Gi being overloaded; i.e., the number
of tasks in the queue is above θ. The discussed alerts will, consequently, be adopted to ‘fire’
a task management mechanism locally. Obviously, the scenario of having Gi overloaded
is met based on the rate of receiving the incoming tasks and the rate of executing them.
In dynamic environments, these two rates are continually updated, especially when we
consider bursts of tasks reported in Gi. We propose the adoption of an uncertainty-based
reasoning mechanism to manage the uncertainty in the detection of Gi as overloaded and
the utilization of the aforementioned task management model to secure that there is always
room for hosting high-priority tasks in Gi (the number of tasks in the queue should be less
than θ).

A pictorial representation of the operation of an edge node in our scenario can been
found in Figure 1.

Figure 1. Proposed model adapted to an edge node.

The proposed model is easy to implement in real systems. Initially, the adoption of
a component is required, which will have the role of decomposing the tasks into their
characteristics. Then, the information will pass through the module we created in order to
facilitate the management of the tasks, as shown in Figure 2.

Figure 2. Components that constitute UPSHM.
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2.2. Task Management

The arrival of tasks in Gi is assumed to be governed by a Poisson process with rate
λ. Based on this assumption, we can easily obtain the number of tasks Z(t) that arrive
during the interval (0, t] that follows a Poisson distribution, described by the corresponding
Probability Mass Function (PMF) [19]:

P[Z(t) = k] =
e−λt(λt)k

k!
, k = 0, 1, 2, ... (1)

The inter-arrival time instances follow an exponential distribution with the respective
Probability Density Function (PDF) given by the following equation [19].

fI(x; λ) = λe−λx, x, λ > 0 (2)

where λ represents the rate of arrivals. Under the same rationale, we consider that the time
instances depicting the conclusion of the execution of tasks are governed by an exponential
distribution with the following PDF [19]:

fS(x; µ) = µe−µx, x, µ > 0 (3)

where µ depicts the service rate of Gi. In the above-discussed PDFs, we adopt an index
(I or S) to depict the distribution that corresponds to the arrival or the execution of tasks,
respectively. Based on the previous assumptions, we can easily observe that the average
inter-arrival time and the average service time is given by the following equations [19]:

Ω[I] =
1
λ

(4)

Ω[S] =
1
µ

(5)

Equation (6), represents the traffic intensity in an M/M/1/K system given by the ratio
of the arrival rate, compared to the service rate. The following equation holds true [18,19]:

ρ =
λ

µ
(6)

With simple calculations, we can deliver the probability of having v tasks in Gi’s local
queue, as the following equation expresses [19]:

Pv =


(1−ρ)ρv

1−ρK+1 , ρ 6= 1, 1 ≤ v ≤ K

1
K+1 , ρ = 1, 1 ≤ v ≤ K

(7)

If we assume that θ tasks should be at most in the local queue, we can easily calculate
the probability of overloading, i.e., Pδ, as follows [19]:

Pδ =
K

∑
v=θ

Pv (8)

θ is the threshold for considering Gi as overloaded and it should start offloading
the upcoming tasks to peer nodes. For instance, offloading can be performed through
the adoption of various techniques such as [20–24]. With the proposed model, we are
able to support Gi to maintain a free space for high-priority tasks, based on a proactive
approach [25]. We have to notice that the processes upon which the offloading decisions
and the selection of the appropriate peers to host the offloaded tasks take place lies beyond
the scope of this paper.
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2.3. Trend Estimation

Let us consider discrete time intervals where we record the inter-arrival rate of tasks
and their execution rate. Obviously, if λ >> µ, Gi is not stable, it will certainly be
overloaded. However, in real setups, we can observe fluctuations in the realization of λ and
µ. Hence, we decide to focus on every discrete time interval (e.g., minutes, hours, days, etc.)
and deal with the rate of execution µ as a time series dataset. Our target is to check the trend
of the execution rate in order to support the decision making concerning the offloading of
tasks. In simple words, if we see that µ increases, we can postpone the offloading of tasks
to eliminate the time required for sending tasks to peers and obtaining the final results to
deliver them to the requestor. For instance, new tasks placed for execution may request
simple processing activities or actions that can be based on previous results; thus, their
re-use can significantly reduce the execution time. We rely on the time series {µ1, µ2, . . .}
where µj is the execution rate at each discrete interval and apply a simple yet powerful
technique for extracting the trend of the execution rate. This technique is Kendall’s tau
statistic [26,27]. Kendall’s coefficient (τ) is a non-parametric statistical method that is
adopted to measure the correlation and the relationship strength between two measured
quantities. This coefficient is applied on the aforementioned µ time series {µ1, µ2, . . .}. The
τ value is bounded in [−1, 1] and calculated with the following equation:

τ =
S
(n

2)
(9)

where n is the number of µ upon which τ is applied and S depicts the Kendall Score which
is computed as follows:

S =
n−1

∑
i=1

n

∑
j=i+1

sign(µj − µi) (10)

sign(µj − µi) =


1, µj − µi > 0
0, µj − µi = 0
−1, µj − µi < 0

(11)

The closer to +1 the value of τ is, the more increasing the trend becomes, while the
most decreasing trend is achieved when τ is very close to −1. The data have no trend
through time when τ does not significantly differ from zero. In our model, we normalize τ
in the unity interval ([0, 1]).

2.4. Uncertainty-Based Estimation of Overloading

Our model uses two parameters to detect if a node tends to become overloaded or not.
The first parameter is τ, which shows the trend of µ through the considered time intervals.
The second parameter is Pδ, which depicts that the status of the local queue and the number
of tasks on it exceeds a pre-defined threshold θ. The realizations of τ and Pδ are used as
inputs to define the antecedent part of our Mamdani Fuzzy System and set a value for the
consequent part, i.e., the Overload Indicator (OI) bounded in the unity interval. We define a
fuzzy knowledge base adopted every time a node receives a request for new processing in
the form of a task. We propose a set of Fuzzy Rules (FRs) formulated as follows: “If the
probability of the number of tasks exceeding θ is high and the trend of service rate is low,
the OI for that node should be high”. The proposed FRs have the following structure:

IF Pδ is A1 AND τ is A2 THEN OI is B,

where A1, A2 and B are the membership functions of the corresponding fuzzy sets. We
characterize the value of A1 and B by the fuzzy sets Extreme Low, Low, Medium, High
and Extreme High and the value of A2 through the fuzzy sets High Negative, Low Negative,
Neutral, Low Positive, and High Positive. In our Mamdani Fuzzy System, we adopt triangular
membership functions for the definition of fuzzy sets for variables Pδ, τ and OI and involve
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the centroid defuzzification method for the calculation of the final crisp output value,
i.e., the value of OI. We have to notice that FRs and membership functions for the proposed
Mamdani Fuzzy System are defined by the experts. We consider a knowledge base with 25
rules, i.e., a rule for every combination of the two inputs.

2.5. Offloading Strategy Based on the Overloading Indicator

Assume that the outcome of the Fuzzy System, i.e., the OI, indicates that the local
queue will be overloaded and offloading actions should take place. We can consider the
following cases. Case A: the number of tasks in the local queue is greater or equal to θ
(our mechanism delays detecting the overloading status); Case B: the number of tasks in
the local queue is less than θ (our mechanism proactively detects the overloading status).
In Case A, we opt to offload all the upcoming tasks to peers and high-priority tasks will
be locally placed if there is space for that. In Case B, we propose the use of an additional
mechanism that opts to keep some tasks locally until the threshold θ is as follows: high-
priority tasks and tasks that exhibit a high demand locally are kept in the queue only if we
do not violate θ.

A study on how the demand for tasks may affect their management can be found
in [28]. Hence, we can benefit from re-using previously calculated results, spending less
resources and maximising the node performance. The proposed processing is depicted in
Algorithm 1.

Algorithm 1 Algorithm for Task Offloading based on OI

while True do
Receive a task
OI = FuzzySystem(τ, Pδ)
if Queue is full then

Offload the task
else

if OI > β then . β is a pre-defined threshold
if Number of local Tasks ≥ θ then . Case A

if Task has high priority then
Place the task in the local queue

else
Offload the task

end if
else . Case B

if Task has high priority OR high demand then
Place the task in the local queue

else
Offload the task

end if
end if

end if
end if

end while

3. Results
3.1. Setup and Performance Metrics

The experimental evaluation of the Uncertainty-driven Proactive Self-Healing Model (UP-
SHM), relies on the Tasks Simulation Dataset (www.iprism.eu/assets/DatasetTasksOffloading.
zip, accessed on 15 July 2022) and the comparison with a Baseline Model (BM) which is
described in [6]. More specifically, the authors use a mechanism that decides whether a
task needs to be offloaded when a resource constraint occurs. In our scenario, we consider
the aforementioned mechanism as the BM, and we assume that the resource constraint

www.iprism.eu/assets/DatasetTasksOffloading.zip
www.iprism.eu/assets/DatasetTasksOffloading.zip
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concerns the case in which the queue is full. Moreover, we include in the comparison an
algorithm named Decision Maker (DM), which is described in [29] and has been adapted
to our scenario. The goal of our experiments is to prove that UPSHM has the ability to
manage the incoming tasks in such a way so as to minimize the times when the node is
overloaded offloading the tasks, ignoring both their priority and their demand. The dataset
mentioned above contains E = 3564 instances representing tasks that arrive in a node
in W = 100 time instances. More specifically, at every instance, we record the following
data for every task: the ID of the task, the required service time of the task, the arrival
time, the priority value and the demand indicator. The number of tasks in each time
instance follows a Poisson distribution and the service and task arrival times follow an
exponential distribution. The rates of both exponential distributions are selected separately
for each experiment. In addition, the priority and the demand values follow the uniform
distribution. For every experiment, we randomly generate the values of λ and µ, based on
the uniform distribution in the intervals [10, 60] and [10, 40], respectively. For comparison
purposes, we define the aforementioned BM which performs an offloading action when
the local queue of a node is full, regardless of the priority or the demand of tasks. In the
comparison between the performance of UPSHM and BM, we pay attention to the number
of tasks that the node executes locally. This quantity is expressed by the φ metric which
depicts the service rate in a node and is defined by the following equation

φ =
ξ

E
(12)

where ξ is the number of executed tasks and E is the total number of tasks that arrive
in the node. The higher the number of the tasks that are executed locally, the lower the
delay in the provision of results becomes. Additionally, we examine the performance of
both BM and UPSHM on the percentage of high-priority tasks that are executed locally.
The following equation defines the aforementioned metric; i.e.,

η =
κ

L
(13)

where κ is the number of high-priority tasks which are executed locally and L is the total
number of high-priority tasks that arrive in the node. When η → 1, it is indicated that the
node executes all the high-priority tasks locally, delivering the results to the requestor in
the minimum possible time. The same scenario stands for the tasks with high demand
rates, where ω is the number of tasks that are executed locally. The next equation holds
true:

ω =
ζ

γ
(14)

where ζ is the number of high-demand tasks which are executed locally and γ is the total
number of tasks with high demand. The aim behind the choice of these metrics, i.e., η, ω, is
to check the ability of an edge node to execute as much as possible high-priority tasks and
tasks with high demand rates locally, respectively. The ability of both UPSHM and BM to
maintain free space for the high-priority tasks is described by the ψ metric as follows:

ψ =
q
E

(15)

where q is the total number of times that the local queue is full. This metric allows us to
check how often the load in a node is maximized. When ψ→ 1, it is indicated that the node
offloads tasks uncontrollably, without taking into consideration the priority or the demand
of tasks. The average time that the model requires to make a decision concerning whether
a task will be offloaded or not is given by the following equation

AvT =
h
E

(16)
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where h is the time that the model spend to take all decisions for the offloading actions.
In order to set up and execute the experiments, we created a simulator written in

Python. For the UPSHM, we perform simulations for the following values of thresholds;
β = {0.80, 0.84, 0.88} and θ = {85%, 90%, 95%}. The DM requires the initialization of a
threshold (Mlow), which depicts when the node’s memory has a low level of free space.
In our experiments Mlow = 15%.

3.2. Performance Assessment

Figure 3 presents the performance of the models in terms of the metrics φ, η, ω, and ψ,
while θ = 85% and β = 0.80. In these results, we notice that the BM and the DM execute a
higher percentage of tasks than the UPSHM. However, when we focus on the percentage of
high-priority tasks executed locally, we can easily come to the conclusion that the proposed
model clearly outperforms the BM and the DM by executing all high-priority tasks locally.
Additionally, as far as the percentage of tasks with high demand is concerned, the UPSHM
exhibits better performance, executing almost all of these tasks locally. In the last metric,
i.e., ψ, the ability of our model to maintain free space in the local memory for high-priority
tasks is indicated, since the queue of the node did not become full during the W time
instances. Moreover, the DM achieves equal performance in the same metric. In summary,
from the results of the first experiment we can clearly observe the significant dominance of
our model in the performance metrics that concern the execution of the high priority and
high demand tasks.

Figure 3. Comparison of results for all performance metrics, for θ = 85% and β = 0.8 .

The time comparison between the models for θ = 85% and β = 0.8 is presented in
Figure 4. As we can easily observe, the UPSHM requires more time than BM and DM to
make an offloading decision.
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Figure 4. Time comparison between the models for θ = 85% and β = 0.8.

In the second experimental scenario, we set β = 0.88 and keep θ = 85%. Figure 5
depicts the performance of BM, UPSHM and DM for metrics φ, η, ω and ψ. We notice that
the BM executes slightly lower percentages of received tasks than the UPSHM and DM.
Nevertheless, when we examine the percentage of high-priority tasks executed locally, we
can easily perceive that the difference in the performance among the BM, DM and UPSHM
is noticeably higher. In the same figure, we can also see the behavior of the models in the
execution of tasks with high demand and also the frequency of the local queue having
no space for all types of tasks. We can easily come to the conclusion that the UPSHM
has the best performance for the ω metric by executing more tasks with high demand in
contrast to the BM and DM. Additionally, concerning the ψ metric, we notice that both the
UPSHM and the BM exhaust the capacity of the local queue several times in contrast to
DM. This means that in this specific experimental scenario, using either BM or UPSHM for
the management of the incoming tasks, the node is forced to offload the incoming tasks
without considering their priority or their demand. Even in this case, though, the UPSHM
outperforms the BM with regard to the ψ metric, as the number of times that the local queue
is full is significantly less than the BM. Nevertheless, the DM achieves the best performance
in this metric.

Figure 5. Comparison of results for all performance metrics, for θ = 85% and β = 0.88.
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In Figure 6 we see the comparison between the models based on the AvT; similar to
the previous scenario, the UPSHM needs more time to make the offloading decision in
contrast to the other models.

Figure 6. Time comparison of results for BM, UPSHM, DM.

From the previous two experimental scenarios, we observe that the UPSHM charges
the node with more computational load than the BM and DM. However, we can accept
this extra computational load because the node achieves clearly better performance in
the metrics φ, η, ω and ψ. The performance of the individual node we are studying is not
affected by the rest of the nodes in the network since the communication of the node with
other nodes is not required to apply UPSHM.

In Figure 7, we present a comparison of the performance of the UPSHM for different
values of β and θ = 85%. We can observe by the values of the φ metric that the higher
the β is, the more tasks are executed locally. Concerning the number of tasks with high
priority or high demand, η and ω depict that they are affected in the opposite direction to
φ, as we notice a slight decrement in their values. When we focus on the number of times
that the local queue is full, we perceive that it is increased when we increase β, as the ψ
metric shows.

Figure 7. Comparison of UPSHM performances for all metrics for different values of β threshold.
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In Figure 8, we present the time performance of UPSHM for θ = 85% and β = {0.8, 0.84, 0.88}.
As we can see, AvT decreases as the value of β increases. AvT in the worst case is equal to 0.7
seconds and in the best case it is approximately equal to 0.53 seconds.

Figure 8. AvT of UPSHM for different values of β.

In Figure 9, a comparison of the performance of the UPSHM for different values of
θ and β = 0.8 is presented. As previously, the values of φ and ψ metrics increase as θ
increases. In contrast, the values of metrics η and ω are affected in an adverse direction.

Figure 9. Comparison of UPSHM performances for all metrics for different values of the θ threshold.
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In Figure 10, when we focus on the effect of θ on the time performance of the UPSHM,
we can see that AvT decreases as θ increases. As previously, in the worst case, AvT is equal
to 0.7 s, while in the best case the average time for decision offloading is slightly higher
than 0.6 s.

Figure 10. Average Time for decision offloading of UPSHM for different values of θ.

Observing Figures 7 and 9, we can draw conclusions concerning the effect of θ and
β in the performance of the UPSHM. We see that φ has almost the same performance in
both figures. When we focus on η, ω and ψ, we notice that both thresholds affect the
performance of the UPSHM in a negative manner. However, an increment in β has greater
negative effects than the increment of θ. Additionally, from Figures 8 and 10 we notice that
the less time UPSHM spends to make the decision, the greater the values of the ψ and φ
metric become. Simultaneously, the values of η and ω increase.

4. Discussion

A significant research subject is the prevention of processing nodes overloading, which
leads to performance degradation and the need for task offloading to peer nodes. Some of
these offloaded tasks might be in high demand or high priority; thus, efficient mechanisms
that allow serving locally more of these tasks should be created. In this paper, we approach
this problem by developing a self-healing mechanism that makes a node capable of handling
a large volume of tasks without being critically overloaded. This way, we succeed in serving
a high percentage of tasks with high priority and demand since we always try to keep
space for them in the local queue based on a proactive approach. In the proposed model,
we adopt an uncertainty-based reasoning mechanism to manage the uncertainty in the
detection of the node as overloaded and the utilization of a monitoring process to secure
that there is always enough free space for hosting high-priority and high-demand tasks.
We evaluate the performance of our model through various experiments and compare it
with a baseline method. Our experimental evaluation demonstrates that the suggested
approach can effectively help to achieve the desired outcomes, which are supported by
numerical results. Our future research directions involve the definition and adoption of
a more complex self-healing methodology for making a decision about when a node is
considered as overloaded and when an offload action should take place. Furthermore,
an additional future direction is the study of the mobility of users, in combination with the
tasks that they render as high demand.
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