
Article

QoE Modeling on Split Features with Distributed Deep Learning

Selim Ickin 1,* , Markus Fiedler 2,* and Konstantinos Vandikas 1,*

����������
�������

Citation: Ickin, S.; Fiedler, M.;

Vandikas, K. QoE Modeling on Split

Features with Distributed Deep

Learning. Network 2021, 1, 165–190.

https://doi.org/10.3390/

network1020011

Academic Editor: Amitava Datta

Received: 6 July 2021

Accepted: 26 August 2021

Published: 28 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Ericsson AB, 164 83 Stockholm, Sweden
2 Department of Technology and Aesthetics (DITE), Blekinge Institute of Technology,

374 24 Karlshamn, Sweden
* Correspondence: selim.ickin@ericsson.com (S.I.); markus.fiedler@bth.se (M.F.);

konstantinos.vandikas@ericsson.com (K.V.)

Abstract: The development of Quality of Experience (QoE) models using Machine Learning (ML)
is challenging, since it can be difficult to share datasets between research entities to protect the
intellectual property of the ML model and the confidentiality of user studies in compliance with data
protection regulations such as General Data Protection Regulation (GDPR). This makes distributed
machine learning techniques that do not necessitate sharing of data or attribute names appealing. One
suitable use case in the scope of QoE can be the task of mapping QoE indicators for the perception
of quality such as Mean Opinion Scores (MOS), in a distributed manner. In this article, we present
Distributed Ensemble Learning (DEL), and Vertical Federated Learning (vFL) to address this context. Both
approaches can be applied to datasets that have different feature sets, i.e., split features. The DEL
approach is ML model-agnostic and achieves up to 12% accuracy improvement of ensembling various
generic and specific models. The vFL approach is based on neural networks and achieves on-par
accuracy with a conventional Fully Centralized machine learning model, while exhibiting statistically
significant performance that is superior to that of the Isolated local models with an average accuracy
improvement of 26%. Moreover, energy-efficient vFL with reduced network footprint and training
time is obtained by further tuning the model hyper-parameters.

Keywords: Quality of Experience (QoE); machine learning; distributed split learning; distributed
ensemble learning; decentralized learning

1. Introduction

Quality of Experience (QoE) addresses the degree of user delight or annoyance [1].
For service and network providers, it is important to control the factors that contribute
to QoE, which are captured by QoE models. The ultimate goal for QoE modeling is to
develop a QoE model that accurately predicts QoE under any circumstances and in any
contexts. However, due to different contexts and facilities, such local datasets can be very
different from each other in scope and contents, which makes it hard for a generic model to
capture the local conditions and adapt the QoE predictions accordingly.

QoE modeling is challenging due to QoE assessment being multi-dimensional, user-
centric, multi-sensory [2], and decentralized by its nature due to a high number of naturally
distributed QoE indicators and contributing factors. Accordingly, observations of different
users, application, and network aspects need to be performed and coordinated. These
requirements are hard to meet, due to the efforts and costs of subjective user studies
and various QoE assessment tools. To achieve a superior QoE model, a comprehensive
user study that covers all possible contexts is required, where the collected datasets are
eventually shared publicly to advance reproducible research. While ML is promising due to
its capability of mining large amounts of data that consists of high number of confounding
factors, it also brings about a set of challenges, foremost data privacy aspects and specific
machine learning issues revolving around the diversity that different datasets may have in
terms of their different feature space.

Network 2021, 1, 165–190. https://doi.org/10.3390/network1020011 https://www.mdpi.com/journal/network

https://www.mdpi.com/journal/network
https://www.mdpi.com
https://orcid.org/0000-0002-7594-2663
https://orcid.org/0000-0001-6925-0954
https://doi.org/10.3390/network1020011
https://doi.org/10.3390/network1020011
https://doi.org/10.3390/network1020011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/network1020011
https://www.mdpi.com/journal/network
https://www.mdpi.com/article/10.3390/network1020011?type=check_update&version=2


Network 2021, 1 166

From generation to generation, every network technology is expected to outperform
its predecessor in terms of capacity, coverage and QoE, accompanied by increased demands
for sustainability [3]. Furthermore, networks are expected to become increasingly dense [4],
thus requiring greater adoption of the edge computing paradigm to reduce latency and
protect data privacy. Consequently, end-to-end data collection, network performance
monitoring and development of forecasting models for network performance prediction
and/or QoE estimation, will be even harder due to the inherently distributed observations
at different parts of the network path such as RAN (Radio Access Network), transport,
and applications, which are expected to be provisioned by different business segments
such as operators and service providers. Eventually, all measurements performed on
different segments need to be shared to compute overall end-to-end QoE. This necessitates
efficient and automated enablers such as distributed machine learning on multiple non-
shared datasets that have potentially different feature sets. This way, a complete QoE model
can be assembled leveraging end-to-end distributed single observations from different
applications, networks, and energy performance sensors.

1.1. QoE Machine Learning Challenges

Towards achieving a superior QoE model, a comprehensive user study that covers
all possible contexts is required in principle, where the collected datasets are eventually
shared publicly to advance reproducible research. Machine learning models might be
appealing especially when the corresponding feature set is large and complex with very
large datasets [5]. On the other hand, there are data privacy aspects that need to be pre-
served, hence data may not be copied/transferred, processed, or modeled in a centralized
computation node in a Fully Centralized way. Even so, continuous shuffling and transfers
of large size sets of raw data is costly and energy-consuming. The overall ML challenges
related to QoE modeling are itemized as follows:

• Model transfer might be inadequate: QoE data in the source domain (the domain that
trains and sends out the pre-trained model), where the model is developed, and QoE
data in the target domain (the domain that receives and uses the pre-trained model re-
ceived from the source domain), where the model is to be deployed for real operations,
need to have a similar data distribution as they need to represent the same underlying
conditions and features. The authors of [6] show that when a model is trained with
features that are only specific to the source domain, negative transfer (reducing the
model performance) can occur, since the specific features at the source domain do not
represent the target domain well enough. In addition, model transfer might leak infor-
mation from the source domain to the target domain since there is no intermediate
aggregation process before the target domain receives the model.

• Privacy-sensitive dataset: Specific local features in the source domain are potentially
sensitive; detailed user profiles, among others, cannot be shared easily [7] without
explicit consent. In addition, it may happen that one research group is interested in a
QoE model particularly for video contents with high spatio-temporal complexity, e.g.,
within the scope of developing action games, while another research group is inter-
ested in assessing QoE for a different type of video content. At the same time, there
might still be a common subset of non-sensitive indicative metrics, i.e., ML features,
representing the underlying QoE factors in multiple domains or decentralized entities.

• Distributed user observations with different features: Model training can be inherently
split into multiple partitions in cases when datasets are collected at multiple physically
separated computation nodes. A typical example is when operators collect network
datasets, while applications collect User Equipment (UE)-specific datasets on the
application layers and user interfaces of applications. Another example is that some
QoE research entity collects a user dataset with observations that are different from
those obtained by other research entities. For example, operators that serve different
customer segments, with different preferences and expectations might have different
user profiles. These two datasets can be trained on separate models, which are trained



Network 2021, 1 167

only on local features, but collaboratively to improve local model accuracies further
with minimally exchanged information in between.

1.2. Distributed Learning in QoE

As of today, two non-distributed learning techniques are most common in QoE model-
ing, (e.g., in crowd-sourcing based QoE assessment techniques, QoE databases that require
special access): Isolated and Fully Centralized, and we use the two as reference scenarios.
The most conventional technique for QoE model training today is Isolated, where every
entity trains individual decoupled machine learning models on the locally collected in-
herently decentralized datasets. We also use a Fully Centralized learning technique as a
reference as this is an existing way of QoE model training in the community in the cases
when moving data in between entities is not an issue. In a Fully Centralized reference
scenario, all training datasets are collected into one physical storage where the training of
all dataset is performed. Opposed to this, a local dataset is visible only to its owner (where
the data originates from) and the single computation node that collects the dataset trains
the model. The comparison between conventional Fully Centralized and Isolated machine
learning model training methodologies in the scope of QoE is given in Figure 1.

Distributed learning techniques can be split into two major categories: model-parallel
and data-parallel based on the state-of-the-art distributed learning survey [8]. Accordingly,
we position our article as stated in bold in Figure 2. In the model-parallel category, datasets
can be shared from where they are originally produced/collected, and multiple models
with the exact same type and architecture are used in the training. The main goal is to
utilize more resources in parallel for faster computation and training. In this scenario,
the datasets are completely or partially accessible by other computation nodes, by means
of redistributing and reshuffling of datasets among those nodes. All collaborating nodes
can communicate and share parameters and some data with each other. In the data-parallel
category, both models and datasets are not necessarily identical, and datasets cannot be
shared from where they are originally produced and collected. The main goal here is
to reduce the privacy leakage of a raw dataset by avoiding moving raw data, making
this solution an enabler for combining the individual learned knowledge from individual
local models and from inherently decentralized datasets. In this scenario, the individual
workers can share only trained model parameters in between each other in a fully- or
semi-decentralized way, as in the case of gossip learning [9]. In case any direct communica-
tion in between workers is not allowed, two main groups can be presented: (i) Horizontal
Federated Learning (hFL), in which the models need to train on the exact same feature set.
(ii) Distributed Ensemble Learning (DEL) and Vertical Federated Learning (vFL), in which
feature sets are not necessarily identical. Existing hFL techniques [10,11] enable model
training without moving datasets in between different computation nodes by means of
sending an aggregation of model parameters. Yet, hFL necessitates all computation nodes
to have the same observation attributes or, more specifically, ML feature sets. In the cases
where the feature sets are different in between collaborating computation nodes of research
entities due to a distributed heterogeneous sensor environment, other decentralized learn-
ing techniques that permit collaborative training with distributed unique attributes in each
computation node are necessary to be considered.

Therefore, in this article, we mainly study two distributed data-parallel-based learn-
ing techniques for datasets that are potentially and inherently decentralized in feature
space: (i) a baseline DEL technique; (ii) a Distributed Split Learning (SplitNN)-based vFL
technique [12,13] with partial neural networks. A combination of predictions of different
independent trained models, is known to perform better than each model alone [14]. DEL
is a technique that utilizes that property by averaging the output of the pre-trained models
at the source domain(s) with the target domain model output to maximize the accuracy at
the target domain. The datasets in the source domains need to have at least a subset of the
feature set of the target domain. It is a suitable technical solution, but requires tuning the
weights between the source, and the target model by monitoring metrics that quantify data



Network 2021, 1 168

diversity such as Kullback–Leibler (KL) divergence [15]. We mainly propose and evaluate
vFL, which is based on a split neural network architecture, where each split partition of
one big neural network (NN) model can reside on different physical computation nodes.
This allows each worker to train a NN model jointly even on completely different feature
sets on each participating node. In addition, since all worker nodes including the master
node collaborate to train one single machine learning model, the information exchange
in between them is bidirectional. The requirement is a consensus and synchronization in
between the participating nodes about the task they are solving. In the case of multi-sensor
distributed local datasets, e.g., IoT datasets, the observations that are collected on different
distributed local nodes need to be from the same time interval. Similarly, in the case of
QoE user studies, any observations that are collected via different measurement modules
from the same users in different labs would need to follow the same sequential way of
assessment. It could be for instance also applicable in the cases of a very large-scale user
study where many participants experience the exact same video (or accomplish the same
task), while every research entity considers only subparts of the observations of the subjects
due to limitations of sensor availability, or assessment tools in the user labs. For instance,
one research entity is collecting data from one particular user with sensor set A, while
another entity uses sensor set B.

The main differences between DEL and vFL techniques are illustrated in Figure 3.
The local feature sets are denoted by S0 and S1 for the groups 0 and 1, respectively.
The trained models in every node are denoted by Mi, where i denotes the group id where
M is trained. The target variables that the models aim to estimate are denoted by yi.
In DEL, the pre-trained model at the source domain (G1) with features S1 is transferred to
the target domain (G0). Two separate inference processes are then executed at G0; one via
the received M1 model with generic features S1, and one with M0 model with both S0 and
S1. Finally, the two outputs from the two models, y′i are averaged to obtain the final model
output. In vFL, there is no transfer of model from source to target domain, instead they
are trained jointly. The intermediate representation output at the cut-layer of the neural
network models in vFL in both groups are given with matrices, X′i . The latter are then
transferred to the master node and are used as input to the master neural network model.
Finally, the joint model output y′ is obtained. In DEL and vFL, there is no requirement for
the computation nodes to have the exact same set of attributes. In DEL, the source domain
should have at least a subset of the features of the target domain (e.g., shareable non-
sensitive feature subset); and in vFL, the attributes can be totally orthogonal as they can be
completely decoupled. Detailed descriptions of DEL and vFL are given in Section 5. Overall,
we consider vFL to be more flexible than DEL and consider DEL as rather a baseline.

Figure 1. Comparison of conventional Centralized and Isolated Training scenarios.



Network 2021, 1 169

Figure 2. The scope of the article is illustrated in bold on the state-of-the-art distributed learning
structure [8].

Figure 3. Topologies of Distributed learning approaches are illustrated. S0 and S1 denote two
different sets of machine learning input features.

Our contributions differentiate from prior-art as follows:

• Low-level NumPy based framework for split-learning: Our vFL implementation is based
on Split Neural Network (SplitNN) [12], but unlike PySyft [16], it does not operate
on existing frameworks with high level abstraction such as TensorFlow or PyTorch.
Hence, the most important difference in our framework is that we have full control
including the communication protocol and the algorithms. This enables low level algo-
rithmic development to optimize for computation, privacy, network footprint, training
time, and energy-efficiency while sustaining good and robust model development
in diverse scenarios especially in heterogeneous data settings. Our framework is not



Network 2021, 1 170

limited to a simulation on a single node and can easily be deployed on a Kubernetes
cluster.

• A comparison of different techniques for training datasets with different feature spaces: In this
article, we present Distributed Ensemble Learning (DEL), and Vertical Federated Learn-
ing (vFL) to address the aforementioned challenge. These techniques are appealing
for different domains including the telecommunication segment where datasets are
typically decentralized. The DEL approach is machine learning model-agnostic, while
the vFL approach is based on neural networks. Furthermore, we recommend a few
techniques to reduce network footprint, training time, and energy consumption of the
model training process.

• Jointly trainable QoE modeling with split features: While we are demonstrating our vFL
solution in this article, to the best of our knowledge, this work is the first of its kind,
that demonstrates a QoE model training in a distributed deep learning setting with
split features.

This article is structured as follows: In Section 2, we first present related work on
hFL, DEL, and vFL. Section 3 presents the dataset and the feature description, that is then
followed by a motivation of a QoE use case related to attribute splitting in Section 4.
The contribution of each attribute to the model prediction is studied in detail, and com-
pared via a use case where content-based features such as Temporal Complexity index (TI)
and Spatial Complexity index (SI) cannot be shared. Section 5 presents the vFL technique
together with a baseline DEL technique. Results including the model performance eval-
uation and comparison of different experiment scenarios from the two approaches are
given in Section 6. The article is concluded in Section 7 along with a brief discussion on
limitations and directions for future work.

2. Related Work

Decentralized and distributed learning techniques such as ensemble learning, transfer
learning, and federated learning are well-known [17], and we foresee the importance of
these methods in future generation mobile network architectures, especially since we see
these techniques as enablers for energy-efficient QoE modeling while preserving privacy.
Yet, there exists very little work in the literature that leverage decentralized learning
technologies such as federated learning in QoE [11].

• Horizontal Federated Learning (hFL): In horizontal federated learning [10], models
are trained collaboratively by combining different models which have been trained
locally on the same feature set, to a single model at a master node. When such a model
is shared back to the individuals that contributed to the training process, immediate
benefits can be detected for those that have similar data distribution representing
similar underlying conditions and context. In [18], feature selection is studied within
Neural Network-based Federated Learning, where model parameters are divided
into private and federated parameters. Only the federated parameters are shared
and aggregated during federated learning. It is shown that this model customization
approach significantly improves the model performance while not sharing raw data
in between.

• Distributed Ensemble Learning (DEL): In [19], the authors used transfer learning to
estimate the labels of an unlabeled dataset where the labels represent user emotions.
In [11], a Round Robin-based learning technique (inspired by Baidu-AllReduce [20]) is
presented within the scope of web QoE. This approach, similar to hFL, requires the
distributed domains to have at least a subset of the features (if not all) to be the same.

• Vertical Federated Learning (vFL): Vertical federated learning enables collaborating
nodes to jointly train a machine learning model with fully orthogonal feature sets.
Most relevant vFL implementations in the literature are: PaddleFL [21], PySyft [16],
FATE [22], and FedML [23]. Although all of the above solutions indicate great progress,
PaddleFL, FATE, and PySyft implementations were inadequate for our needs due to
their high level abstraction. The closest implementation among them all is FedML;



Network 2021, 1 171

however, we have not yet performed a complete comparison with that work and ours
as it was very recently published.

• Privacy-preserving communication: It is shown in the literature [24] that sending
model weights that emerged from training, instead of sending the actual raw dataset,
may still leak sensitive information about the ground truth used to train the model.
Therefore, there exist techniques to further protect privacy on the shared weights of
the models. Techniques such as differential privacy [25] and secure aggregation [26]
can be utilized for sharing private information for the purposes of training ML models
without revealing the original dataset and also concealing the identity of the dataset’s
origin. In DEL, only the generic model (architecture and internal representation) is
shared, which is already known and as such does not need to be protected. In the
scope of this study, we consider these techniques as complementary since they can be
applied to hFL or vFL without affecting the inner workings of each approach.

• Compression: In this study, we make use of lossless Elias encoding [27] and data
compression [28] techniques not only to enable secure communication, but also to
reduce communication cost.

• QoE modeling with ML: ML techniques have been studied previously in QoE mod-
eling [29]. Furthermore, a mix of conventional and a ML based QoE modeling has
been implemented and demonstrated previously in [30]. All existing QoE models are
trained via Fully Centralized manner. Our proposed vFL in this article, can be consid-
ered as a good candidate solution to ensemble local models at the workers without
predefined model weight thresholds, and without necessitating the NN models to be
of the same architecture and feature space.

To address the intersection of challenges given in Sections 1.1 and 1.2, it is important
to develop energy-efficient, privacy-preserving, and scalable ML model training solutions
that satisfy decentralized requirements, and we think that it is only possible via tools that
help innovate via low level algorithmic development such as in the vFL framework that we
demonstrate in this article.

3. Dataset and Feature Extraction

The publicly available QoE dataset Waterloo Streaming QoE Database III (SQoE-III) [31]
is used in this article. It has been collected using a well-grounded user study methodology.
The MOS scores on the dataset are highly correlated (higher than 0.8) with well-known QoE
models such as P.NATS [32]. The dataset consists of 20 raw HD reference DASH videos,
where the video length is 13 s on average. The experiments are performed while changing
the video streaming bandwidth amongst 13 different bitrate levels ranging from 0.2 Mbps to
7.2 Mbps. The switch is performed in six categories; stable, ramp-up, ramp-down, step-up,
step-down,and fluctuation. The video sequences vary in spatio-temporal complexity. TI
(Temporal Information) is a measure of how the consecutive frames differ from each other
in time, while SI (Spatial Information) is a measure of how the pixels in a given frame differ
in between each other [33]. In the dataset, SI values are between 35 and 160; while TI values
are between 11 and 114. There were 34 subjects (ages range between 18 and 35) involved in
the study. Four of which provided outlier ratings that had to be removed. The user ratings
are collected using a rating scale, where the scores are between 0 (worst) and 100 (best).
The number of samples in the dataset was 450.

We extracted the 9 features as described in Table 1 from the raw dataset. The feature
names are also depicted with a split index such that the features that are less than the
applied split index are placed in feature subset S0, while the remaining features are placed
in feature subset S1, respectively. For example, if the split index is set to 4, the features TI,
SI, FPS and lastBitrate are placed in feature subset S0; and the remaining features nstalls,
stallTimeInitialTotal, stallTimeIntermediateTotal, bitrateTrend, and meanBitrate (as far as it exists
in the scenario) are placed in feature subset S1. In DEL, the group 0 (target domain) has
feature set S0, and the group 1 (source domain) has feature set S1. In vFL, S0 features are in
group 0 (worker 0), and S1 features are in group 1 (worker 1).



Network 2021, 1 172

Table 1. Descriptions of the extracted features for the QoE models, where the Mean Opinion Score
(MOS) is the target variable of the model.

Split Index Feature Description

0 TI Video temporal complexity

1 SI Video spatial complexity

2 FPS Played frames per second

3 lastbitrate Last playout bitrate

4 nstalls Number of stalls

5 stallTimeInitialTotal Initial stalling/buffering duration

6 stallTimeIntermediateTotal Total stalling duration

7 bitrateTrend Slope of the video playout bitrate

8 meanBitrate Average playout bitrate

MOS (target variable) Mean Opinion Score

4. Effect of Video Content on QoE

In this section, in order to motivate the use of split learning in QoE, we quantify
the effect of individual features on the QoE estimation, in particular the MOS label. We
consider an example QoE use case with splitting of the features according to different
split indexes. We test and experiment with different feature split assumptions. In the
dataset, we hypothesize through domain expertise that the specific features are the ones
related to the spatio-temporal content complexity, represented by the TI and SI features.
In order to quantify the effect of the video content, in particular, on the QoE modeling, we
performed at least 100 experiments to achieve statistical significant comparison of scenarios.
In each experiment, we randomly select 70% of data as training set, and 30% as test set.
We use the coefficient of determination R2 and mean absolute error (MAE), indicating
the mean absolute difference between the true label and the predictions, as accuracy
evaluation metrics. 95% confidence interval half-sizes are also obtained. XGBoost model of
a Python Scikit-learn [34] implementation was used and the hyper-parameters were set as
follows: eta to 0.004, maximum depth to 4, subsample to 0.5, subsample ratio of columns
when constructing each tree to 1, and objective function’s evaluation metric to root mean
squared error.

4.1. Training with or without Content Features

We first train an XGBoost [34] (a robust widely used tree-based ensemble ML algo-
rithm) both with and without the specific TI and SI features. Next, the model accuracy
performance of each case is compared. We observe that the inclusion of content-related
features, i.e., TI and SI, makes the model a more powerful predictor with a rather high
R2 score (an increase from 0.74 ± 0.01 to 0.80 ± 0.01) and low MAE (a decrease from
6.16 ± 0.07 to 5.41 ± 0.07), indicating that content-related features are important QoE fac-
tors.

4.2. SHAP Sensitivity Analysis

We use the TreeExplainer by SHAP [35] to apply sensitivity analysis and observe the
features that are important for the decision of the trained ML model. In Figure 4, the effect
of each input feature on model prediction is quantified from most to least important (de-
scending order from top to bottom on the y-axis). Red regions indicate that the absolute
value of the effect of the feature on the model prediction is high, while blue regions indicate
the contrary. The dots being on the positive side of the x-axis indicate that the effect is posi-
tive, a higher feature value contribute to a higher MOS, and vice-versa if they are located
on the negative side. The SHAP diagram indicates that the average bitrate (meanBitrate) is
the most important metric in the model prediction, contributing to raising the MOS value



Network 2021, 1 173

as expected. Similarly, the total video stall duration, stallTimeIntermediateTotal, has a high
influence on the negative side, which implies that it tends to lower the expected MOS
value. The TI and SI features are considered more important than other features such as
the number of stalls, nStalls, and the initial stalling time, stallTimeInitialTotal.

Figure 4. SHAP values of input features.

5. Distributed Learning Approaches on Split Feature Scenarios

We study two distributed learning techniques as detailed in this Section, DEL and vFL.
In this experiment setup, we formulate both problems as binary classifications. The labels
that are ranging between 11 and 97 are quantized into two classes: the values that are less
than the median of the MOS scores (62) are considered to be the “poor-or-worse” class 0,
and the labels that are more than the median of the MOS scores are considered to be the
“good-or-better” class 1. Different from the state-of-the-art [36] definition of this split, we
do not put a buffer zone between the two classes as was done for instance in the E-model,
in order not to decrease the sample size in the dataset further.

In the experiments under this Section, the performance evaluation of the correspond-
ing scenarios are performed via at least 10 iterations. Due to the binary classification
formulation of the estimation models, evaluation metrics such as precision, recall, and F1-
score are considered. Precision is a measure that calculates the ratio between the number of
true ”good-or-better” estimations and the total number of “good-or-better” estimations,
i.e., the number of true positives divided by the sum of numbers of true and false positives.
Recall is the ratio of true “good-or-better” estimations to the number of actual “good-or-
better” values, i.e., the number of true positives divided by the sum of the number of true
positives and the number of false negatives. The harmonic mean of precision and recall
yields the F1-score in decimal points ranging between 0 and 1. A higher F1-score indicates
a better-performing model.

We use boxplots, 95% confidence intervals and the Dunn post hoc test [37] to quantify
the pair-wise statistical significant difference between the scenarios. We evaluate the
F1-score model accuracy on the test sets, after the training phase is completed. The
improvement percentages of accuracy values, x, are computed as given in Equation (1).

ximproved − x
x

∗ 100 (1)

For example, if the mean F1-score of all experiment iterations of scenario A is 0.80;
and if the mean F1-score of all experiment iterations of scenario B is 0.896; and if the two
distributions are statistically significantly different according to Dunn post hoc test (p-value
less than 0.05), then we consider a statistical significant 12% improvement in F1-score in
Scenario B as opposed to Scenario A.



Network 2021, 1 174

5.1. Neural Network

The Neural Network algorithm [38], is used in this study, which consists of matrix-like
located neurons that are connected to each other over multiple layers. The higher the
number of layers, the deeper a neural network becomes. The neurons on the same layer
are not connected within each other but only to the neurons in the previous and/or in the
next layer. In a forward pass, a linear transformation at every neuron occurs, where the
outputs from the previous layer are computed via a weighted sum followed by addition of
some bias. Next the outputs of each neuron undergo a non-linear transformation via the
activation function and then passed to all or a subset of neurons of the next layer of the
neural network. The error computation is made at the layer where the ground-truth actual
labels are present. Depending on the magnitude of the computed error, the weights of
every neuron are re-adjusted with a gradient operation (partial derivative), in other words
aiming at minimizing the final computed loss. This is called backwards propagation. One
can also adjust when to update the neuron weights by setting the hyper-parameter called
batch size. If the batch size is set to B, then the model weights will be updated at every time
all neurons process B samples amongst the whole set. This is repeated sequentially for
multiple rounds on all layers, first via forwards propagation from left-to-right, and then
later via backwards propagation right-to-left, until the error does not decrease anymore.
At this point, the model is considered as converged. The higher the B, the more time it takes
the model to update its weights, while very small B makes the model weights update very
frequently. Therefore, a suitable B needs to be selected. Epoch is the number of times the
whole neural network sees all training samples. In the case of N training samples, and if all
batches are different and complementary, it then mathematically takes N/B rounds (i.e., all
sample set size divided by the batch sample set size) for the model to perform one epoch
of training. We first set the batch size to the training set size. In the last section, where we
further perform hyper-parameter tuning to improve energy-efficiency of the vFL training,
we change the batch size and hence the number of data samples to perform forward-pass
and backward-propagation in every round.

5.2. Distributed Ensemble Learning (DEL)

Our approach consists of both ML and domain expertise; hence we reveal the compos-
ite nature of a QoE model that is built on well-defined generic and specific features. We
suggest dividing the QoE model into two parts, a generic base model that is universally appli-
cable, and a specific local model that is specific and dependent on local context. Thereby, we
relax the requirements towards the goal of achieving one superior customized QoE model.
We hypothesize that, when a generic base model is used, a QoE model customization at
the target domain is needed to improve the accuracy further, since the generic model in
the source domain lacks additional features that are strongly representative for the target
domain. Customization of the model in the target domain is done via its ensemble with the
pre-trained source domain model. The DEL process does not necessitate these two models
being of the same algorithm type, hence making the process agnostic to the involved ML
algorithms, which provides the freedom of choice of algorithms that fit best to global and
local domains, respectively. Thus, we present a baseline algorithm-agnostic DEL.

In classical QoE studies, there are (rather strict) assumptions about which context
and content parameters matter. Hence, an additional process of distinguishing the generic
features from the specific ones needs to be developed. In QoE studies, there is a wide
variety of content being shown to users for assessments, where the dataset includes some
features that are only specific to that group. Since a consensus of running large scale QoE
experiments exactly on the same or similar video content is not feasible (if ever possible), it
could be a good practice to distinguish those features from the training of the generic base
model. This way, the generic base model would be trained only with generic features that
yield similar effects on the MOS values that are ideally universally applicable.

The procedure consists of multiple steps as described in Figure 5. The assumption is
that there exists a generic base model, which is pre-trained with a rather large dataset via



Network 2021, 1 175

participation of preferably multiple research entities (G1 at source domain) using generic
features as shown in Step 1. In Step 2, a new research group (G0 at a target domain) trains
a separate ML model with any choice of feature set locally unique to the collected data
samples in the target domain. In Step 3, the research group (G0 at target domain), receives
the pre-trained generic model together with the metadata containing information about the
set of generic features. Next, the locally trained specific model and the transferred generic
model outputs are ensembled during inference. The ensemble is a weighted average of the
predictions of the base model and the local model on the test set as given in Equation (2).

y′test,G0 = W0M0,[S0,S1](Xtest,G0) + W1M1,[S1](Xtest,G0) (2)

Mi,j is the trained model with the training set of group i, using the feature set j. For the
transferred M1, the feature set consists of generic features (GF), while the model M0 can be
trained on both GF and specific features (SF). The model weights Wi for group i are decimal
numbers within the range of 0 and 1, which add up to 1. y′test, G0 is the weighted average
of the two trained models’ inferred outputs on the test set of G0, Xtest,G0. In DEL there
were 32, 64, and 2 neurons in the first, second, and final layers, respectively. The non-linear
activation functions were identical, i.e., ReLu on all hidden layers, and Sigmoid on the last
layer. We trained the models until the saturation points of F1-score values. All layers were
located on the same group (domain), where they are trained. If neural networks or any
other continuous training-based algorithm are used, the local target domain can further
update the transferred model weights with only the generic features at the target domain
and send the new generic model back to the source domain.

Figure 5. DEL procedure.

DEL experiments are performed on two scenarios: (i) when the dataset is split based
on the content, and (ii) when the dataset is split randomly into two groups. In the first one,
the samples with TI and SI values less than 85 belonged to group 0 (target domain) and
the rest is assigned to group 1 (source domain). The value 85 is obtained via data-driven
manner as it was the boundary value that clearly separated the groups of data points
(basically two clusters of points). The dataset sizes are 353 and 97 for groups G0 and G1,
respectively. In the latter random-split scenario, 25% of all dataset is in group 0, and 75%
in group 1. Both groups contain similar TI and SI ranges. The dataset sizes are 112 and
338 for groups G0 and G1, respectively. The distributions (kernel density estimates) of the
values of the attributes in the two groups on the two scenarios are given in Figures 6 and 7,
respectively together with the KL-divergence statistics in between the two groups. Small



Network 2021, 1 176

p-value in the level of 0.05 or less, indicates a statistically significant difference in between
the group datasets on the 95% confidence interval.

Figure 6. Kernel Density Estimate plots of all features are given in the case of content-based split.

5.3. Vertical Federated Learning (vFL)

In order to introduce greater flexibility beyond DEL, we present vFL as a rather more
appealing approach in this Section. In a vFL setting, the worker nodes train on different
attributes that belong to the same samples across all nodes in parallel. The neural network
is divided into multiple partitions, and each partition is handled at a different worker
computation node. As in any Stochastic Gradient Descent (SGD) based machine learning
algorithm, it consists of a forward propagation and a backwards propagation phase. Each
collaborating worker does a forward pass, i.e., multiplying the input parameters with a
linear transformation followed by a nonlinear function Sigmoid until the last layer of the
local neural network, i.e., cut-layer. The other workers can do similar transformation on
the features until the cut-layer. Next the inferred values from all workers’ last layers are
sent over via a communication channel to the master node, where they are concatenated.
The master node then performs a forward-pass until its last layer where the error is
computed on the ground-truth labels that belong to the corresponding samples. Based
on the computed error, the master node performs a backwards-propagation and updates
the weights of its neurons up until its cut-layer, and then splits the gradients of its last
layer among the workers and transmits them to the corresponding workers. The workers
then perform backwards-propagation continued from the received gradients from their cut-
layers until their first layer, and updates all the weights of their neurons at each layer. This
completes one round. This modular structure (e.g., cascaded layers) of neural networks
allows to design its architecture based on use case requirements in a flexible way. In vFL,
there were 32 neurons at the first layers, and varying number of neurons (ranging from 2
to 32) at the cut-layers (as refer to the layer interfacing to the master node). The neuron
count at the cut-layer of the master node was the sum of the neurons of the cut-layers of
the worker nodes. The master node had one hidden layer with 32 neurons, and a final layer
with 2 neurons. The non-linear activation functions were identical, i.e., ReLu on all hidden
layers, and Sigmoid on the last layer. Signaling flows between the participating nodes via
open-source message broker, RabbitMQ [39]. In this prototype vFL solution is implemented
in a Kubernetes cluster where the computation nodes (workers and master) are spawned as



Network 2021, 1 177

independent individual pods that communicate with each other via RabbitMQ. During the
run time, we monitor the accuracy, the training time, and the amount of bytes being sent
and received at every computation pod. In a real-life scenario where multiple collaborating
entities federate, the computation nodes are expected to run on different Kubernetes
clusters. Kubernetes supports multiple clusters, therefore a communication link between
multiple Kubernetes clusters would enable vFL in a real-life setting.

Figure 7. Kernel Density Estimate plots of all features are given in the case of random-split.

Transmitting the inferred values from the worker nodes to the master, and the com-
puted gradients from master to the worker nodes has two advantages as compared to
hFL. First, the matrices sent and received from workers to the master node are B×M 2D
matrices. Here B is the batch size, and M is the number of neurons only on the cut-layer
of the worker models. Therefore, the trained model weights from all layers of the local
models are not communicated unlike the case of hFL. Especially, if the last interface layer
(cut-layer) neurons can be kept small size, the transmitted data can further be reduced.
Second, the worker nodes only receive the gradients in response to the subset of its own
neurons in its cut-layer. Hence, a worker does not see other parts of the model that belong
to the other workers, which can be considered to be protecting privacy more unless being
deliberately attacked and re-engineered. Regardless, we do not argue that the vFL is a
replacement for hFL due to the fundamental differences in their functionality. There might
be use cases that are more applicable to one technique as compared to the other. We provide
a short summary on these training methodologies in a comparison Table 2.

We experimented with different partitions of the attributes that are placed in two
different workers. We used split indices 2, 4, and 6. If the split index is set to 2, SI and TI
are in worker 0, and the rest of the features are in worker 1. If the split index is set to 4, SI,
TI, fps, and lastBitrate are in worker 0, and the rest of the features are in worker 1 according
to Table 1. The logic is similar when split index is 6. The feature with split index larger than
6 will then be placed in worker 1, and the remaining will be in worker 0.



Network 2021, 1 178

Table 2. Summary of comparison between the distributed learning techniques.

Technique Features What Is Shared? Training
Traffic Direction? Data Location

hFL All features Full model. Input and Output at
are same. Bidirectional and iteratively. the same worker.

DEL Target has some Full model. Input and Output at
source features. From Source to Target once. the same worker.

vFL All features Cut-layer outputs and gradients. Input at the workers.
are different. Bidirectional and iteratively. Output at the master.

6. Results
6.1. Distributed Ensemble Learning (DEL)

In order to achieve a more accurate model on G0, we combine M0,[S0,S1] with the
generic learnings from M1,S1. We tested how this ensemble model performance (according
to Equation (2)) changes with respect to varying weights between 0.0 and 1.0 with a step
size of 0.1. Accordingly, W0 = 0 indicates a scenario when model trained with G1 dataset
is applied on the G0 dataset; while W0 = 1 represents the isolated scenario when only
the model trained on G0 dataset is applied on the G0, hence no ensemble of models.
The experiments are performed first with the very strong QoE indicator feature meanBitrate
feature, and second without it.

6.1.1. Content-Based Split

We experimented on G0 test set, with a content-based split between G0 and G1.
The results are given with or without meanBitrate feature in Figures 8 and 9, respectively.
For the scenario when meanBitrate is included, as given in Figure 8, weighting factors
W0 = 0.6 and 0.5 yielded the best accuracy when the split index is set to 2 and 4, as shown
in Figure 8a,b, respectively. This indicates that involvement of target and source domain
models approximately equally increases the model performance to the greatest extent.
When the split index is set to 6, weighting factors W0 = 0.1 yielded the best F1-score, 0.9.
We think the reason for this is that the G1 model might be more generic and robust with
less features where one of those features is a strong QoE indicator such as meanBitrate.

The results of the scenarios without the meanBitrate are given in Figure 9. The benefit
of DEL is not clear in all split index settings. When the split index is set to 4 and 6, G0
works best alone by using its own model. Only when split index is set to 2, a slight increase
in model performance is observed when the model is ensembled using W0 = 0.6. We test
the statistical significance of this scenario in Section 6.1.3.

6.1.2. Random Split

The experiments are repeated when the groups have the same distribution of all
features. In order to see the potential benefit of DEL in G0, we set the data size of G0
3 times less than the one in G1. The results are given with or without meanBitrate feature
in Figures 10 and 11, respectively. In all experiments, except the ones without meanBitrate
with feature split index greater than 2 (i.e., Figure 11b,c, ensembling with low W < 0.5,
benefits G0, as expected as the F1-score values are greater than or equal to the Isolated
G0 scenario. For the cases as depicted in Figures 10 and 11, G1 model did not help G0,
potentially as G1 lacked a model that is trained on meanBitrate. This result amplifies the
evidence that DEL benefits the target domain well, when source domain has large-size and
generic dataset.



Network 2021, 1 179

(a) All features with split index = 2. (b) All features with split index = 4.

(c) All features with split index = 6.

Figure 8. DEL on group 0 when all features (with meanBitrate) are used and split into two workers.
G0 and G1 are split with respect to the content-based criteria.

(a) All features without meanBitrate with split
index = 2.

(b) All features without meanBitrate with split
index = 4.

(c) All features without meanBitrate with split
index = 6.

Figure 9. DEL on group 0 when all features (but without meanBitrate) are used and split into two
workers. G0 and G1 are split with respect to the content-based criteria.



Network 2021, 1 180

(a) All features with split index = 2. (b) All features with split index = 4.

(c) All features with split index = 6.

Figure 10. DEL on group 0 when all features (with meanBitrate) are used and randomly split into
two workers. G0 has 3 times less data as compared to G1.

(a) All features without meanBitrate with split
index = 2.

(b) All features without meanBitrate with split
index = 4.

(c) All features without meanBitrate with split
index = 6.

Figure 11. DEL on group 0 when all features (but without meanBitrate) are used and randomly split
into two workers. G0 has 3 times less data as compared to G1.



Network 2021, 1 181

6.1.3. Isolated G0 vs. DEL

In this section, we quantify the statistically significance of the results using the
Dunn post hoc test. Since DEL looks beneficial for the scenarios that are presented in
Figures 8a,b and 9a, we deep-dive into those scenarios in particular. We perform the statis-
tical test on conditions where the G0 weight yields the highest DEL F1-score accuracy.

Content-based split scenarios: For the scenario with the meanBitrate in the feature
set, when the split index was set to 2, the p-value was 0.000027 at W = 0.6, which is the
weight that DEL benefits G0 statistical significantly 6%. When the split index was set to
4, the p-value was 0.00001 at W = 0.5 again benefiting G0 in a statistically significant
manner. The improvement of G0 accuracy was 9%. When the split index was set to 6,
the p-value was 0.00002 at W = 0.1 again benefiting G0 in a statistically significant manner.
The improvement of G0 accuracy was also 9%.

For the scenario without the meanBitrate in the feature set, we apply the statistical
significance test on split index set to 2, where the best weight is set to W0 = 0.6. The p-value
was 0.05 indicating DEL marginally benefits G0. For the remaining scenarios, DEL does not
help G0.

Random-split scenarios: There were two scenarios where DEL benefited G0 in a
statistically significant manner. First scenario was when meanBitrate feature is included,
and the split index was 6. In that case, the p-value is calculated as 0.03 at weight W0 = 0.4
with a F1-score improvement of 9%. The second scenario was when meanBitrate was
excluded and where the split index is set to 2, p-value is calculated as 0.007 at weight
W0 = 0.2 which yielded a 12% F1-score improvement.

6.2. Vertical Federated Learning (VFL)

In this section, we present results from the main proposed approach, Vertical Federated
Learning (vFL) that enables model training collaboratively without manual effort such as
adjusting weights and selecting common features as in DEL as this is done during the
iterative adjustment of the neuron weights during training. We compare vFL with the
reference Isolated and Fully Centralized settings. The learning curves of the workers during
the training phase on the training dataset, which show the F1-score accuracy on the training
set, are depicted over the 4000 federation rounds in Figures 12 and 13 when the feature
meanBitrate is included and excluded in the feature set, respectively. The mean values of
the accuracy values are given together with the standard error around the mean (with 95th
percentile upper and lower bounds) values on the corresponding training round are given
via ‘x’ marker. The blue curve depicts the G0 F1-score accuracy over the rounds; the orange
curve depicts the G1 F1-score accuracy over the rounds; red curve depicts the vFL F1-
score accuracy over the rounds; and the green curve depicts the reference Fully Centralized
F1-score accuracy over the rounds. All experiments are conducted via the same number
of rounds, (where one round consists of one forward-pass and backward-propagation),
and we consider 4000 rounds as the average model saturation point. We evaluate and
compare model performances after the models reaches the saturation. The learning rate of
each NN model was set to 0.01.

Indeed, if a worker has a strong indicator feature for MOS estimation such as meanBi-
trate (located at index position 8), it enables the G1 to perform almost as good as the vFL,
while G0 benefits from vFL setting. This case is depicted in Figure 12a–c, when the split
index is set to 2, 4, and 6, respectively. Although the G0 F1-score accuracy increases with
the number of features (i.e., with the split index) in G0 as depicted from left to right, this
increase is not enough to reach the level of vFL accuracy, which shows that G0 would still
significantly benefit from vFL.

We repeat the experiments when the meanBitrate feature is removed from the dataset,
and the corresponding results are given in Figure 13. In this case, if the split index is set to a
value such as index 4, such that features are distributed in a more balanced manner, then the
benefit of vFL is revealed clearly on both groups; G0 and G1 as given in Figure 13b. This is
the scenario where both groups (workers) have equal number of model indicator features,



Network 2021, 1 182

where none of them dominates alone. Once the groups collaborate via vFL, they both
benefit each other yielding a significant increase in the F1-score accuracy values. Similarly
when the split feature is set to 6, both groups benefit from vFL as given in Figure 13c,
although not as much as in the case when the split index is 4.

(a) All features with split index = 2. (b) All features with split index = 4.

(c) All features with split index = 6.

Figure 12. vFL when all features are used and split into two workers.

(a) All features without meanBitrate with split
index = 2.

(b) All features without meanBitrate with split
index = 4.

(c) All features without meanBitrate with split
index = 6.
Figure 13. vFL when all features without meanBitrate are used and split into two workers.



Network 2021, 1 183

Boxplot figures (Figures 14 and 15) present the comparison of the test set F1-score
accuracy distribution of the scenarios that include and exclude the feature meanBitrate after
the vFL models are trained for 4000 rounds.

(a) All features with split index = 2. (b) All features with split index = 4.

(c) All features with split index = 6.

Figure 14. F1-scores of vFL when all features are used and split into two workers.

(a) All features without meanBitrate with split
index = 2.

(b) All features without meanBitrate with split
index = 4.

(c) All features without meanBitrate with split
index = 6.

Figure 15. F1-scores of vFL when all features without meanBitrate are used and split into two workers.



Network 2021, 1 184

6.2.1. Isolated vs. vFL

For the experiments with the meanBitrate feature, when the split index was set to 2,
the p-value between G0 and vFL was 3 × 10−6 (+100% accuracy change), while p-value was
0.575 (p >> 0.05), which indicates again that G1 does not benefit from vFL potentially due
to the existence of the strong feature, meanBitrate. When the split index was set to 4, the p-
value was 1.1 × 10−5 for the comparison between G0 and vFL (+23% accuracy change);
while there was no statistically significant difference between the accuracy distribution of
G1 and vFL (p = 0.50). When the split index was set to 6, the p-value was 3.4 × 10−8 for the
comparison between G0 and vFL (+18% accuracy change), while it was 0.2 (p > 0.05) for
the comparison between G1 and vFL. The reason here was again due to the fact that G1
had meanBitrate feature which is alone enough to get on-par accuracy as vFL. In overall, G0
clearly benefited from the federation as vFL results were much better.

For the experiments without the meanBitrate feature, when the split index was set to 2,
the p-value of the Dunn post hoc test between G0 and vFL was 5 × 10−4 indicating that G0
significantly benefited from vFL (+94% accuracy change) as expected, since G0 had only
2 features that were rather content-related, TI and SI. The p-value between G1 and vFL was
0.10 which indicates that the F1-score distribution of the two are on-par. When the split
index was set to 4, the p-values of the Dunn post hoc test were again less than 0.05; p = 0.04
between G0 and vFL (+19% accuracy change); p = 2 × 10−5 between G1 and vFL (+24%
accuracy change). When the split index was set to 6, the p-values of the Dunn post hoc test
were both less than 0.05; with p = 8 × 10−3 between G0 and vFL (+13% accuracy change);
and p = 2 × 10−6 between G1 and vFL (+26% accuracy change). Therefore, in the latter
two cases, the vFL F1-score was better in a statistical significance sense than both isolated
group accuracies, dominating over the feature set in G0 with respect to the importance to
the estimation model.

In overall, the above results show that the vFL approach has statistically significant
performance that is superior to the Isolated local models with an average of 26% accuracy
improvement. As such, it is suitable for datasets where the whole feature set does not
contain a very important feature for the estimator.

6.2.2. Fully Centralized vs. vFL

For the scenario without the meanBitrate; according to the Dunn post hoc test, the av-
erage p-value was higher than 0.05 (0.34, 0.15, 0.74 for split index 2, 4, and 6 respectively),
rejecting the hypothesis that Fully Centralized and vFL are coming from different distribu-
tion, thus they all can be considered on-par.

For the scenario with the meanBitrate; according to the Dunn post hoc test, the average
p-value was lower than 0.05 (0.01, 0.05, 8 × 10−4 for split indices 2, 4, and 6 respectively),
accepting the hypothesis that Fully Centralized and vFL stem from different distribution,
thus yielding a conclusion that the vFL result is slightly better than Fully Centralized scenario.
We attribute the reason for the latter is due to a larger gap between the feature sets of the
two groups when the meanBitrate is included, that might be forcefully addressed by the last
few layers of neural network at the master node. In contrast in the Fully Centralized model,
the bias (potentially caused by feature quality gap) is introduced in the early hidden layers
of the neural network on the worker nodes. We will investigate this evidence further in
future work.

6.3. Optimizing vFL Training: Data Volume and Training Time Perspectives

We present results from the network footprint of the vFL and make comparisons on
different hyper-parameters. In these experiments, we set the split index to 4. We tuned the
vFL training to optimize (decrease training time, and exchanged data volume among the
nodes) while sustaining the test set’s F1-score performance. Originally, the average data
size that was transmitted was 90 KB. We used a combination of the following approaches:
reducing the number of neurons (from 32 to 8) in the cut-layers of the nodes, applying Elias-
gamma [27] coding on the transmitted data and finally, compressing it further with the lz4



Network 2021, 1 185

codec via pyarrow [28]. As the training process is iterative, the expected size of the data
being transmitted is proportional to the number of iterations. The latter depends on how
fast the model accuracy converges to an acceptable level over the rounds. A convergence
criterion can be set based on similar SOTA (state-of-the-art) techniques [40], as such when
an accuracy level that does not increase at all within the last rounds. Aside from the
privacy preserving properties, the solution is even more appealing when the partitioned
model sizes and/or the training datasets used on those local nodes are very large with very
high network footprint when transferred in between if Fully Centralized would have been
an option.

Therefore, to further improve the network footprint and the training time to potentially
yield more energy-efficient vFL, we perform a few more experiments. These experiments
involve adjusting the neuron size at the cut-layer of the vFL architecture. Table 3 reveals
the impact of the Elias encoding on the network footprint (in terms of the average number
of bytes per transmission) and the training times. The results are obtained when all
scenarios are trained with 4000 rounds. Obviously, this encoding yields a significant
reduction (average 25%) of the amounts of data to be sent across the network, which has
to come partly at the expense of increased training time (average 22%), due to additional
computation required for encoding and decoding processes at every round. The reduction
of the neurons from 32 to 8 (highlighted in bold) yields only a slight reduction of the F1-
score at similar confidence, indicating that there is significant room for savings. Eventually,
all of the aforementioned approaches reduced the size of the dataset over the round by
more than 80% (from 90 KB down to 13.5 KB).

Table 3. Average test set F1-score, network footprint, and total training time together with 95%
confidence intervals for different neuron counts at the cut-layers of both workers.

Neuron Count
F1-Score

Network Footprint [Bytes] Training Time [s]

at the Cut-Layer Elias ON Elias OFF Elias ON Elias OFF

2 0.75 ± 0.05 5413 ± 3 6348 ± 8 1472 ± 372 1378 ± 150

4 0.85 ± 0.03 8102 ± 7 10,725 ± 17 1161 ± 98 1281 ± 122

8 0.86 ± 0.01 13,522 ± 11 19,087 ± 30 1313 ± 24 1106 ± 119

16 0.87 ± 0.01 23,899 ± 22 34,165 ± 48 1806 ± 158 1624 ± 32

32 0.87 ± 0.01 44,602 ± 45 66,322 ± 118 2885 ± 166 1545 ± 114

Until this point, the presented results were from training when all samples in the
training set were used in every vFL training round. Figure 16 illustrates the impact of
reducing the batch size in the 8-neuron cut-layer case. Results for each scenario are obtained
via at least 8 experiments. We observed the performance for various batch sizes also over
different rounds on the test set. Using a randomly selected batch with a size of 32 (depicted
via green line) samples and train for 3000 rounds yielded the highest savings in terms of
both network footprint (from mean 13.5 KB to below 4 KB as annotated in Figure 16b) and
training time (from 1313 s to just above 300 s as depicted in Figure 16c) while sustaining the
F1-score at around 0.86 as seen from Figure 16a. We also observed that random selection of
batches as compared to selection of batches on an incremental index basis yielded a more
robust training. We hypothesize that the reason for this is with random batch selection,
we do not limit the model training always end up on the same batch at the last round of
vFL training, and we avoid the model to customize on the exact same batch over multiple
experiments. These examples show that a skilled fine-tuning of the vFL parameters has
great potential for computing and transmission resource (and thus energy) savings without
having to compromise on the F1-score.



Network 2021, 1 186

(a) F1-score. (b) Network footprint.

(c) Training time.

Figure 16. Average test set F1-score, network footprint, and total training time for different batch
size settings over multiple rounds, when cut-layer neuron count was set to 8 with Elias encoding.

Final remarks on comparison of DEL and vFL are given together with the conventional
Isolated and Fully Centralized scenarios in Table 4.

• Data share: Only in Fully Centralized training methodology, all the datasets that are
collected in different other entities are being transferred to a centralized computation
node to train a ML model.

• Model share: Since the data is not shared in DEL and vFL, the models have to be shared.
In DEL, all layers of the NN model at the source domain are transferred to the target
domain, while in vFL, only the computed output (so-called smashed wisdom) at the
intermediate cut-layers are transferred to the master node. In return the worker nodes
receive the subparts of gradients computed at the cut-layer of the master node.

• Sample dependency: An Isolated model can be trained with data instances of choice that
are available to the local computation node, hence there is no sample dependency on
data instances available at other nodes. In Fully Centralized scenario, the data instances
are collected from different nodes hence the overall model is dependent on the data
instances obtained from the workers. Although in DEL, data instances at the source
domain are used in training, as the pre-trained source model is transferred to the
master target domain, there is no dependency on the data instances at the source
node during inference phase. In contrast in vFL, since the data instances need to be
synchronized in time or in space, the output of the final model highly depends on the
input data instance from all workers.

• Feature dependency: As the local computation nodes can train on any available features
at the local nodes, there is no feature dependency in Isolated learning. In a Fully Central-
ized setting, all local nodes need to provide exactly the same feature space to a central



Network 2021, 1 187

computation node, hence we consider that there is a feature dependency. In DEL,
there is a requirement that at least some subset of the features need to be common
both on other source and target domain so that a knowledge transfer from source
domain to target domain on generic features can be transferred. In vFL, all features
located at the distributed nodes can be different, hence there is no feature dependency.

• Jointly trainable: Fully Centralized setting allows collaborative training with samples
received from different worker nodes. In DEL, joint training is not possible as the
knowledge transfer is unidirectional and also it is performed after pre-training phase.
The most outstanding advantage of vFL is its ability to allow joint training and infer-
ence, hence all workers can potentially benefit and perform continuous training.

• Aggregation: In DEL, the aggregation of outputs are performed by means of weighted
averaging, while in vFL the intermediate output of the workers and the computed gra-
dients are aggregated via concatenation and splitting procedure. It is again important
to emphasize that in DEL, aggregation occurs only in inference phase, while in vFL, it
is performed both in training and inference phases and in every round of training.

• Model agnostic: As long as the full dataset is available at a computation node such as in
the cases of Isolated, Fully Centralized, and DEL, there is no model dependency, hence
any suitable ML model can be selected and trained. For instance, in DEL, the model
that is transferred from the source domain can be of any algorithm, since it is not the
model that is being aggregated but instead the output of the models. The vFL is based
on Neural Network algorithm where the training occurs with a Stochastic Gradient
Descent (SGD), and it is an important requirement for workers to train on the same
algorithm (although not necessarily the exactly the same NN model structure) and
update the local neural weights.

• Worker contribution adjustment: In Isolated setting there is only one worker, which is
the local individual node. In Fully Centralized setting, the data instances from all
workers are fed into the ML model in batches, hence the ML model adjusts its weights
depending on all data instances. Therefore the contributions from every worker get
mixed. In DEL, there is a manual weight adjustment process during the inference
on the validation set depending on the magnitude of contribution of source domain
model on the final output at the target domain. vFL adjusts the weights during the
training process over the rounds, hence the adjustment of contribution of workers is
seamless and automatic.

• Network Footprint at the master and worker: The network footprint is given in the form of
mathematical formulation for both worker (source in DEL and master (target in DEL)
nodes. The expected network footprint is presented for all scenarios. W is the worker;
r is the round; s is the data instance; f is the feature; l is the NN layer; and n are the
neurons at layer, l; c is the neuron at the NN cut-layer of worker, w. As there is no
data or model shared in between training entities in Isolated learning, the network
footprint is 0. In Fully Centralized scenario, all data instances and features from all
workers have to be transferred to the central computation node. In DEL, the data is
not shared; however, the pre-trained model, which consists of multiple NN layers
with potentially many neurons at every layer, at the source domain are transferred
to the master node for only once. In vFL, only the output of the cut-layer for all data
instances and rounds is shared. In return, the worker nodes receive the gradients
calculated for the data instances, hence the traffic is bidirectional so that the total sum
is multiplied by 2.

• Accuracy: In Isolated setting, the dataset size is small, and the model training is limited
to local observations which might prevent the model to achieve accuracy values that
a Fully Centralized model (trained on with richer and large size dataset) can achieve.
We consider Fully Centralized as a model that can reach upper bound accuracy levels,
and moreover it is possible to reach on-par accuracy values without sharing datasets
using both DEL and vFL.



Network 2021, 1 188

Table 4. Comparison of different training methodologies.

Isolated Fully Centralized DEL vFL

Data share × X × ×

Model share × × X All-layers X Cut-layer

Sample dep. × X × X Synch. required

Feature dep. × X X Subset ×

Jointly train. × X × X

Aggr. × × Average Concatenate & Split

Model agnos. X X X × Neural Net.

Worker contrib. N/A N/A Manual Automaticadjustment

Worker 0 ∑
f

∑
s

v f ,s ∑
l

∑
n

vl,n 2 ∑
r

∑
s

∑
c

vr,s,c
Netw. Footpr.

Master 0 ∑
w

∑
f

∑
s

vw, f ,s ∑
w

∑
l

∑
n

vw,l,n 2 ∑
w

∑
r

∑
s

∑
c

vw,r,s,c
Netw. Footpr.

Accuracy Poor Good Good Good

7. Conclusions and Outlook

In this article, we present two distributed machine learning techniques, DEL and
vFL, which can be used for collaborative model development on decentralized datasets
with different feature sets. vFL in particular enables training machine learning models
collaboratively between QoE research entities, which potentially benefits all collaborating
entities mutually, even if the research entities have different feature sets.

We first reveal the composite nature of a QoE model, by decoupling the specific QoE
factors from the generic ones, using both domain-expertise and data-driven approaches.
We demonstrate the knowledge sharing via model transfer followed by ensemble, DEL. We
show that this process helps to customize the local model with the help from the generic
model. This is beneficial in the case when there is no sufficient local training dataset at
the target domain. In addition, due to the nature of the ensemble method, the models that
participate in the training can be of any algorithm, hence they can be freely selected. We
show that, by using DEL, a small QoE dataset with specific features at the target domain
can benefit (up to 12% improvement in estimation accuracy) further from a generic model
(received from source domain).

We primarily present vFL in the scope of QoE modeling, as a suitable technique to
train machine learning models on split features in a data-parallel distributed setting where
there exists no direct communication link in between the collaborating entities. We present
that vFL results are on-par with the Fully Centralized setting. Experiments indicated that vFL
can benefit the local nodes (on average 26%) especially when the features are split evenly
such that all split nodes have equally weak indicative features for the model estimation.
Moreover, we presented different ML techniques, thanks to our low level implementation,
for reducing the network footprint and the training time, which would help in minimizing
the energy consumption during vFL training.

In cases when the target group model lacks a large size training dataset and has at
least a subset of generic features as in the source group, DEL approach is suitable given
that the target domain model can benefit from a model trained on a larger dataset with
generic features on the source domain. From a privacy perspective, data exchanged in vFL,
is bounded by the cut-layer. Consequently this reduces the attack surface as opposed to
hFL where the entire model is shared in every iteration from each worker. At the same
time, it introduces a critical point in the architecture that can be further reinforced through
the use of known techniques such as Secure Multiparty Computation (MPC) or oblivious
protocols. Overall, we recommend the presented vFL approach due to its capability to



Network 2021, 1 189

handle datasets, with completely different feature sets, as an energy-efficient enabler which
can be applied to multiple domains/contexts.

While performing vFL experiments, certain limitations came to our attention. The
feature set size that we extracted from the raw data was limited to 9 that can be extended
with other datasets with higher feature space including the ones obtained from radio
and network layers. Despite this limitation, we believe that the extracted features were
sufficient to represent a video QoE model and to communicate our purpose in the article.
In future work, we plan to test the proposed solution on larger QoE datasets with wider
variety of feature set including more sensitive ones such as user context, user profile,
experiment setting details and device type with the consideration of model training efforts
(communication volumes; energy) directly in the modeling. Moreover, we will continue
working further on other techniques to reduce the network footprint and training time of
the proposed vFL .

Author Contributions: Conceptualization, S.I., M.F. and K.V.; Data curation, S.I.; Formal analysis, S.I.,
M.F. and K.V.; Funding acquisition, M.F.; Investigation, S.I.; Methodology, S.I.; Project administration,
S.I.; Resources, S.I.; Software, S.I. and K.V.; Validation, S.I. and M.F.; Visualization, S.I.; Writing—
original draft, S.I.; Writing—review and editing, S.I., M.F. and K.V. All authors have read and agreed
to the published version of the manuscript.

Funding: Markus Fiedler was co-funded by Stiftelsen för Kunskaps- och Kompetensutveckling with
grant number 2014/0032.

Data Availability Statement: The dataset used in this article is available publicly in the following
reference [31].

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
Following abbreviations are used in this manuscript:

DEL Distributed Ensemble Learning
ML Machine Learning
MOS Mean Opinion Score
QoE Quality of Experience
vFL Vertical Federated Learning

References
1. Le Callet, P.; Möller, S.; Perkis, A. Qualinet White Paper on Definitions of Quality of Experience. European Network on

Quality of Experience in Multimedia Systems and Services (COST Action IC 1003) 2012; Volume 3. Available online: http:
//www.qualinet.eu/index.php?option=com_content&view=article&id=45&Itemid=52 (accessed on 18 May 2021).

2. Akhtar, Z.; Siddique, K.; Rattani, A.; Lutfi, S.L.; Falk, T.H. Why is multimedia Quality of Experience assessment a challenging
problem? IEEE Access 2019, 7, 117897–117915. [CrossRef]

3. Matinmikko-Blue, M.; Aalto, S.; Asghar, M.I.; Berndt, H.; Chen, Y.; Dixit, S.; Jurva, R.; Karppinen, P.; Kekkonen, M.; Kinnula,
M.; et al. White Paper on 6G drivers and the UN SDGs. White Paper. 2020. Available online: https://arxiv.org/abs/2004.14695
(accessed on 21 June 2021).

4. Alharbi, H.A.; El-Gorashi, T.E.H.; Elmirghani, J.M.H. Energy efficient virtual machine services placement in cloud-fog archi-
tecture. In Proceedings of the 2019 21st International Conference on Transparent Optical Networks (ICTON), Angers, France,
9–13 July 2019.

5. Sogaard, J.; Forchhammer, S.; Brunnström, K. Quality assessment of adaptive bitrate videos using image metrics and machine
learning. In Proceedings of the 2015 7th International Workshop on Quality of Multimedia Experience (QoMEX), Messinia,
Greece, 26–29 May 2015.

6. Wang, Z.; Dai, Z.; Póczos, B.; Carbonell, J. Characterizing and Avoiding Negative Transfer. 2018. Available online: https:
//arxiv.org/abs/1811.09751 (accessed on 28 June 2021).

7. He, D.; Chan, S.; Guizani, M. User privacy and data trustworthiness in mobile crowd sensing. IEEE Wirel. Comm. 2015, 22, 28–34.
[CrossRef]

8. Verbraeken, J.; Wolting, M.; Katzy, J.; Kloppenburg, J.; Verbelen, T.; Rellermeyer, J.S. A survey on distributed machine learning.
ACM Comput. Surv. 2020, 53, 30–33. [CrossRef]

http://www.qualinet.eu/index.php?option=com_content&view=article&id=45&Itemid=52
http://www.qualinet.eu/index.php?option=com_content&view=article&id=45&Itemid=52
http://doi.org/10.1109/ACCESS.2019.2936470
https://arxiv.org/abs/2004.14695
https://arxiv.org/abs/1811.09751
https://arxiv.org/abs/1811.09751
http://dx.doi.org/10.1109/MWC.2015.7054716
http://dx.doi.org/10.1145/3377454


Network 2021, 1 190

9. Savazzi, S.; Nicoli, M.; Rampa, V. Federated learning with cooperating devices: A consensus approach for massive IoT networks.
IEEE Internet Things J. 2020, 7, 4641–4654. [CrossRef]

10. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A. Communication-efficient learning of deep networks from
decentralized data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Lauderdale, FL,
USA, 20–22 April 2017; Volume 54, pp. 1273–1282.

11. Ickin, S.; Vandikas, K.; Fiedler, M. Privacy preserving QoE modeling using collaborative learning. In Proceedings of the 4th
QoE-Based Analysis and Management of Data Communication Networks, Los Cabos, Mexico, 21 October 2019.

12. Vepakomma, P.; Gupta, O.; Swedish, T.; Raskar, R. Split learning for health: Distributed deep learning without sharing raw
patient data. arXiv 2018, arXiv:1812.00564.

13. Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. 2019,
10, 12. [CrossRef]

14. Wolpert, D. Stacked generalization. Neural Netw. 1992, 5, 241–259. [CrossRef]
15. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Statist. 1951, 22, 79–86. [CrossRef]
16. Ryffel, T.; Trask, A.; Dahl, M.; Wagner, B.; Mancuso, J.; Rueckert, D.; Passerat-Palmbach, J. A generic framework for privacy

preserving deep learning. arXiv 2018, arXiv:1811.04017.
17. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [CrossRef]
18. Bui, D.; Malik, K.; Goetz, J.; Liu, H.; Moon, S.; Kumar, A.; Shin, K.G. Federated User Representation Learning. 2019. Available

online: https://arxiv.org/abs/1909.12535 (accessed on 28 June 2021).
19. Hao, Y.; Yang, J.; Chen, M.; Hossain, M.S.; Alhamid, M.F. Emotion-aware video QoE assessment via transfer learning. IEEE

Multimed. 2019, 26, 31–40. [CrossRef]
20. Baidu All Reduce. Available online: https://github.com/baidu-research/baidu-allreduce (accessed on 28 June 2021).
21. Ma, Y.; Yu, D.; Wu, T.; Wang, H. Paddlepaddle: An open-source deep learning platform from industrial practice. Front. Data

Comput. 2019, 1, 105–115.
22. Yang, Q.; Liu, Y.; Cheng, Y.; Kang, Y.; Chen, T.; Yu, H. Federated learning. Synth. Lect. Artif. Intell. Mach. Learn. 2019, 13, 1–207.

[CrossRef]
23. He, C.; Li, S.; So, J.; Zeng, X.; Zhang, M.; Wang, H.; Wang, X.; Vepakomma, P.; Singh, A.; Qiu, H.; et al. FedML: A research library

and benchmark for federated machine learning. arXiv 2020, arXiv:2007.13518.
24. Zhu, L.; Liu, Z.; Han, S. Deep leakage from gradients. arXiv 2019, arXiv:1906.08935.
25. Dwork, C. Differential privacy. In Automata, Languages and Programming; Springer: Boston, MA, USA, 2011; pp. 338–340.
26. Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.; McMahan, H.B.; Patel, S.; Ramage, D.; Segal, A.; Seth, K. Practical secure

aggregation for privacy-preserving machine learning. In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS’17), New York, NY, USA, 30 October –3 November 2017.

27. Elias, P. Universal codeword sets and representations of the integers. IEEE Trans. Inf. Theory 1975, 21, 194–203. [CrossRef]
28. PyArrow LZ4 Codec. Available online: https://arrow.apache.org/docs/python/generated/pyarrow.compress.html (accessed on

28 June 2021).
29. Casas, P.; D’Alconzo, A.; Wamser, F.; Seufert, M.; Gardlo, B.; Schwind, A.; Tran-Gia, P.; Schatz, R. Predicting QoE in cellular

networks using machine learning and in-smartphone measurements. In Proceedings of the 2017 Ninth International Conference
on Quality of Multimedia Experience (QoMEX), Erfurt, Germany, 29 May–2 June 2017; pp. 1–6.

30. Robitza, W.; Göring, S.; Raake, A.; Lindegren, D.; Heikkilä, G.; Gustafsson, J.; List, P.; Feiten, B.; Wüstenhagen, U.; Garcia,
M.-N.; et al. HTTP adaptive streaming QoE estimation with ITU-T rec. P. 1203: Open databases and software. In Proceedings of
the 9th ACM Multimedia Systems Conference, Amsterdam, The Netherlands, 12–15 June 2018; pp. 466–471.

31. Duanmu, Z.; Rehman, A.; Wang, Z. A Quality-of-Experience database for adaptive video streaming. IEEE Trans. Broadcast. 2018,
64, 474–487. [CrossRef]

32. Robitza, W.; Garcia, M.-N.; Raake, A. A modular HTTP adaptive streaming QoE model—Candidate for ITU-T P.1203 (‘P. NATS’). In
Proceedings of the IEEE International Conference Quality of Multimedia Experience (QoMEX), Erfurt, Germany, 31 May–2 June 2017.

33. ITU-T P.910, Subjective Video Quality Assessment Methods for Multimedia Applications. 1999. Available online: https:
//www.itu.int/rec/T-REC-P.910-200804-I (accessed on 28 June 2021).

34. Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

35. Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (NIPS’17), Long Beach, CA, USA, 4–9 December; Curran Associates Inc.:
Red Hook, NY, USA, 2017; pp. 4768–4777.

36. Hoßfeld, T.; Heegaard, P.E.; Varela, M.; Möller, S. QoE beyond the MOS: An in-depth look at QoE via better metrics and their
relation to MOS. Qual. User Exp. 2016, 1, 1–23. [CrossRef]

37. Post Hoc Pairwise Test. Available online: https://scikit-posthocs.readthedocs.io/en/latest/generated/scikit_posthocs.posthoc_
dunn/ (accessed on 28 June 2021).

38. Plaut, D.C.; Hinton, G.E. Learning sets of filters using back-propagation. Comput. Speech Lang. 1987, 2, 35–61. [CrossRef]
39. RabbitMQ. Available online: https://www.rabbitmq.com/ (accessed on 28 June 2021).
40. EarlyStopping. Available online: https://keras.io/api/callbacks/early_stopping/ (accessed on 28 June 2021).

http://dx.doi.org/10.1109/JIOT.2020.2964162
http://dx.doi.org/10.1145/3298981
http://dx.doi.org/10.1016/S0893-6080(05)80023-1
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1109/TKDE.2009.191
https://arxiv.org/abs/1909.12535
http://dx.doi.org/10.1109/MMUL.2018.2879590
https://github.com/baidu-research/baidu-allreduce
http://dx.doi.org/10.2200/S00960ED2V01Y201910AIM043
http://dx.doi.org/10.1109/TIT.1975.1055349
https://arrow.apache.org/docs/python/generated/pyarrow.compress.html
http://dx.doi.org/10.1109/TBC.2018.2822870
https://www.itu.int/rec/T-REC-P.910-200804-I
https://www.itu.int/rec/T-REC-P.910-200804-I
http://dx.doi.org/10.1007/s41233-016-0002-1
https://scikit-posthocs.readthedocs.io/en/latest/generated/scikit_posthocs.posthoc_dunn/
https://scikit-posthocs.readthedocs.io/en/latest/generated/scikit_posthocs.posthoc_dunn/
http://dx.doi.org/10.1016/0885-2308(87)90026-X
https://www.rabbitmq.com/
https://keras.io/api/callbacks/early_stopping/

	Introduction
	QoE Machine Learning Challenges
	Distributed Learning in QoE

	Related Work
	Dataset and Feature Extraction
	Effect of Video Content on QoE
	Training with or without Content Features
	SHAP Sensitivity Analysis

	Distributed Learning Approaches on Split Feature Scenarios
	Neural Network
	Distributed Ensemble Learning (DEL)
	Vertical Federated Learning (vFL)

	Results
	Distributed Ensemble Learning (DEL)
	Content-Based Split
	Random Split
	Isolated G0 vs. DEL

	Vertical Federated Learning (VFL)
	Isolated vs. vFL
	Fully Centralized vs. vFL

	Optimizing vFL Training: Data Volume and Training Time Perspectives

	Conclusions and Outlook
	References

