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Abstract: Today, most user services are based on cloud computing, which leverages data center
networks (DCNs) to efficiently route its communications. These networks process high volumes
of traffic and require exhaustive failure management. Furthermore, expanding these networks is
usually costly due to their constraint designs. In this article, we present enhanced Torii (eTorii),
an automatic, scalable, reliable and flexible multipath routing protocol that aims to accomplish the
demanding requirements of DCNs. We prove that eTorii is, by definition, applicable to a wide range
of DCNs or any other type of hierarchical network and able to route with minimum forwarding
table size and capable of rerouting around failed links on-the-fly with almost zero cost. A proof
of concept of the eTorii protocol has been implemented using the Ryu SDN controller and the
Mininet framework. Its evaluation shows that eTorii balances the load and preserves high-bandwidth
utilization. Thus, it optimizes the use of DCN resources in comparison to other approaches, such as
Equal-Cost Multi-Path (ECMP).
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1. Introduction

The cloud computing paradigm has reached high relevance thanks to the flexibil-
ity and portability that it provides to a vast number of telecommunication systems [1].
The implementation of cloud services is performed through the deployment of data centers,
composed of a set of hosts interconnected by a high-speed network. To guarantee that a
cloud behaves transparently to final users, or network managers, its associated Data Center
Network (DCN) should accomplish the four following requirements: scalability, flexibility,
auto-configuration, and high availability (that is, resilience and fast recovery from any type
of problem in the network).

During the last decade, different DCN architectures have been designed in the research
community to fulfil those four desired features [2–7]. These solutions are focused on
particular aspects of the previously mentioned, but none of them is able to achieve all of
them at the same time. As an example, PortLand [2] guarantees easy configuration and
high availability, but the flexibility of its design is limited to specific network topologies
and its scalability depends on its implementation, as it is based on a logically centralized
Software-Defined Networking (SDN) control plane [8].

In this article, we aim to prove that merging different existing technologies, we can
completely fulfil the four requirements for an ideal DCN. In particular, we will com-
bine a specific source routing protocol (Torii [9]) and an automatic labelling mechanism
(GA3 [10]) to create what we have called enhanced Torii (eTorii). eTorii is scalable since it
is implemented in a distributed manner and its routing tables are extremely reduced and
independent of the amount of communication flows established in the network. At the
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same time, it can be deployed in network topologies of different types and sizes, guarantee-
ing flexibility. It also follows a plug-and-play approach, achieving the auto-configuration
feature, as it leverages the automatic labelling protocol for this purpose. Finally, the fourth
requirement is accomplished thanks to its fast recovery, almost immediate (zero delay) in
some scenarios, when some network elements fail.

The structure of this manuscript is as follows: First, we relate our proposal with the
state of the art in Section 2. Second, Section 3 describes the main features of eTorii and its
application to DCNs. Afterwards, Section 4 elaborates on the proof-of-concept of eTorii,
implemented in the Ryu SDN controller, which is evaluated in Section 5. Finally, Section 6
recapitulates and concludes the work.

2. Related Work

DCNs are implemented based on two different strands, based on whether the control
logic is centralized or distributed. On the one hand, centralized approaches usually lever-
age the SDN [11,12] paradigm. SDN allows a flexible definition of the behavior through a
logically centralized controller connected to the network devices. Works like PortLand [2]
o VL2 [3] are implemented with SDN. Nevertheless, this centralized control lacks scalabil-
ity [8], specially to grant timely network monitoring to solve network failures [13], hence
causing slow recovery times that hinders overall network performance.

On the other hand, distributed implementations try to overcome the scalability and
robustness limitations of the centralized ones, but they are constrained in flexibility and
ease of configuration. LESS [14] and FZS [15] follow a distributed approach and they
are currently the only works that try to tackle most of these challenges. They are also
the closest to eTorii, as it is based on source routing [16] together with label assignment.
However, differently from eTorii, LESS requires the addition of an initial header to reach
the destination, which reduces performance. Moreover, it also entails a second header
containing alternative routes (even when no malfunction occurs) to overcome network
failures, which is not needed in eTorii as alternative routes can be directly deduced from
current routes thanks to its synchronized labelling mechanism. Finally, in the case of FZS,
although it does not suffer from the disadvantages of LESS mentioned before, it is only
applicable to certain DCNs, and it lacks additional features provided by eTorii such as
on-the-fly path repair.

Additionally, some recent works in the state of the art focus on network resilience,
which are worth mentioning. LetFlow [17] leverages flowlet switching to balance the
load and to be resilient to asymmetry. This idea is supported by the elastic capabilities of
flowlets to adapt to traffic. APS [18], CAPS [19] and QDAPS [20] follow a similar approach
by dynamically separating flows based on different parameters, such as flow size (long vs.
short) or queueing delay; thus, avoiding resource competition in congested networks. How-
ever, these previous approaches do not always guarantee timely re-routing, and are only
focused on dynamically adapting the traffic in congested areas of the network. Hermes [21]
acknowledges this problem and, for that reason, it defines an alternative approach based on
network monitoring to carefully re-route traffic without causing additional problems due
to abrupt changes. Although Hermes is the closest alternative to eTorii, the dependence on
monitoring (not required in eTorii) might have potential scalability and performance issues
in large DCNs.

Accordingly, the main contributions of eTorii are:

• Differently from most of the state of the art, it follows a distributed approach to
maximize scalability and resilience.

• Packet forwarding follows a source-routing approach based on previously assigned
labels, but no additional headers or fields are required, not even for network recovery
upon failures.

• Thanks to the nature of its labels, routing tables are drastically reduced, independently
of the active communication flows, and network recovery can be executed even on-
the-fly (zero delay) in some scenarios.
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• Labels are automatically assigned at startup and after any network change, granting
auto-configuration.

• It is generalized and applicable to any hierarchical DCN, guaranteeing flexibility.

3. The eTorii DCN

The eTorii DCN is designed to accomplish the four desired features: auto-configuration,
scalability, resilience and flexibility. To this purpose, in this Chapter we devote one section
per feature to comprehensively define eTorii.

3.1. Auto-Configuration: Automatic Label Assignment Based on GA3

In order to route traffic (which will be described in the next sections), eTorii needs to
assign at least one hierarchical label to each network device or switch. This assignment
is only required when the network is deployed the very first time and upon network
modifications (addition/deletion/movement of links/switches). Each label represents an
Hierarchical Local MACs (HLMACs) address [9], which is used afterwards for masking real
physical MAC addresses. An HLMACs contains 6 bytes, as a standard MAC, and each byte
represents a position in the hierarchy. For instance, 01:04:07:00:00:00 stands for position
1 for the first level, 4 for the second and 7 for the third; for simplicity, it is expressed as
1.4.7, omitting the zeroes. In this way, addresses become meaningful and are able to convey
information about the location of the different hosts and switches in the network, following
a source routing approach.

In Torii, this assignment was performed leveraging the Rapid Spanning Tree Protocol
(RSTP) with some modifications. As such, labelling was relatively slow and required a
high number of control messages. Furthermore, RSTP did not allow the synchronization
of the HLMAC suffixes, which is explained in the following paragraphs as one of the
enhancements provided by eTorii. Therefore, this labelling is performed by GA3 [10] in
eTorii instead, which follows the principles of meshed trees [22,23]. The control frames of
both RSTP and GA3 are illustrated in Figure 1.

GA3

Figure 1. Frame comparison between eTorii and RSTP.

GA3 assigns one or more HLMACs to each switch in the network, which portrays
one or more hierarchical positions of the switch. The procedure starts at the top-level
network devices, also known as core switches. Each of these core switches obtains an initial
HLMAC with only their first byte set to a value, such as 1 and 2, as depicted in Figure 2 for
switches S1 and S2, respectively. This initial selection and assignment of the core switches
is independent of the protocol, and could be any desired by the network manager.

Once the core switches start up, they flood GA3 frames through all their ports to
start labelling the rest of nodes. These frames contain their HLMAC plus a suffix, which
could be any value as far as it is unique per port. For example, in Figure 2, switch S1 has
HLMAC with value 1 and, accordingly, it sends 1.7 to S3, 1.6 to S4, and so on; while S2
sends 2.2 to S3, 2.1 to S5, etc. Subsequent switches in the hierarchy will receive one or
more HLMACs (e.g., S3 obtains 1.7 and 2.2). These switches follow the same procedure
as soon as they receive their first HLMAC: they forward a GA3 frame containing their
HLMAC plus a unique suffix per port. For instance, S3 will send 1.7.6 and 2.2.6 to switch S7.
The flooding of GA3 frames is performed until all network nodes are reached. This process
is not performed if the switches receive HLMACs longer than the ones previously obtained,
as they discard them to avoid loops [22,23]. The resulting assignment is illustrated in
Figure 2.
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Figure 2. Address assignment example without synchronized suffixes.

The assigned addresses can have an additional property, which is synchronization
of suffixes. GA3 achieves the synchronization of suffixes by evaluating the propagated
HLMACs; instead of simply discarding longer HLMACs, a more complex priority rule is
applied to discard or broadcast the addresses. For example, in Figure 2, node S3 obtains
suffix 7 from S1 and suffix 2 from S2, learning HLMACs 1.7 and 2.2, respectively. This is
because suffix selection is distributed, decided individually, so S1 and S2 decisions might
(and will usually) be different. In order to match these suffixes, S1 and S2 could evaluate
the broadcasting produced by S3. More specifically, S3 will propagate 1.7 (received from
S1) plus a suffix to S2, and 2.2 (received from S2) plus a suffix to S1. When S1 and S2
receive these HLMACs, they would initially discard them (as they are longer than the ones
they already have), but they could also leverage them to learn from the suffixes assigned by
their neighbour core nodes and synchronize them. In the example, S1 will understand that
S2 selected suffix 2, and S2 that S1 selected 7. Following certain priority, they could select a
unique suffix and propagate it again, synchronising their values accordingly. For instance,
S2 could consider that 1.7 < 2.2 and then suffix 7 has a higher priority, hence propagating
again its HLMAC to S3, but now as 2.7 (instead of 2.2), which is synchronized with 1.7.
As a result, all network nodes obtain HLMACs with synchronized suffixes (for simplicity,
the present article omits the full assignment procedure, but it can be checked in GA3 [10]).

Figure 3 shows an example of synchronized assignment. S7 obtains 11.7.6, 1.7.6 and
2.7.6 (all suffixes are 7.6), while in Figure 2 (not synchronized) it obtained 1.7.6, 1.6.3 and
2.2.6. Synchronization of suffixes requires additional control messages (as detailed in
GA3 [10]), but it grants additional properties for faster recovery after failures, as we will
describe in the following sections.

Figure 3. Address assignment example with synchronized suffixes.
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Note that label assignment goes from top (core) to bottom (Top-of-Rack (ToR)) switches,
while end devices (usually hosts or servers) are left unaltered. When a host requires the
creation of a route, it will be the ToR switch the one in charge to translate the physical (real)
MAC of the host into an HLMAC. For example, host h1 could obtain label 11.7.6.1, 1.7.6.1
or 2.7.6.1, by simply adding a unique suffix (.1) to the assigned address of the ToR switch
that serves it, which is S7.

Finally, it is worth noting that the bigger the network topology, the bigger the re-
dundancy and the bigger the amount of HLMACs to be assigned, because each HLMAC
represents a potential route. However, the network manager can limit the assignment of
addresses to any value. For example, nodes could just learn a limited set of labels and
stop propagating them once reached, which reduces the amount of alternative routes, but
accelerates the convergence time of the assignment; hence, it is up to the network manager
to analyze the trade-off between those two aspects: resilience and scalability.

3.2. Scalability: Zero-Table Multiple-Path Routing

Routing in eTorii is grounded on the fact that layer-2 addresses are meaningful,
instead of randomly defined by the manufacturer. In other words, eTorii leverages the
previously assigned HLMACs, conveyed now in the data frames instead of the original
MAC addresses, to efficiently forward traffic. This principle of meaningful MAC addresses
is supported by a recent amendment to IEEE Std 802, in which IEEE 802 MAC addresses
are defined, published in 2017 [24]. Accordingly, eTorii is founded on a similar approach
to source routing [14,25], as routing information is transported in the packets, allowing a
reduction in the routing table sizes. However, the main advantage of eTorii is that it does
not require any overhead as it reuses the already existing MAC fields of the frames. As a
consequence, eTorii boosts scalability because it tends towards zero-entry tables.

The routing procedure is defined as follows: When a host, e.g., h1, starts a commu-
nication with another, such as h41, it will first send this traffic to its corresponding ToR,
which is S7, according to Figure 3. Switch S7 will then be in charge of translating the real
MAC address from h1, defined by the manufacturer, into a corresponding meaningful
HLMAC, and it will apply the same action to the MAC address of h41, as defined in Torii [9].
For instance, in Figure 3, if S7 assigns the HLMACs with values 2.7.6.1 and 2.4.4.1 to h1 and
to h41, respectively, the data packet will follow a path towards the core switch S2 in the
topology (traversing S7 and S3), as it is the switch from which HLMACs with prefix 2 were
populated, and then it will go down through port with ID 4 to switch S5, through port with
ID 4 to switch S9, and through port with ID 1 until reaching h41. These 4 values (2, 4, 4 and
1) are basically the digits contained the HLMAC assigned to h41, which is carried out in the
standard MAC address field of the packet. The first value (the prefix) is leveraged to send
the packet up towards the correlated core switch, and the rest of values (the suffix) identify
the list of switch ports traversed to reach the destination. For this reason, there is no need
of routing tables, except for some entries to save the labels or IDs associated with each port,
locally at each switch. These lists of saved IDs are independent of the number of active
hosts communicating and might be configure to any size, up to the network administrator;
the only implication is that the more labels a switch has, the bigger the amount of multiple
alternative paths.

Each end host has a set of HLMACs, that is, a set of multiple paths to be reached.
If, alternatively, S7 assigned a different HLMAC to h41 from the available set, like 1.4.4.1,
the procedure would have been similar except for the traversed path, which would go
through the core switch S1 first, instead of S2. That is, ToR switches are in charge of
selecting the appropriate HLMACs (and hence paths) and, for this reason, they are capable
of balancing the load in the network based on diverse criteria, which is an orthogonal
aspect to the definition of eTorii, but proves that eTorii grants different behaviours based
on this assignment of meaningful addresses.
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3.3. Resilience: On-the-Fly Path Repair

Two main approaches exist to recover communication paths after network failures,
namely: restoration and protection [26]. The former considers that, when a failure occurs,
the network will trigger a mechanism to generate a new path, while the latter establishes
multiple backup paths a priory, so that they could be directly leveraged when the main
one is not available anymore. Although the second approach has a faster recovery time,
it also consumes additional resources to keep an updated list of backup paths. Therefore,
there should be a trade-off of both approaches depending on the specific network scenario.

In the specific case of eTorii, it benefits from the protection approach just by reusing
the already assigned HLMACs. In particular, in eTorii, each HLMAC represents one
possible path from a core switch to an end host; thus, multiple HLMACs represent multiple
available paths, which means one main path and a set of backup paths, depending on the
amount of stored HLMACs. For instance, in Figure 3, switch S9 has 5 assigned HLMACs,
which indicates 5 different paths to reach the core switches and, more specifically, 3 paths
to reach S1 and 2 to reach S2. Selecting an alternative path is as easy as modifying the
destination HLMAC and this action could be performed at any point in the network. By
limiting the amount of HLMACs assigned to each switch (as previously mentioned), we
are just limiting the amount of alternative paths assigned. For example, limiting learning
to 10 HLMACs will imply saving a list of only 10 labels and provides 1 main path to any
node in the network plus 9 alternative routes, which seems to be a fair amount [27,28].
Furthermore, this amount of HLMACs is independent of network size, which grants the
scalability of eTorii.

Additionally, as mentioned in Section 3.1, eTorii might assign HLMACs either with
synchronized or without synchronized suffixes. Although synchronising suffixes implied
additional control messages, one of the main advantages obtained is that path repair can
be applied on-the-fly, when the failure occurs, as assigned HLMACs only differ in their
prefix. Thus, when a route is not valid anymore, simply exchanging the prefix with another
of the possible ones will instantaneously generate an alternative path, even if the message
is in the middle of the network, which represents a minimum cost for rerouting.

Rerouting is performed in a hop-by-hop basis, hence the resulting alternative route
does not necessarily have to be the shortest available one. More specifically the search for a
new route is started in the very first node aware of the network failure. In the case that
this node does not have a direct alternative route, the packet will be sent back (through
the incoming port) to the previous hop, which will look again for an alternative route.
This “hop-back” action is repeated until an alternative path is found.

Figure 4 illustrates how eTorii reroutes traffic in an example where two link failures
occurs at the same time. In this example, host h1 is sending traffic to h60 and the selected
HLMAC address for this destination is 11.4.4.20, which implies following the route travers-
ing S7-S3-S1-S5-S9. When the traffic arrives at switch S3, the next link in the path (S3-S1) is
unavailable, so switch S3 can directly select a new prefix for the destination HLMAC and
that will automatically indicate the new alternative path. As only core switch S2 can be
reached, the new prefix should be either 2 or 22. In the example from Figure 4, S3 chooses
22, i.e.,the new destination HLMAC is now 22.4.4.20 (instead of the original 11.4.4.20),
which implies the new route is now S7-S3-S2-S6-S9. Accordingly, S3 would then reroute
the traffic directly sending it to S2 with this new destination HLMAC, which would be a
lossless on-the-fly path repair, hence minimizing the associated repair latency.

Following the example illustrated in Figure 4, once in S2, this switch will forward
the traffic to S6, which finds a second down link towards the next hop, S9. To repair the
path again, in this case, eTorii is going to select the new prefix 2, associated with route
S7-S3-S2-S5-S9. As S6 does not belong to this new generated route, it sends the received
traffic back through the incoming port until reaching S2, which in this case does belong to
the new route. Consequently, S2 sends the traffic to S5, which will finally forward it to S9
and eventually to the destination host, h60.
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As a conclusion, eTorii is capable to reroute traffic on the fly just via small local
forwarding, even when multiple link failures occur at once. Furthermore, this rerouting
is lossless and the processing cost is low as it only implies modifying one prefix in the
MAC address. In particular, the advantage of this mechanism is that it can be immediately
applied without requiring to wait for a new address assignment to overcome the failure.

Figure 4. Example of on-the-fly path repair after two link failures.

3.4. Flexibility: Generalization to Any Hierarchical DCN

DCNs are usually deployed based on some kind of hierarchy (well-known examples
include VL2 [3] or BCube [6]), and routing solutions are many times designed based on
these specific topologies. For example, Torii was initially developed to be applied in the
fat-tree defined by PortLand [2]. For that reason, one of the main objectives of eTorii was
to expand the features of Torii to apply them in any hierarchical topology. GA3 is the
cornerstone to accomplish this goal, as described in Section 3.1 and, accordingly, unicast
forwarding and path repair in eTorii can be flexibly applied in any type of hierarchical
topology, even non-symmetrical, as illustrated in Sections 3.2 and 3.3.

This approach is very flexible to guarantee, for instance, that routing still works
when the DCN is being updated or some part of it fails, as a non-symmetrical topology
could also represent a transient state in which the data center is deploying new hardware,
progressively. In fact, thanks to GA3, eTorii is even capable of recognising some types of
connections, which are usually considered very irregular or even faulty in DCNs, namely:
peer-links (links that connect network devices in the same hierarchy level) and cross-links
(links between non-adjacent hierarchy levels). This links could be ignored or could directly
raise a notification if found and non desired. For example, the topology previously used
to illustrate routing and path repair in Figures 2–4 contains a cross-link, as S1 and S9 are
directly connected, skipping the intermediate level (comprised of S3, S4, S5 and S6). In this
example, the cross-link is used in the routing scheme.

4. Implementation

In order to validate eTorii, we designed and developed an SDN application using the
Ryu controller [29], which uses the OpenFlow protocol [30] to control the network devices.
Although eTorii is a distributed protocol by definition, as explained in Section 3, the reason
to implement it by using SDN (which is logically centralized) is that OpenFlow serves also
to easily develop and test protocol proof-of-concepts in environments close to reality, as it
can be deployed in hardware using real network traffic traces [30]. The implementation
of eTorii has validated the four features described in previous sections, namely: auto-
configuration, scalability (no routing table entries are needed apart from the node labelling),
resilience (fast recovery after link failure) and flexibility (the protocol works with diverse
hierarchical topologies).

As it can be seen in Figure 5, the developed application is composed of two main
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logical parts. The first one, Figure 5a, on the left, is executed just right after starting the
network, when the system has to discover and map the network topology that will be
handled afterwards. In this initial step, the network controller will generate the HLMAC
addresses, in a centralized way, to be assigned to each of the network switches. Additionally,
the application also generates a traffic distribution tree for broadcast traffic. Finally, it enters
an state in which it will be paying attention to additional events to be handled.

The second part, Figure 5b, on the right, is basically in charge of handling two types
of events and its execution starts right after finalising Figure 5a. The events to be managed
are basically of two types: (1) topological, or (2) PACKET_IN events. A topological events
occurs as a consequence of a change in the network topology (for example, a new node
is added or some link fails), while the PACKET_IN is an OpenFlow message triggered
by a switch when no action is defined for a new packet arriving at it. In this latter case,
the switch sends this message to the controller and awaits for the routing decision to be
made by it. This event is usually generated with the first packets in any communication,
which are usually ARP packets in IPv4-based networks. The actions to be applied for each
event are as follows: in the case of the topological event, the controller checks whether
the network topology has actually been modified and, if so, deletes obsolete forwarding
rules and updates the traffic distribution tree; while if an PACKET_IN event, the controller
proceeds to calculate and install the required rules in the switches to forward the traffic
associated to that PACKET_IN message.
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Figure 5. Logical implementation of eTorii.

In the following sections, we describe the implementation in detail.

4.1. Topology Discovery and HLMAC Address Assignment

Before routing any traffic, the network topology should be mapped. The controller
discovers the network topology by using the Link Layer Discovery Protocol (LLDP) [31].
One the network mapping has finalized, the controller can proceed to assign the corre-
sponding HLMAC to each network node, according to the procedure defined by GA3.
This association of HLMAC addresses is only performed internally, in a logical way inside
the controller, from which the actual OpenFlow forwarding rules are later on derived.
The HLMAC association can be updated if topology changes are detected.

It is important to highlight that, in this implementation, GA3 has been developed
as a centralized function for the sake of simplicity. However, in real networks, GA3 can
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perfectly work in a distributed manner and, in fact, networks will benefit from it as the
distributed behaviour is potentially much more scalable.

4.2. Host Registration

In eTorii, HLMAC addresses are assigned to network switches, but not to end hosts.
Edge switches are usually responsible for registering their connected hosts and assigning
them an HLMAC address, which is directly deduced from its own ones. In this regard,
the developed application needs to register these hosts, associating an HLMAC to each
physical MAC of the host, and saving its location together with the topological map.
This action cannot be performed by LLDP, as this protocol is only capable of discovering
network nodes directly connected to the controller, which is not the case of hosts. For this
reason, the application registers the hosts indirectly via traffic snooping. In particular, our
implementation considers any host will send an ARP message prior to any communication,
hence the controller will monitor these events (as they will generate a PACKET_IN) and
register the hosts accordingly.

4.3. Address Translation and Routing

By definition, edge switches in eTorii are responsible of translating the MAC addresses
into HLMAC, and vice versa. To this purpose, the controller installs a set of rules at edge
switches to modify the addresses in the Ethernet frames arriving at it.

Unicast routing in eTorii has been implemented in a reactive fashion, calculating the
path switch by switch based on the destination HLMAC address contained in the frame and
according to the eTorii logic. Broadcast routing is performed using the traffic distribution
tree previously mentioned.

4.4. Recovery Mechanisms

When the controller detects a link from a path is not available, it examines the rest
of links seeking for alternative routes, according to the definition of eTorii, as described
in Figure 6. If an alternative route exists, the new link to be used should be associated
with a specific prefix and, thus, it implies the modification of the HLMAC prefix in the
frame, accordingly. Afterwards, the frame in sent through the associated port. Additionally,
the source edge switch will remove the rule associated to the old prefix and will include
the new one, so that future packets from the same flow are directly forwarded through the
newer alternative path. Finally, the old prefix is excluded from the set of available prefixes
until the link is back to normal again. In parallel, the HLMAC association may be updated
triggered by a topology change detected by LLDP.
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Figure 6. Recovery logic in the eTorii implementation.
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The previous procedure is applied in the case of unicast routing. In the case of
broadcast forwarding, the tree should be recalculated every time one of its links is affected,
as previously mentioned.

5. Evaluation

In this section, we evaluate the implementation described before, based on a set of
experiments. The testbed was based on Open vSwitch (OVS) switches [32], which were
deployed with Mininet [33], as a network emulator, close to practical environments, in
which we executed the eTorii application based on the Ryu controller. These environments
were installed in two hosts Intel R© CoreTM i7 with 24 GB of RAM.

First of all, during the implementation phase, we checked the accomplishment of the
four features of eTorii, described in Section 3, viz. auto-configuration, scalability, resilience
and flexibility. To prove this, we built the scenario shown in Figure 4, among some others,
and assessed the application of eTorii in all of them. First of all, we confirmed that the
configuration was properly performed automatically thanks to GA3; while flexibility
was acknowledged as the scenario in Figure 4 represents a non-symmetrical network.
Resilience was proven via the simulation of multiple link failures (including the ones
illustrated in Figure 4), which were correctly re-routed. Finally, scalability was mainly
assessed on a qualitatively basis as, by definition, every HLMAC defines one possible
route through the network and eTorii switches only need to save a small amount of them,
independently of the network size. In particular, in all scenarios tested, no switch had
to save more than 10 HLMACs, which is a very small amount of memory and assures
scalability. Moreover, this amount of HLMACs was enough for most of the multiple-
link failure scenearios. However, we only focused on that side of scalability and other
parameters (such as convergence time or control message load) should be checked for a
holistic view of it.

Once the four features of eTorii were assessed, the main objective of the evaluation
was to prove that the performance of eTorii was still good even accomplishing these
features. In particular, this performance evaluation was divided into two types of tests:
the first one was designed to analyze flow routing, while the second was tailored to
acknowledge the effective throughput achieved by the implemented application. Both of
these tests measured the ability of eTorii to efficiently route traffic once HLMAC addresses
are already distributed. In this way, we avoided any type of bias caused by the centralized
implementation, as the evaluation focused strictly on the data plane, which works in a
distributed manner.

The selected network topologies were two classical data center topologies, namely
VL2 [3] and Spine-Leaf [4]. They are illustrated in Figures 7 and 8, respectively, in which
switches (in this case OVS) are represented as circles (Ci for core, Ai for aggregate, Ti for
ToR switches in VL2; and Si for spine and Li for leaf switches in Spine-Leaf), and hosts
or servers (si) are located as groups in the inferior part of the topology, surrounded by
dotted lines. All hosts belonging to the same ToR or edge switch are grouped accordingly.
The importance of these topologies is well justified, as they have been leveraged by popular
cloud providers like Google [34] or Facebook [5]. Additionally, using two types of networks
let us prove the flexibility of eTorii, which is suitable for any hierarchical DCN.

To obtain representative results, we performed 10 executions per each average value
calculated and, moreover, the confidence interval was also calculated to provide a delimita-
tion of real values based on the experimental tests.

Finally, although not directly illustrated in any test or figure, we checked that the
configuration was performed successfully in an automatic way, and that the amount of
table entries for routing was smaller than 10 in all cases (independently of the network size
or number of hosts), hence proving the scalability of eTorii.
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Figure 7. VL2 topology (parameters 2 × 4 × 4).
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Figure 8. Spine-Leaf topology (parameters 4 × 4).

5.1. Test 1: Flow Routing Analysis

In this first test, we used the VL2 topology (Figure 7) to study the routing results
obtained by the implemented eTori application. In particular, we generated traffic according
to the following traffic matrix: h1→h16, h2→h15, h3→h14, ..., h14→h3, h15→h2, h16→h1,
with random interarrival times. This matrix was designed to have flows that equally
traverse the whole topology, i.e., all switches in the network.

The results obtained from executing this scenario are shown in Figure 9, which shows
the percentage of paths grouped by common source ToR for certain destination ToR
switches. Ideally, for a balanced distribution of traffic, this percentage should be uniformly
distributed for each existing path.

For example, the green grouping in Figure 9 depicts the paths from ToR 1 to ToR 4.
As four available paths exist between these two ToR switches, the traffic distribution should
have a value around 25% per each of the possible routes, and we can see their values are
indeed around 15% and 35% (with a deviation of 10%), which is quite close to the ideal
scenario, particularly considering this values are measured only with 10 executions (a value
that is not divisible by 4). A similar behaviour can be observed for the paths originating at
ToR 2 and ToR 4, and only the ones with source in ToR 3 have a bigger deviation, but the
actual percentage never surpasses the 50% of use in any case. This observation is because
the different available paths (HLMACs) are randomly selected and the results depend on
the quality of the random number generator.

Therefore, the results illustrate how eTorii balances the load among the diverse avail-
able paths between any source and any destination, which will improve the overall perfor-
mance of the DCN.



Network 2021, 1 22

Figure 9. Percentage of selected routes, grouped by source ToR.

5.2. Test 2: Effective Throughput

To evaluate the performance of eTorii in terms of throughput, we compared it against
Equal-Cost Multi-Path (ECMP) [35], a standardized and well-known protocol in the field
of DCNs.

More specifically, we evaluated both protocols in a Spine-Leaf 4 × 4 topology (that
is, with 4 Spine nodes S and 4 Leaf nodes L), with 20 hosts per Leaf node (as depicted in
Figure 8). The traffic load is based in the flow patterns illustrated in Figure 10 with random
inter-arrival times, and source-destination flows randomly generated in which the source
and destination differ and belong to separate ToR switches, i.e., different Leaf nodes. Their
flow size distributions are Web Search [2] and Data Mining [36] (derived from flow size
measurements in previous works related to data centers). Furthermore, we defined four
scenarios with increasing average traffic load in links (10%, 20%, 40% and 60% with respect
to the their nominal capacity). This setup aims to prove that the relative performance is not
worsen by the traffic increase in the network. Finally, all network links are set to 100 Mbps
and the total execution time of the tests is 1800 s, considering a transitory time of 800 s, that
is, we only evaluate the 1000 s afterwards, when the environment is stable. Each scenario
is executed 10 times. Table 1 summarizes the setup.

The results are illustrated in Figure 11, which show that eTorii obtains similar through-
put values to ECMP. In particular, the two columns depict the two types of traffic, divided
into the three types of flows (“elephant”, “rabbit” and “mouse”), and eTorii has a better
throughput with the “elephant” (around 3% and 13% higher) and “mouse” flows (around
8% and 12% higher), while it remains similar or even lower for the “rabbit” flows. The ad-
vantage of eTorii is that DCNs are usually characterized by elephant and mouse flows, as
they represent the majority of traffic, while rabbit flows remain less frequent. Therefore,
the overall performance of eTorii would be better in DCNs if compared to ECMP.

The provided results are a lower bound since a distributed implementation of eTorii
will obtain better results since it will not suffer from the delays derived from the SDN in
regards to communication and processing time, which are at least equal to the Round Trip
Time (RTT) between each device and SDN control plane, through the established control
channel, to install the SDN rules derived from the HLMAC assignment.
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Table 1. Summary of Test 2 testbed parameters.

Parameter Value

Network topology Spine-Leaf (4 × 4)
Hosts per Leaf 20
Flow distribution Random Extra-Leaf
Flow size distribution Web Search [2] & Data Mining [36]
Network traffic load (%) 10, 20, 40 y 60%
Link speed 100 Mbps
Execution time 1800 s
Transitory time 800 s
Number of executions 10

 t
n

a
h

p
el

E

)
s

p
b

M( t
u

p
h

g
u

or
h

T

 ti
b

b
a

R

)
s

p
b

M( t
u

p
h

g
u

or
h

T

Offered Load (%)

 
e

s
u

o
M

)
s

p
b

M ( t
u

p
h

g
u

o r
h

T

Offered Load (%)

Figure 11. Average throughput classified by traffic type.

6. Conclusions

Along this article, we have defined eTorii, a protocol that allows routing traffic in
DCNs in an efficient, scalable and flexible way. Despite being a distributed protocol,
its configuration is automatic and it reacts fast to network failures and changes, as many
alternative routes are usually deployed when the HLMAC address assignment is realized.
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We have implemented and evaluated a prototype of eTorii in the Ryu SDN controller and
with the Mininet emulator. The evaluation shows routing is correctly balanced and the
obtained throughput directly competes with the standardized protocol ECMP, being even
better for elephant and mouse flows, which are the most common in DCNs.

As future work, we envision an in-depth analysis of eTorii in diverse DCN topolo-
gies to measure the average amount of table entries required for routing to evaluate its
scalability in detail, as well as the convergence time to prove its resilience and flexibil-
ity. In particular, we would like to focus on the effect of topological changes. Although
eTorii is able to re-route at zero cost most of times, we should analyze in detail how the
proposed recovery mechanism affects the overall throughput performance, packet loss
and scalability. Additionally, a high-performance implementation, for example using P4
hardware targets or similar, could be advisable to show the application of eTorii to cloud
computing networks.
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