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Abstract: I consider a proton–neutron fluid mixture placed in an ultra-strong external static magnetic
field and derive the spin-independent, small-amplitude disturbances in infinitely extended systems.
As a theoretical framework I adopt a hydrodynamical model for the proton and neutron fluids
moving in a Skyrme mean-field derived from the time-dependent Hartree Fock formulation of the
many-body nuclear problem. From the mass, momentum balance, and Maxwell equations, I set up a
system of equations governing the electromagnetic field and the continuum-mechanical fields of the
mixture. Next, the hydromagnetic equations are linearized, and the occurrence of small-amplitude
distortions of the velocity field is analyzed for various orientations of the constant external magnetic
induction with respect to the wave propagation vector. The derivation of the above equations is
carried out for the inviscid case.

Keywords: nuclear matter; fluid mixture; Skyrme forces; magnetohydrodynamics; magnetic wave;
plasma wave; cyclotron wave; dispersion law
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1. Introduction

Static magnetic effects in nuclei are primarily determined by the fact that their con-
stituents, i.e., protons and neutrons, possess their own magnetic moments. Due to the
disproportion between the nuclear mass and the electron mass, the magnetic moments of
nucleons and nuclei are smaller by the same proportion with respect to the orbital and spin
magnetic moments of an atomic electron shell. In this respect, recall the tiny value of the
nuclear magneton, µN = 3.1524512326(45)× 10−18 MeV/G. Consequently, in the absence
of an external field or probe of magnetic nature other than the magnetic field of the electron
shell, nuclear magnetism can be manifested in a subtle way such as is the case of nuclear
hyperfine structure [1]. In more recent times and in connection with the investigation of the
properties of dense matter, primarily motivated by the quest for a putative ferromagnetic
state of superdense matter, it was pointed out that the magnetization of asymmetric nuclear
matter [2–4], and, in particular, neutron matter [5–8] due to magnetic fields in excess of
1017 G, is likely to affect the nuclear equation of state (EOS) of magnetic stars.

On the other hand, the manifestation of dynamic magnetic properties in nuclei is
well-documented for collective excitations characterized by significative probabilities of
M1-transitions [9,10].

It is well-known that, in astrophysical environments, the magnetic white dwarf pul-
sars can develop fields with strengths in excess of 1012 Gauss (G) [11] and 1014 G for
magnetars [12]. An extremely rapid mechanism of magnetic field amplification during the
merging of a binary neutron star system was reported in [13]. According to these authors,
the existing neutron star magnetic fields (∼1012 G) become amplified within the first mil-
lisecond after the merger, i.e., long before the collapse to a black hole can proceed, up to
values of 1015 G, though, as they pointed out, it is highly probable that much stronger fields
are generated during this violent process. On the other hand, massive stellar magnetized
objects that undergo gravitational collapse tend to convert the huge quantity of available
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energy into the generation of fantastic magnetic fields as high as B∼1028 G [14]. For more
details regarding the occurrence of huge magnetic fields developed in the astrophysical
context, the interested reader may consult [15].

One should also recall that, under laboratory conditions, magnetic fields over a large
range of values are produced. For example the ephemere magnetic fields, produced at
CERN in proton–proton and nucleus–nucleus collisions at ultra-high energies, are estimated
to attain values as high as B ≈ 1021 G, corresponding to a collision time of t0 ≈ 0.1 fm/c
(see [16] and references therein). Such strengths are already surpassing the critical magnetic
field, which causes changes in the structure of the QCD vacuum and, therefore, are of no
relevance for our investigation. On the other hand, the highest magnetic field, currently
measured under terrestrial laboratory conditions, is significantly lower. Very recently, the
newly developed megagauss generator system, operating at the Institute for Solid State
Physics (University of Tokyo), generated a magnetic field strength of 1.2× 107 G for around
100 microseconds, a value that dwarfs almost any artificial magnetic field ever recorded on
Earth [17].

It was pointed out by Hannes Alfvén that in a conducting fluid subjected to a constant
magnetic field H0, the electric currents produced by the mechanical displacements of
charges will produce a mechanical stress that alters the dynamical behavior of the fluid [18].
More precisely, a new type of wave (Alfvén wave) is generated and propagated along the
direction of the imposed magnetic field with a speed of vA∼H0. In Alfvén’s view, the
magnetic field lines are pictured as elastic strings in a dynamic process, and therefore the
square of the intrinsic magnetic field plays a role analogous to the elastic shear modulus.
Note that the velocity of shear waves in elastic media is vS =

√
µ/ρ, where µ is the shear

modulus and ρ is the body’s density. Thus, for a region of the sun where the magnetic
induction is B0 = 15 G and the density is ρ = 5 kg/m3, the velocity amounts to vA∼60 cm/s.
As a first application in the astrophysical context, Alfvén proposed a scenario for the
generation of strong magnetic fields on the spots of the sun by surmising the transmission
of a magnetic field disturbance δH, produced in the sun’s center, towards the surface via
transverse hydromagnetic incompressional waves [19]. These waves propagate along the
lines of the sun’s general magnetic field H0. The existence of low-frequency transverse
waves across a finite conductivity liquid placed in a constant magnetic field, was verified in
a laboratory experiment by Lundquist using a cylindrical geometry [20]. Another Swedish
scientist extended the framework put forward by Alfvén to compressible liquids such that
longitudinal waves associated with compressions of the frozen-in magnetic field were
predicted [21]. Some years later, Alfvén put forward the challenging idea that, in a manner
similar to the sun, transverse hydromagnetic waves are generated by the perturbation of
the nucleus intrinsic magnetic field [22]. In his short note, he commented that, for a nucleus
with electric conductivity assumed to be infinite, for what he called “reasonable values” of
the external magnetic field strength and the nuclear mass number A, the eigenfrequency
of the lowest hydromagnetic mode, macroscopically pictured as a torsional wave along
the direction of the magnetic field, is in the order of a few keV. In recent times, Bastrukov
et al. revisited the problem raised by Alfvén, developed a simple nuclear-fluid collective
model, and concluded that energies in the range of the giant dipole resonance (GDR) are
obtained for the hydromagnetic resonance, provided the magnetic field falls in the interval
3× 1017 ≤ B ≤ 9× 1017 G [23].

The hydromagnetic oscillations of a fluid sphere were considered mainly in connection
with self-gravitating bodies (stars in which there is a prevailing magnetic field) (see [24]
and references therein). In view of the bounding character of the gravitational interaction,
an important issue in this context concerns the stability of such excitation modes. In finite
nuclear systems, where gravitation is not important, the stability is dictated, in turn, by the
balance between nuclear and Coulomb forces.

In recent years, there has been renewed interest in the topic of collective excitations in
exotic nuclear matter, as can be encountered in the inner crust of neutron stars and super-
novas [25]. Previous exploratory theoretical investigations on the shell structure of nuclei
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in such an environment concluded that a magnetic field of the strength scale B∼1016–1017

G can significantly shift the nuclear magic numbers of the iron region towards smaller mass
numbers [26]. For magnetic fields of this order of magnitude, covariant density functional
theory predicts a significative change in nuclear masses and radii [27]. The implementation
of advanced microscopic techniques, such as the Hartree–Fock–Bogoliubov+QRPA en-
counters serious difficulties due to the nontrivial shapes acquired by neutron-rich nuclear
clusters immersed in a superfluid ocean of neutrons. An important problem raised by the
authors of the aforementioned studies concerns the validity of the Wigner cell approxima-
tion. A suggestion to treat nuclear matter wave phenomena in neutron stars by resorting to
continuum mechanics of neutron-rich liquid crystals was made in [28].

Below, I investigate the occurrence of hydromagnetic waves in infinite nuclear matter,
portrayed as a normal fluid mixture composed of protons and neutrons in a very strong
magnetic field.

2. Fluid-Dynamical Description of a Neutron–Proton Fluid Mixture Placed in an
External Uniform Magnetic Field

The foundations of nuclear hydrodynamics applied to the study of the Giant Dipole
Resonance (GDR) can be found, for example, in [29,30]. This framework was subsequently
extended to the case when the particles of the mixture interact via Skyrme forces [31,32].

By introducing the constituent densities ρp,n and velocities
′

χp,n, the kinetic energy of
the fluid mixture reads

T =
1
2

m
∫

dr(ρp
′

χ
2

p +ρn
′

χ
2

n) . (1)

The nucleons are assumed to move in a mean-field described by a Skyrme parametrized
energy density,HSky, expressed in a compact form in terms of the total and the q = n, p com-
ponents of the local densities, ρ, ρq, kinetic energy densities, τ, τq, as well the mass–current

densities j, jq = m
h̄ ρq

′
χq [33],

HSky =
h̄2

2m
(τp + τn) + B1ρ2 + B2(ρ

2
p + ρ2

n)

+B3(ρτ − j2) + B4(ρpτp − j2
p + ρnτn − j2

n)

+
[

B7ρ2 + B8(ρ
2
p + ρ2

n)
]
ρα . (2)

The terms ∼ρ2, ρ2
q result from the central short-range component of the Skyrme interaction,

whereas the term on the last line of (2) originates from the density-dependent short-range
of the force. In the above choice of the Skyrme energy density, spin-dependent (spin-
orbit and tensor spin-gradient) terms are dropped out, since magnetic spin-waves are not
addressed in the present paper. The gradient terms in the densities are also neglected
since, in the ground state, the fluid mixture is assumed to be homogeneous. The kinetic
energy density, ∼τq, is treated within the Thomas–Fermi approximation [34]. Note that the
Galilean invariance of the Skyrme interaction is accounted for by terms of the type ρτ − j2.
The terms ∼ρτ, ρqτq have their roots in the nonlocal part of the short-range interaction.

Next, the mean-field one-body potential Uq is derived by taking the functional deriva-
tive of the energy density with respect to the q-th constituent density,

Uq ≡
δHSky

δρq(r)
=

∂HSky

∂ρq
−∇ ·

∂HSky

∂∇ρq
+ ∆

∂HSky

∂∆ρq
. (3)

The internal energy can be then written as

U =
∫

drHSky(r) . (4)
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In this paper, I consider an external static magnetic field, B0, that starts to act at time
t = 0 upon the neutron and proton fluids. The interaction of the charged component of the
fluid mixture with the external electromagnetic field of strength (E, B) reads [35]

Wem = e
∫

dr ρpχp ·
(

E+
′

χp ×B
)

, (5)

where χp is the proton fluid displacement field, which is trivially related to the proton fluid
velocity field,

′
χp (r, t) =

∂χp(r, t)
∂t

. (6)

In order to derive the dynamical equations governing the continuum-mechanical
system combining the proton and neutron fluids, I apply the Hamilton principle to the
four-fold action integral [36]

δS = δ
∫

dt(T −U + Wem + C) = 0 . (7)

The last term in the above integral is related to the mass balance in the mixture and is added
to the Lagrangian by means of undetermined multipliers λp,n,

C =
∫

dr ∑
q

[
∂

∂t
(λqρq) +∇ · (λqρq

′
χq)− λq

∂ρq

∂t
− λq∇ · (ρq

′
χq)

]
. (8)

As shown in a previous paper [37], the particles of the fluid mixture are subjected

to a virtual variation with respect to the dynamical variables ρq and
′

χq. As a result, the
Lagrange equations for the proton and neutron fluid velocities yield

m
′′
χp = e

[
E+

′
χp ×B− χp × (∇× E)

]
−∇Up , (9)

m
′′
χn = −∇Un , (10)

provided the quadratic terms in the velocities are neglected.
The hydrodynamical equations established above are supplemented with the equa-

tions relating the electromagnetic fields to the charge and current distributions of the fluid
mixture (Maxwell equations) :

∇ · E =
e
ε0

ρp; ∇ · B = 0; ∇× E = −∂B
∂t

;
1

µ0
∇× B = eρp

′
χp +ε0

∂E
∂t

, (11)

In the nonperturbed state, the following relations are satisfied

ρ = ρp + ρn = ρ0;
′

χp=
′

χn= 0 . (12)

3. Hydromagnetic Waves in Cold Neutron–Proton Mixtures

At t = 0, the p− n “plasma” is perturbed, and consequently, the density, mean-field
potential, velocity, and electric and magnetic fields are varied,

ρq −→ ρ0
q + δρq, Uq −→ U 0

q + δUq
′

χq−→ vq, E −→ δE, B −→ B0 + δB . (13)

where ρq denotes the equilibrium densities and δρq � ρq. Since I neglect the contributions
generating nonlocal effects, e.g., ∇ρ0

q,∇U 0
q = 0, as well as the second-order terms, and

since small perturbations are assumed, a linear dependence of the one-body potentials on
the proton and neutron density fluctuations is left,

δUq = G(1)
qq δρq + G(1)

qq′ δρq′ , (14)
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where the G-coefficients in the Skyrme parametrization are given in Section 3 of ref. [32].
The linearized hydrodynamic Equations (9) of the p− n “plasma” are

∂vp

∂t
= − 1

m
∇δUp +

e
m
(δE + vp × B0) , (15)

∂vn

∂t
= − 1

m
∇δUn . (16)

The above two equations, expressing the momentum balance, are supplemented with the
equations ensuring the mass balance of the proton and neutron fluids,

∂δρp,n

∂t
= −ρ0

p,n∇ · vp,n . (17)

The Maxwell equations for the fluctuated fields are obtained by substituting the
transformations (13) in (11),

∇ · δE =
e
ε0

δρp , ∇ · δB = 0

∇× δE = − ∂

∂t
δB , ∇× δB = µ0eρ0

pvp +
1
c2

∂δE
∂t

. (18)

Since the external magnetic field is prone to the induction of charged currents flowing
on closed loops (vortical currents), it is reasonable to appeal to the incompressibility
approximation, i.e., I assume that the total density remains constant during the excitation
of hydromagnetic modes,

ρp + ρn = ρ0 , (19)

and therefore δρp = −δρn. Due to this constraint, 10 independent variables are left: δρp,
vp, δE, and δB (δρn and vn are therefore not independent). Assuming that these variables
posses plane wave solutions, i.e., ∼ exp [i(k · r−ωt)], the time derivative and gradient
operators are subjected to the substitution ∂/∂t −→ −iω, ∇ −→ ik. Thus, the continuity
Equation (17), the Euler equation for the proton fluid (15), and the Maxwell Equation (18)
are recasted in the form of a coupled system of algebraic equations

δρp =
ρ0

p

ω
k · vp ; (20)

vp =
ie

mω

(
δE + vp × δB

)
+

c2
s

ω2 k(k · vp) ; (21)

ik · δE =
e
ε0

δρp ; ik · δB = 0; ik× δE = iωδB ; ik× δB = µ0eρ0
pvp −

iω
c2 δE . (22)

Above, I introduced the square of the speed of sound in nuclear matter

c2
s =

ρ0
p

m
(Gpp − Gpn) . (23)

I also introduce the proton plasma frequency

ωp =

√
e2ρ0

p

mε0
, (24)

and the cyclotron frequency

ωc =
eB0

m
= ωp

vA

c
, (25)
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where vA = B0/
√

mµ0ρ0
p is the Alfv́en velocity, obtained from the above system of algebraic

equations:
(

1−
ω2

p

ω2 − k2c2

)
vp −

1
ω2

(
c2

s −
c2ω2

p

ω2 − k2c2

)
k(k · vp)−

ie
mω

vp × B0 = 0 . (26)

Let us consider a configuration with B0 aligned to the z-axis and

k = k⊥(ex cos φ + ey sin φ) + k⊥ez . (27)

First, I choose the orientation with k aligned to B0 (k ‖ B0); thus, k⊥ = 0, kz = k, the
motion in the x− y plane is separated from the motion along the z-axis, and therefore, two
dispersion relations are obtained,

(
1−

ω2
p

ω2 − k2c2

)2

−
(ωc

ω

)2
= 0 , (28)

and

1−
ω2

p

ω2 − k2c2 +
k2

ω2

(
c2ω2

p

ω2 − k2c2 − c2
s

)
= 0 . (29)

Let us focus on the first equation, (28), which encodes the effect of the magnetic field
inducing the rotatory motion in the x − y plane. In this case, there are two branches
resulting from a cubic equation, i.e.,

ω3 ∓ω2ωc −ω(ω2
p + k2c2)±ωck2c2 = 0 . (30)

I note in passing that due to the long-range interactions exhibited by the plasmon term, the
relationship between ω and k is nonlinear [38]. For k→ 0, there are two branches :

ω =
ωc

2



√

1 +
4ω2

p

ω2
c
± 1


 . (31)

In this case, for B0 > 0, the plasmon oscillation bifurcates into a magnetic wave (ω→ωc
when B0 → ∞) and a wave decaying with an increasing magnetic field (see Figure 1).
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Figure 1. The two branches of the dispersion relation (31) for dilute (left panel) and close to normal
nuclear matter proton densities (right panel) as a function of the dimensionless magnetic-field
strength, b = B/Bref, for the configuration k ‖ B0 and k→ 0, Bref ≈ 7.9 · 1011 T. Note that for b = 0,
ω = ωp.

In the low-k regime this equation provides approximately a combination of plasma and
acoustic modes (plasma-acoustic wave),

ω2 ≈ ω2
p + k2c2

s . (33)

The high-ω behavior is ruled by a a pure acoustic mode

ω2 ≈ k2c2
s . (34)

As a second orientation I consider k ⊥ B0, thus kz = 0 and choose k⊥ = k. Conse-
quently the motion along the z-axis separates in the form of vacuum propagation of an
electromagnetic wave altered by the presence of the electric charged proton ”plasma”,

ω2 = ω2
p + k2c2 . (35)

This relation points out to the fact that such transverse waves propagates at frequencies 141

ω > ωp. Inside the frequency range 0 < ω < ωp this mode is confined to a stop band as 142

happens in plasma physics [38]. 143

For k ⊥ B0 the motion in the x− y plane is described by the dispersion relation

(
1−

ω2
p

ω2 − k2c2

)2

+
k2

ω2

(
1−

ω2
p

ω2 − k2c2

)(
c2ω2

p

ω2 − k2c2 − c2
s

)
− ω2

c
ω2 = 0 . (36)

For k→ 0 one speaks of a magneto-plasma wave, i.e.

ω2 ≈ ω2
c + ω2

p . (37)

At the other extreme (k→ ∞) one deals with a magneto-acoustic wave

ω2 ≈ ω2
c + k2c2

s . (38)

The case of low frequencies is governed by

ω2 ≈
(

1 +
ω2

p

k2c2

)−2[
ω2

c +

(
1 +

ω2
p

k2c2

)
(k2c2

s + ω2
p)

]
k→∞−→ ω2

c + ω2
p + k2c2

s , (39)

Figure 1. The two branches of the dispersion relation (31) for dilute (left panel) and close to normal
nuclear matter proton densities (right panel), as a function of the dimensionless magnetic field
strength, b = B/Bref, for the configuration k ‖ B0 and k→ 0, Bref ≈ 7.9 · 1011 T. Note that, for b = 0,
ω = ωp.
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For a large momentum (k→ ∞) or high frequency, the undamped mode tends toward
the cyclotron (magnetic) branch, regardless of B0.

For the second dispersion relation, i.e., Equation (29), corresponding to the orientation
k ‖ B0, the motion along the z-axis is described by

ω4 − (ω2
p + k2c2

s)ω
2 + k2c2ω2

p = 0 . (32)

In the low-k regime, this equation provides approximately a combination of the plasma and
acoustic modes (plasma–acoustic wave),

ω2 ≈ ω2
p + k2c2

s . (33)

The high-ω behavior is ruled by a a pure acoustic mode

ω2 ≈ k2c2
s . (34)

As a second orientation, I consider k ⊥ B0; thus, kz = 0 and k⊥ = k is chosen. Con-
sequently, the motion along the z-axis separates in the form of vacuum propagation of an
electromagnetic wave altered by the presence of the electrically charged proton “plasma”,

ω2 = ω2
p + k2c2 . (35)

This relation points out to the fact that such transverse waves propagate at frequencies of
ω > ωp. Inside the frequency range 0 < ω < ωp, this mode is confined to a stop band, as
occurs in plasma physics [39].

For k ⊥ B0, the motion in the x− y plane is described by the dispersion relation

(
1−

ω2
p

ω2 − k2c2

)2

+
k2

ω2

(
1−

ω2
p

ω2 − k2c2

)(
c2ω2

p

ω2 − k2c2 − c2
s

)
− ω2

c
ω2 = 0 . (36)

For k→ 0, one speaks of a magneto–plasma wave, i.e.,

ω2 ≈ ω2
c + ω2

p . (37)

At the other extreme (k→ ∞), one deals with a magneto–acoustic wave

ω2 ≈ ω2
c + k2c2

s . (38)

The case of low frequencies is governed by

ω2 ≈
(

1 +
ω2

p

k2c2

)−2[
ω2

c +

(
1 +

ω2
p

k2c2

)
(k2c2

s + ω2
p)

]
k→∞−→ ω2

c + ω2
p + k2c2

s , (39)

whereas for high frequencies,

ω2 = ω2
c + 2ω2

p + k2c2 , (40)

one deals with a combination of magnetic, plasma, and electromagnetic modes.

4. Discussion

To date, the subject of hydromagnetic waves in nuclear matter has received scarce
attention in the literature. However, the presence of condensed baryon matter in intense
magnetic fields produced in the astrophysical context (supernovae, neutron stars) or in
relativistic heavy-ion reactions, as revealed in many publications from previous years,
requires the investigation of nuclear magnetohydrodynamical phenomena.
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In this paper, using the framework of nuclear hydrodynamics for two boundless
fluids moving in a Skyrme nuclear mean-field and excited by an external static ultra-
intense magnetic field, I described the generation of small-amplitude waves for various
geometrical configurations. The conditions allowing the generation of magnetic waves
in nuclear matter were derived and showed that this mode arises in combination with
plasma and acoustic modes. It is important to point out that, in the case of an increasing
B0, the wave propagating along the direction of the imposed magnetic field with a speed
approaching vA could be ascribed to an Alfvén wave type.

I should also remind the reader that the isospin effect is incorporated in the speed of
sound cs. It is transparent from Equation (23) that, due to the dependence on the coefficients
Gpp and Gpn, expressed according to [32], in terms of the strengths B2, B4, and B8, pertaining
to components of the Skyrme force (2) with isovector content, the isospin effect is visible in
hydromagnetic modes containing an acoustic component.

Note that, in the past, the possibility of exciting hydromagnetic modes in spherical
nuclei was discussed under very restrictive assumptions [22,23]: restriction to a single,
incompressible nucleon fluid (note that, in the present approach, both fluid components
are compressible), ignoring the displacement current in the last Maxwell Equation (18), and
neglecting the nuclear interaction. The present investigation can be straightforwardly ex-
tended to finite systems, the only additional requirement being the selection of appropriate
boundary conditions.

It was inferred in the previous section that, in infinite nuclear matter, a strong magnetic
field, i.e., B0 > 1010 T (1014 G), gives rise to a significant modification of the dispersion
relation for standard plasma and sound oscillations and the dominance of magnetic (Alfvén)
perturbations at large B0 values. On the other hand, the previously mentioned exploratory
investigations on magnetic-field-induced shifts in nuclear masses [26], excitation of Alfvén
modes in spherical nuclei [23], or the alteration of nuclear matter properties [6], point to
higher values of the magnetic field where nuclear properties are affected, i.e., B0∼1016–1017

G. Such high fields are suspected to arise during the merging of a binary neutron star
system. The generation of wave motion in nuclear matter by such intense magnetic
fields contributes, once friction is included in the hydrodynamical approach [40,41], to the
heating of these astrophysical objects, and therefore affects, in a non-negligible manner, the
merging process.

The present framework can be straightforwardly extended to include friction effects.
It is well-known that the inclusion of viscosity (controlled by the width Γ, a quantity that
can be fixed by the experiment for electric giant resonances) provides a time scale for the
decay of the collective mode, i.e., τdec∼Γ−1. Making the reasonable guess that the nature
of viscosity is the same in finite or infinite nuclear matter and for approximately the same
range of energies and noting from previous work [37] that 0.42 MeV ≤ h̄Γ ≤ 2.25 MeV, the
decay time for hydromagnetic modes should be, at most, ∼10−20 s.

Another open issue concerns the inclusion of spin-degrees of freedom and the role
played, in realistic circumstances, by the surrounding electrons. Simple arguments points
to a suppression of the nuclear hydromagnetic effect due to screening. However to assess
the screening effect as well the generation of additional spin-dependent hydromagnetic
modes in a coherent manner, a more elaborate version of the present continuum mechanical
framework is needed. A fluid viscous mixture with 6 components (protons + neutrons +
electron spin-up and spin-down fluids) could be envisaged with the price of dealing with
complicate couplings in the equations of motion.
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