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Abstract: Light propagation through magnetic media with ellipsoidal inclusions much smaller than
the light wavelength was investigated theoretically. It is assumed that the ellipsoidal inclusions have
the same orientation but are randomly distributed inside the magnetic medium by the Gaussian
law. The theoretical model is based on the multiple-scattering theory in the ladder approximation.
A new type of electromagnetic field correlation is found to appear in this case, while it is absent in
isotropic magnetic nanocomposites and nonmagnetic anisotropic composites. This feature allows for
the precise control of light polarization in anisotropic magnetic media.

Keywords: magneto-optical effects; disordered media; electric field correlation matrix; multiple-
scattering theory

1. Introduction

Light propagation in scattering media is relevant to different disciplines, ranging from
chemistry and biology to astronomy and physics [1]. The fast-evolving field of nanopho-
tonics is directly connected to light propagation through nanostructured materials [2].
Nowadays, light propagation in disordered media is being actively investigated in the-
ory [3–7] and experiments [8–10]. In disordered media, the fluctuation in the scattered-light
component depends on disorder. The description of such fluctuation is based on statistical
approaches [11]. The theory of polarization and the coherence of random electromagnetic
fields was formulated in Ref. [12]. Within this theory, it is possible to compute the degree
of polarization and coherence and the spectrum of light during the beam propagation [13].
Light localization is one of the hot topics, with considerable literature devoted to the weak
localization and the Anderson localization of light in the scattering media [14–18].

Recently, polarization effects in non-magnetic disordered media were intensively
studied using the multiple-scattering theory in terms of “polarization eigenmodes” [19,20].
The magnetization of the scattering media leads to the emergence of a wide class of ef-
fects. Among them, there are the photonic Hall effect in magnetic media [21], the coherent
backscattering suppression by the field [22], and the magnetic-field-driven light localization
in a cold atom gas [23]. Likewise, magneto-optical effects are studied in the framework
of the multiple-scattering theory. Research on magneto-active media with point-like in-
clusions [24,25] and non-magnetic media with magneto-optical scatterers [26] has been
carried out. The approach of “polarization eigenmodes” was used to analyze magneto-
active media [27]. A correlation between orthogonal light polarizations at a scale of several
wavelengths was demonstrated earlier in an uncorrelated disordered magnetic media with
spherical scatterers [28].

Special attention is paid to the creation and study of anisotropic materials. They begin
to have new features because the anisotropy breaks the symmetry and allows one to create
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increasingly complex structures [29]. For example, anisotropy can remove the degeneracy of
the photonic band structure leading to partial band gaps [30]. Nanocomposite systems with
anisotropic inclusions can be created within self-organized structures with distributions of
nanoparticles in the bulk of the eutectic composite [31] and by the directed self-assembly of
the nanoparticles method [32].

It turns out that the presence of the three above-mentioned phenomena in the material
(magnetoactivity, disorder, and anisotropy) leads to rich possibilities for controlling the
polarization of light. In this work, we investigate the correlation of light polarization in a
nanocomposite medium consisting of nonmagnetic nanoparticles of an ellipsoidal shape in
a magnetic dielectric matrix (Figure 1). We assume the Gaussian model for the disorder,
where scatterers are distributed randomly and their size is negligible compared to the
wavelength of light. We also considered that the ellipsoid axes are aligned with each other.
Additionally, we assume that the ellipsoid has two equal semi-diameters, a spheroid. Such
ellipticity leads to the uniaxial anisotropy of the dielectric tensor.

Figure 1. Schematic representation of the light propagation from a source at a point r0 inside an
infinite magnetic nanocomposite medium with a gyration g containing scatterers with an anisotropy
axis ā. Electromagnetic field detectors are placed at points r and r′, X ≡ r− r′.

A similar model can be implemented in materials based on a dilute three-dimensional
colloidal suspension of randomly arranged anisotropic particles. In this case, the collective
alignment of ellipsoidal particles and the anisotropy control can be carried out by external
electric [29] or magnetic [33] fields. Additionally, similar systems can be created by the
method of layering self-organized material with the annealing of matrix material [34]. In
this paper there was no focus on the anisotropy of inclusions; therefore, this issue was not
investigated, but the presence of a defect in the form of a surface during the growth of such
systems should lead to the alignment of the axes of the ellipsoid.

Let us consider a point-dipole light source, at point r0, located far from the observation
points r and r′. The correlation of electromagnetic fields with different polarizations at the
observation points is described by the field correlation matrix Wkl(r, r′) = 〈Ek(r)E∗l (r

′)〉 [35],
where 〈. . .〉 means the ensemble average over the realizations of the field. It contains
information on the interconnection between electromagnetic waves at two distinct points
averaged over all possible disorder realizations. For example, the element Wxx characterizes
how the light polarized along the x− axis at the point r, Ex(r), is correlated to the light
with the same polarization at the point r′, Ex(r′). The elements of the correlation matrix,
W, can be measured in Young’s interference experiments [36]. They describe radiation,
propagation, diffraction, and the interference of light [37].

The effect of magnetization on the optical properties of a medium is described by
means of magneto-optical effects. In magnetic media with scattering particles, the correla-
tion of orthogonal electric fields emerges. This occurs in the plane that is perpendicular
to the gyration vector, g, that is used to describe the magneto-optical effects. Gyration is
proportional to the magnetization in the medium and contributes to the off-diagonal terms
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in the dielectric tensor. For example, when g ‖ z the correlation of Ex(r) and Ey(r′), Wxy,
arises. Moreover, if the scattering particles are isotropic then we have the antisymmetric
correlation, Wyx = −Wxy, which corresponds to the circularly polarized part of the scat-
tered light. Namely, if the initial light polarization Ey(r) has the antisymmetric correlation
with the final polarization Ex(r′) then the initial polarization Ex(r) correlates with the final
polarization Ey(r′) with the opposite sign of the correlation, which corresponds to the
circular polarization.

The anisotropy of scattering particles in magnetic media leads to the emergence of
the symmetric off-diagonal correlation matrix terms, which is one of the main results of
this article. It corresponds to the emergence of ellipticity in the polarization. One can
smoothly vary the character of polarization from circular to ellipsoidal and further to linear
by changing the ratio of the gyration and anisotropy.

2. Effective Dielectric Tensor

We use the multiple-scattering theory, an ab initio approach, to describe the light prop-
agation in the disordered media [38,39]. The electric field obeys the Helmholtz equation:

(∇×∇− ε̂k2
0)E = iµ0ωj, (1)

where k0 = 2π/λ is the light wavevector in vacuum, λ is the light wavelength, j is the
current density of the light source, and ε̂ = ε̂(r) is the dielectric tensor of the nanocom-
posite medium. We assume that the light source is a point dipole with a dipole moment
p = 1/µ0ω2 located at r0 and oriented along the `-th axis:

ji(r, r0) = −iωpδi`δ(r− r0). (2)

In the case of the magnetic media without the disorder, the dielectric tensor does not
depend on r and has the following form:

εij = ε0δij − ∑
k=x,y,z

ieijkgk. (3)

Here, δli is the Kronecker Delta, ε0 is the diagonal part of the dielectric tensor, and eijk
is the Levi–Civita tensor.

Impurities in the media may be considered as fluctuations of the dielectric ten-
sor δε̂(r). Fluctuations in the case of an isotropic uncorrelated disorder are as follows:
δεij(r) = δijδε(r). Here, we consider anisotropic impurities. In accordance with the white
noise model [39], the dielectric tensor of the medium has the following form:

δεij(r) = δij(1 + aj)δε(r),

〈δε(r)〉 = 0, 〈δε(r)δε(r′)〉 = 6π

l(ε0k2
0)

2
δ(r− r′),

(4)

where aj is an anisotropy parameter aligned with the j-th axis, 〈. . .〉means averaging over
the Gaussian distributed disorder, and l is the scattering elastic mean free path of photons in
a medium. Further, we consider the uniaxially anisotropic disorder such that aj is non-zero
along only one axis ā with value a.

We solve the Helmholtz Equation (1) in the Bourret approximation [40], ζ ≡ 1/
√

ε0k0l � 1,
and the low anisotropy approximation a � 1. Additionally, we compute the effective
dielectric tensor, εeff, of the disordered medium. εeff relates the averaged electric displace-
ment field with the averaged electric field 〈E〉. This is the mean-field description of the
disordered media, where mean field is interpreted as the field in an effective uniform
medium. However, from the knowledge of εeff it is not possible to obtain quadratic field
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functions [41]. Although εeff does not fully characterize the light propagation in complex
media, it can illuminate some aspects of the phenomenon as discussed below. εeff reads,

εeff
ij = εij + iζ ∑

l,n=x,y,z
(δln +

i
4 ∑

k=x,y,z
elnkgk)Mil Mnj ,

Mil = δil(1 + al).

(5)

We use εeff to analyze the polarization eigenchannels in the system. For illustrative
purposes, let us consider a simplified case when the direction of light propagation is parallel
to the magnetization. There are two eigenchannels in the plane orthogonal to the gyration
direction. They can be clearly presented in the Stokes parameters space,

q = ExE∗x − EyE∗y , u = ExE∗y + EyE∗x , v = i(ExE∗y − EyE∗x) , (6)

by points on the Poincaré sphere [11] (see Figure 2a). In the non-magnetic medium, g = 0,
with an arbitrary value of anisotropy, a 6= 0, the light polarizations of eigenchannels
are linear (blue points). For the opposite case, g 6= 0 and a = 0, light polarizations are
exactly circular (red points). Remarkably, for the general case of the magnetic medium
with anisotropic inclusions, g 6= 0 and a 6= 0, the polarization of eigenchannels is elliptical
(purple points). Moreover, one can manipulate the polarizations by changing the ratio of
the gyration, g, and the anisotropy, a. For example, if they are experimentally feasible when
the gyration decreases for a fixed anisotropy, then the polarization smoothly changes from
an elliptic to the linear one. This is depicted by purple line in Figure 2a.

q u

v
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1

1

-1

-1 -1

q u

v

1

1

1

-1

-1 -1

(a) (b)

Figure 2. (a) Polarization eigenchannels for 3 types of disordered media are shown on the Poincaré
sphere. They are depicted by blue dots for the non-magnetic case, g = 0, with possible anisotropy,
a 6= 0, corresponding to the linear polarization. For the magnetic case, g 6= 0, without anisotropy,
a = 0, they are depicted by red dots, corresponding to the circular polarization. For the general case,
g 6= 0, and for a 6= 0, they are depicted by purple dots, corresponding to the elliptical polarization.
The modification of the polarization in the general case by manipulating the gyration is shown
by purple lines. (b) Normalized Stokes parameters are computed for the electric field correlation
matrix, W̃(X), for components in the plane that is orthogonal to the gyration direction. Red line
shows the oscillation of W̃ as a function of X for the case g ‖ ā ‖ z. It is directed along the v-axis, so
polarization oscillates between the right and left circularity, being limited to zero for a large value of
X (the black dot, full depolarization) . For cases g ‖ ā ‖ y (purple curve) and g ‖ x, ā ‖ y (blue curve),
symmetric contributions appear in the correlation. The polarizations acquire ellipticity, i.e., all Stokes
parameters obtain non-zero values. (We assume that the direction of light propagation is parallel to
the magnetization. |g| = 0.2, a = 0.1)
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3. Correlation Matrix

The observable quantity, which contains all the information about light propagation
in the disordered medium, is the field correlation matrix Wkl(r, X) [11]:

Wkl(r, X) = 〈Ek(r)E∗l (r
′)〉| r=R+X/2+r0

r′=R−X/2+r0

, (7)

where R ≡ r+r′
2 − r0 is the distance between the light source and the observation area, and

X ≡ r− r′ is the distance between two observation points (see Figure 1). The computation
of the field correlation matrix is the main goal of this work. It can be done by solving the
Bethe–Salpeter equation in the ladder approximation for a far away source 2πl/R� 1 [19].

Further, we use several approximations for the analytical derivation of the field
correlation matrix. We restrict ourselves to the first-order contributions of the gyration
and the anisotropy in the well-known diffusive approximation [42] (the largest term in the
source distance, R, is considered). Thus, the following approximations were used:(

2πl
R

)2
� g√

ε0ζ
� 2πl

R
� 1,(

2πl
R

)2
� a� 2πl

R
� 1.

(8)

Without a loss of a generality, let us assume that the observation axis (the radius–
vector between the two detectors) is along the z-axis: X ‖ z. The field correlation matrix is
inversely proportional to the distance from the light source to the detectors, R. To analyze
the electric field correlation, we use the normalized correlation matrix:

W̃(X) = W(r, X)/Tr[W(r, X = 0)] ,

Tr[W(r, X = 0)] = (1 + α)/8π2Rl .
(9)

Here, α = 10a/3 when ā ‖ z and α = −8a/3 when ā ⊥ z.
The diagonal elements of the correlation matrix correspond to the correlations of

electromagnetic fields with the same polarization. The magneto-optical effects do not
affect these elements, unlike the anisotropy. In the absence of anisotropy, the correlations
between light with polarizations perpendicular to the observation axis, Wxx and Wyy, are
equal to each other but differ from the correlation parallel to the observation axis, Wzz [19].
In the presence of the anisotropy, two cases for diagonal elements of the correlation matrix
are possible:

1. Anisotropy is along the observation axis (ā ‖ z). Correlations Wxx and Wyy are equal.
Correlation Wzz is higher than Wxx and Wyy if a > 0 and vice versa.

W̃xx = W̃yy = W̃0
xx + a(W̃a

xx + W̃a
yy) ,

W̃zz = W̃0
zz + 2aW̃a

zz ,
(10)

where

W̃0
xx = (X̃2−1) sin X̃+X̃ cos X̃

2X̃3 , W̃0
zz =

sin X̃−X̃ cos X̃
X̃3 ,

W̃a
xx = − X̃(8X̃2+27) cos X̃+(5X̃4+X̃2−27) sin X̃

6X̃5 ,

W̃a
yy = X̃(16X̃2−81) cos X̃+(7X̃4−43X̃2+81) sin X̃

6X̃5 ,

W̃a
zz =

(54−19X̃2) sin X̃+X̃(X̃2−54) cos X̃
3X̃5 ,

and X̃ =
√

ε0k0X.
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2. Anisotropy is perpendicular to the observation axis (ā ⊥ z). Correlations Wxx and
Wyy are different. Correlation Wyy is higher than Wxx and Wzz if the anisotropy is
along the y-axis and a > 0 and vice versa. The same is true if the anisotropy is along x
as it corresponds to changing Wxx ↔Wyy.

W̃xx = W̃0
xx + aW̃a

xx , W̃yy = W̃0
xx + aW̃a

yy ,

W̃zz = W̃0
zz + aW̃a

zz.
(11)

The general rule here is that anisotropy a > 0 (a < 0) increases (decreases) the
correlation of light with polarizations that are along the anisotropy axis. Additionally, the
correlations perpendicular to the observation axis decrease slower than the parallel ones.

The off-diagonal correlation matrix elements correspond to the correlation of light with
orthogonal polarizations. These elements are absent in the nonmagnetic medium. In the
magnetic medium, there is a correlation of the electric field components perpendicular to the
gyration. In the absence of anisotropy, the non-diagonal elements of the correlation matrix
are anti-symmetric. This correlation decays faster when the gyration is perpendicular to the
observation axis X than when the gyration is parallel to it [28]. In the presence of anisotropy,
there are differences in the off-diagonal elements: |Wij| 6= |Wji|, i 6= j. The antisymmetric
contribution, W̃A

⊥ ≡
1
2 (Wij−Wji)(|g|/

√
ε0ζ)−1, varies weakly with the anisotropy, whereas

the symmetric contribution, W̃S
⊥ ≡

1
2 (Wij + Wji)(|g|/

√
ε0ζ)−1, appears.

This means that the light polarization acquires the elliptical part. We show it in the
Stokes parameters space for the normalized correlation matrix (9). Stokes parameters are
defined in the same way as in (6). For illustrative purposes, we restrict ourselves to the
simplified case when the direction of light propagation is parallel to the magnetization,
for example, in the case g ‖ z: q = W̃xx − W̃yy, u = W̃xy + W̃yx, and v = i(W̃xy − W̃yx).
Additionally, we normalize the vector (q, u, v) on its absolute value at X = 0. In the case
g ‖ ā ‖ z, there is no symmetric contribution, and the polarization oscillates with distance
X ‖ z from right to left circular polarization (red line along v-axis). For the case g ‖ ā ‖ y,
there is a small symmetric correlation part, oscillation mainly belongs to the (q-v)-plane
(purple curve). A significant symmetric contribution appears for the case g ‖ x, ā ‖ y (blue
curve). We note that the polarization correlation decreases with the increasing distance
between the detectors. This fact reveals the attraction of the lines to the full depolarization
point (black dot).

In the presence of gyration and anisotropy, five possibilities exist for the off-diagonal
elements of the correlation matrix (for X ‖ z):

1. The anisotropy is along the observation axis, while the gyration is perpendicular to
both of them (g ⊥ ā ‖ z) (Figure 3a,b). The symmetric contribution changes the correlations
approximately by two times. The difference between these two figures is only in the sign of
the symmetric part of the orthogonal correlations.

2. All three vectors are along the same axis (g ‖ ā ‖ z) (Figure 3c). There is no
symmetric contribution. The anti-symmetric contribution varies weakly with anisotropy.

3. All three vectors are perpendicular to each other (g ⊥ ā ⊥ z) (Figure 3d). The
symmetric contribution is of the same order as the anti-symmetric contribution.

4. The gyration is directed along the anisotropy but perpendicular to the observation
axis (g ‖ ā ⊥ z) (Figure 3e). The symmetric contribution exists, but it is small. The antisym-
metric contribution varies weakly with anisotropy.

5. The gyration is along the observation axis, while the anisotropy is perpendicular
to it (ā ⊥ g ‖ z) (Figure 3f). The symmetric contribution is of the same order as the
anti-symmetric one. The correlations decrease slowly in comparison with the case of g ⊥ z.

The explicit forms for the correlations of orthogonal polarizations are given in
Appendix A.



Magnetism 2023, 3 7

0 0.5 1 1.5 2
0.15

0.1

0.05

0

0.05

0.1

0 0.5 1 1.5 2
0.15

0.1

0.05

0

0.05

0.1

0 0.5 1 1.5 2
0.15

0.1

0.05

0

0.05

0.1

0 0.5 1 1.5 2
0.15

0.1

0.05

0

0.05

0.1

0 0.5 1 1.5 2
0.15

0.1

0.05

0

0.05

0.1

0 0.5 1 1.5 2
0.15

0.1

0.05

0

0.05

0.1

Figure 3. Symmetric W̃S
⊥ and antisymmetric W̃A

⊥ normalized contributions of the electric field corre-
lations of the orthogonal polarizations for different directions of the gyration, g, and the anisotropy,
ā. Dependence on the gyration value |g| was included in the normalization factor. The anisotropy
value is a = 0.07. Five different cases are possible (for X ‖ z): (a) and (b) The anisotropy is along the
observation axis, while the gyration is perpendicular to both of them; (c) All three vectors are along
the same axis; (d) All three vectors are perpendicular to each other; (e) The gyration is directed along
the anisotropy but perpendicular to the observation axis; (f) The gyration is along the observation
axis, while the anisotropy is perpendicular to it.

4. Conclusions

We address the light-propagation problem in magnetic nanocomposites with oriented
ellipsoidal scattering inclusions. Three cases are compared. In the magnetic media with
spherical scatterers, an antisymmetric correlation of electromagnetic fields with orthogonal
polarization is present. This corresponds to the rotation of polarization around the gyration
vector, which does not depend on the initial polarization. In the non-magnetic media
with oriented elliptical scatterers, there is only a correlation between electromagnetic fields
with the same polarization. For the general case, in the magnetic scattering media with
an anisotropy, an additional symmetric contribution of the correlation of electromagnetic
fields with orthogonal polarizations appears. It corresponds to the elliptical polarization
of transmission eigenchannels in these media. In such media, it is possible to manipulate
the polarization by changing the medium gyration via an external magnetic field. By di-
minishing the gyration, one can reduce the circular and increase the linear contributions to
the polarization of the scattered light. This effect has a non-additive character. That is, it
is absent when either the gyration or the anisotropy are present. It arises only when the
gyration and the anisotropy exist simultaneously.
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Appendix A

In this appendix, we explicitly write expressions for the correlations of orthogonal
polarizations. In the presence of gyration and anisotropy, five cases for non-diagonal
elements of the electric field correlation matrix (see Equation (9)) are possible (for X ‖ z):

1. The anisotropy is along the observation axis, while the gyration is perpendicular to
both of them (g ⊥ ā ‖ z) (Figure 3a,b of the main text).

W̃A
⊥ = W̃A(0,⊥)

⊥ + a((36−13X̃2) sin X̃+X̃(X̃2−36) cos X̃)
12X̃5 ,

W̃S
⊥ = 3a((24−13X̃2) sin X̃+X̃(5X̃2−24) cos X̃)

4X̃5 ,

W̃A(0,⊥)
⊥ = (X̃ cos X̃−sin X̃)

4X̃3

(A1)

2. All of the three vectors are along the same axis (g ‖ ā ‖ z) (Figure 3c of the main text).

W̃A
⊥ = W̃A(0,‖)

⊥ + a((X̃4+13X̃2−36) sin X̃−X̃(X̃2−36) cos X̃)
6X̃5 ,

W̃S
⊥ = 0,

W̃A(0,‖)
⊥ = ((2−X̃2) sin X̃−2X̃ cos X̃)

4X̃3 .

(A2)

3. All of the three vectors are perpendicular to each other (g ⊥ ā ⊥ z) (Figure 3d of the
main text).

W̃A
⊥ = W̃A(0,⊥)

⊥ − a((9−5X̃2) sin X̃+X̃(2X̃2−9) cos X̃)
12X̃5 ,

W̃S
⊥ = − a(3(44−21X̃2) sin X̃+X̃(19X̃2−132) cos X̃)

4X̃5 .
(A3)

4. The gyration is directed along the anisotropy but perpendicular to the observation
axis (g ‖ ā ⊥ z) (Figure 3e of the main text).

W̃A
⊥ = W̃A(0,⊥)

⊥ − a((27−14X̃2) sin X̃+X̃(5X̃2−27) cos X̃)
12X̃5 ,

W̃S
⊥ = − a(3(5−2X̃2) sin X̃+X̃(X̃2−15) cos X̃)

X̃5 .
(A4)

5. The gyration is along the observation axis, while the anisotropy is perpendicular to it
(ā ⊥ g ‖ z) (Figure 3f of the main text).

W̃A
⊥ = W̃A(0,‖)

⊥

+ a(X̃(7X̃2−36) cos X̃+(2X̃4−19X̃2+36) sin X̃)
12X̃5 ,

W̃S
⊥ = − a(2X̃(11X̃2−39) cos X̃+3(3X̃4−16X̃2+26) sin X̃)

4X̃5 .

(A5)
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