Correlation of Light Polarization in the Magnetic Media with Non-Spherical Point-Like Inclusions
Abstract
:1. Introduction
2. Effective Dielectric Tensor
3. Correlation Matrix
- 1.
- Anisotropy is along the observation axis (). Correlations and are equal. Correlation is higher than and if and vice versa.
- 2.
- Anisotropy is perpendicular to the observation axis (). Correlations and are different. Correlation is higher than and if the anisotropy is along the y-axis and and vice versa. The same is true if the anisotropy is along x as it corresponds to changing .
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- The anisotropy is along the observation axis, while the gyration is perpendicular to both of them () (Figure 3a,b of the main text).
- All of the three vectors are along the same axis () (Figure 3c of the main text).
- All of the three vectors are perpendicular to each other () (Figure 3d of the main text).
- The gyration is directed along the anisotropy but perpendicular to the observation axis () (Figure 3e of the main text).
- The gyration is along the observation axis, while the anisotropy is perpendicular to it () (Figure 3f of the main text).
References
- Berne, B.J.; Pecora, R. Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics; Courier Corporation: Chelmsford, MA, USA, 2000. [Google Scholar]
- Brongersma, M.L.; Kik, P.G. Surface Plasmon Nanophotonics; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Skipetrov, S.E. Optical devices: Localizing light with electrons. Nat. Nanotechnol. 2014, 9, 335. [Google Scholar] [CrossRef] [PubMed]
- Réfrégier, P.; Wasik, V.; Vynck, K.; Carminati, R. Analysis of coherence properties of partially polarized light in 3D and application to disordered media. Opt. Lett. 2014, 39, 2362. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, Y.; Yan, S.; Kuebel, D.; Visser, T.D. Dynamic control of light scattering using spatial coherence. Phys. Rev. A 2015, 92, 013806. [Google Scholar] [CrossRef][Green Version]
- Gorodnichev, E.E.; Kuzovlev, A.I.; Rogozkin, D.B. Impact of wave polarization on long-range intensity correlations in a disordered medium. J. Opt. Soc. Am. A 2016, 33, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Hoskins, J.G.; Schotland, J.C. Acousto-optic effect in random media. Phys. Rev. E 2017, 95, 033002. [Google Scholar] [CrossRef][Green Version]
- Uchida, H.; Masuda, Y.; Fujikawa, R.; Baryshev, A.; Inoue, M. Large enhancement of Faraday rotation by localized surface plasmon resonance in Au nanoparticles embedded in Bi: YIG film. J. Magn. Magn. Mater. 2009, 321, 843–845. [Google Scholar] [CrossRef]
- Strudley, T.; Akbulut, D.; Vos, W.L.; Lagendijk, A.; Mosk, A.P.; Muskens, O.L. Observation of intensity statistics of light transmitted through 3D random media. Opt. Lett. 2014, 39, 6347–6350. [Google Scholar] [CrossRef][Green Version]
- de Aguiar, H.B.; Gigan, S.; Brasselet, S. Polarization recovery through scattering media. Sci. Adv. 2017, 3, e1600743. [Google Scholar] [CrossRef][Green Version]
- Dogariu, A.; Carminati, R. Electromagnetic field correlations in three-dimensional speckles. Phys. Rep. 2015, 559, 1–29. [Google Scholar] [CrossRef][Green Version]
- Wolf, E. Unified theory of coherence and polarization of random electromagnetic beams. Phys. Lett. A 2003, 312, 263–267. [Google Scholar] [CrossRef]
- Wolf, E. Correlation-induced changes in the degree of polarization, the degree of coherence, and the spectrum of random electromagnetic beams on propagation. Opt. Lett. 2003, 28, 1078. [Google Scholar] [CrossRef] [PubMed]
- Jonckheere, T.; Müller, C.A.; Kaiser, R.; Miniatura, C.; Delande, D. Multiple scattering of light by atoms in the weak localization regime. Phys. Rev. Lett. 2000, 85, 4269. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wiersma, D.S.; Bartolini, P.; Lagendijk, A.; Righini, R. Localization of light in a disordered medium. Nature 1997, 390, 671–673. [Google Scholar] [CrossRef]
- Lagendijk, A.; van Tiggelen, B.; Wiersma, D.S. Fifty years of Anderson localization. Phys. Today 2009, 62, 24–29. [Google Scholar] [CrossRef][Green Version]
- Segev, M.; Silberberg, Y.; Christodoulides, D.N. Anderson localization of light. Nat. Photonics 2013, 7, 197–204. [Google Scholar] [CrossRef]
- Sperling, T.; Schertel, L.; Ackermann, M.; Aubry, G.J.; Aegerter, C.M.; Maret, G. Can 3D light localization be reached in ‘white paint’? New J. Phys. 2016, 18, 013039. [Google Scholar] [CrossRef]
- Vynck, K.; Pierrat, R.; Carminati, R. Polarization and spatial coherence of electromagnetic waves in uncorrelated disordered media. Phys. Rev. A 2014, 89, 013842. [Google Scholar] [CrossRef][Green Version]
- Vynck, K.; Pierrat, R.; Carminati, R. Multiple scattering of polarized light in disordered media exhibiting short-range structural correlations. Phys. Rev. A 2016, 94, 033851. [Google Scholar] [CrossRef][Green Version]
- Rikken, G.; Van Tiggelen, B. Observation of magnetically induced transverse diffusion of light. Nature 1996, 381, 54–55. [Google Scholar] [CrossRef]
- Erbacher, F.; Lenke, R.; Maret, G. Multiple light scattering in magneto-optically active media. Europhys. Lett. 1993, 21, 551. [Google Scholar] [CrossRef]
- Skipetrov, S.; Sokolov, I. Magnetic-field-driven localization of light in a cold-atom gas. Phys. Rev. Lett. 2015, 114, 053902. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Golubentsev, A.A. Interference correction to the albedo of a strongly gyrotropic medium with random inhomogeneities. Radiophys. Quantum Electron. 1984, 27, 506–516. [Google Scholar] [CrossRef]
- MacKintosh, F.C.; John, S. Coherent backscattering of light in the presence of time-reversal-noninvariant and parity-nonconserving media. Phys. Rev. B 1988, 37, 1884–1897. [Google Scholar] [CrossRef] [PubMed]
- van Tiggelen, B.A.; Maynard, R.; Nieuwenhuizen, T.M. Theory for multiple light scattering from Rayleigh scatterers in magnetic fields. Phys. Rev. E 1996, 53, 2881–2908. [Google Scholar] [CrossRef][Green Version]
- Niyazov, R.A.; Kozhaev, M.A.; Achanta, V.G.; Belotelov, V.I. Polarization Eigenchannels in a Magnetic Uncorrelated Disordered Medium. Phys. Met. Metallogr. 2022, 123, 447–450. [Google Scholar] [CrossRef]
- Kozhaev, M.A.; Niyazov, R.A.; Belotelov, V.I. Correlation of light polarization in uncorrelated disordered magnetic media. Phys. Rev. A 2017, 95, 023819. [Google Scholar] [CrossRef][Green Version]
- Mittal, M.; Furst, E.M. Electric Field-Directed Convective Assembly of Ellipsoidal Colloidal Particles to Create Optically and Mechanically Anisotropic Thin Films. Adv. Funct. Mater. 2009, 19, 3271–3278. [Google Scholar] [CrossRef]
- Li, Z.Y.; Wang, J.; Gu, B.Y. Creation of partial band gaps in anisotropic photonic-band-gap structures. Phys. Rev. B 1998, 58, 3721–3729. [Google Scholar] [CrossRef][Green Version]
- Sadecka, K.; Gajc, M.; Orlinski, K.; Surma, H.B.; Klos, A.; Jozwik-Biala, I.; Sobczak, K.; Dluzewski, P.; Toudert, J.; Pawlak, D.A. When Eutectics Meet Plasmonics: Nanoplasmonic, Volumetric, Self-Organized, Silver-Based Eutectic. Adv. Opt. Mater. 2014, 3, 381–389. [Google Scholar] [CrossRef][Green Version]
- Grzelczak, M.; Vermant, J.; Furst, E.M.; Liz-Marzán, L.M. Directed Self-Assembly of Nanoparticles. ACS Nano 2010, 4, 3591–3605. [Google Scholar] [CrossRef]
- Ding, T.; Song, K.; Clays, K.; Tung, C.H. Fabrication of 3D Photonic Crystals of Ellipsoids: Convective Self-Assembly in Magnetic Field. Adv. Mater. 2009, 21, 1936–1940. [Google Scholar] [CrossRef]
- Khramova, A.E.; Ignatyeva, D.O.; Kozhaev, M.A.; Dagesyan, S.A.; Berzhansky, V.N.; Shaposhnikov, A.N.; Tomilin, S.V.; Belotelov, V.I. Resonances of the magneto-optical intensity effect mediated by interaction of different modes in a hybrid magnetoplasmonic heterostructure with gold nanoparticles. Opt. Express 2019, 27, 33170. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wolf, E. Optics in terms of observable quantities. Il Nuovo C. (1943-1954) 1954, 12, 884–888. [Google Scholar] [CrossRef]
- Roychowdhury, H.; Wolf, E. Determination of the electric cross-spectral density matrix of a random electromagnetic beam. Opt. Commun. 2003, 226, 57–60. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics: 60th Anniversary Edition, 7 ed.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Sheng, P. Introduction to Wave Scattering, Localization and Mesoscopic Phenomena; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 88. [Google Scholar]
- Akkermans, E.; Montambaux, G. Mesoscopic Physics of Electrons and Photons; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Bharucha-Reid, A. Probabilistic Methods in Applied Mathematics; Elsevier Science: Amsterdam, The Netherlands, 2014; Volume 3. [Google Scholar]
- Brekhovskikh, V.L. Effective dielectric constant in the calculation of the second field moments in a randomly inhomogeneous medium. Zh. Eksp. Teor. Fiz 1985, 89, 2013–2020. [Google Scholar]
- van Rossum, M.C.W.; Nieuwenhuizen, T.M. Multiple scattering of classical waves: Microscopy, mesoscopy, and diffusion. Rev. Mod. Phys. 1999, 71, 313–371. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niyazov, R.A.; Achanta, V.G.; Belotelov, V.I. Correlation of Light Polarization in the Magnetic Media with Non-Spherical Point-Like Inclusions. Magnetism 2023, 3, 1-10. https://doi.org/10.3390/magnetism3010001
Niyazov RA, Achanta VG, Belotelov VI. Correlation of Light Polarization in the Magnetic Media with Non-Spherical Point-Like Inclusions. Magnetism. 2023; 3(1):1-10. https://doi.org/10.3390/magnetism3010001
Chicago/Turabian StyleNiyazov, Ramil A., Venu Gopal Achanta, and Vladimir I. Belotelov. 2023. "Correlation of Light Polarization in the Magnetic Media with Non-Spherical Point-Like Inclusions" Magnetism 3, no. 1: 1-10. https://doi.org/10.3390/magnetism3010001