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Quasi-Stable, Non-Magnetic, Toroidal Fluid Droplets in a
Ferrofluid with Annular Magnetic Field
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Abstract: A relatively stable, non-magnetic, torus-shaped fluid droplet within a linearly magnetizable
surrounding ferrofluid medium, and subject to the annular magnetic field induced by an electric
current in a wire passing perpendicularly through its centre, has been found through the use of
coupled finite element/boundary element computer simulations.
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1. Introduction

A ferrofluid may be thought of as a “liquid magnet”, with the addition of a surfactant
to a simple Newtonian carrier fluid allowing the stable colloidal suspension of magnetic or
magnetizable particles that make this fluid sensitive to the presence of a magnetic field [1].

External magnetic fields may then be used to manipulate and control the surfaces
and interfaces of these liquids in a non-invasive manner, giving rise to a host of different
engineering and industrial applications.

If these surfaces or interfaces are those of single, isolated droplets, perhaps sitting on a
substrate surface in air or contained within another immiscible fluid, then such magnetic
fields may be used to control both the motion and shape of the whole droplets themselves.

Such drops may then be used to transport various chemical species dissolved, or “en-
capsulated”, within them to different locations in a “lab-on-a-chip” for analysis, say, or act
as “microreactors” when their contents are actuated or agitated by some external magnetic
stimuli; see [2] and the references therein.

While the majority of research into ferrofluids and droplets has involved the droplet
being composed of the ferrofluid, for example in numerous extension experiments of the
type seen in [3], the inverse situation has more rarely been studied with, for example,
the deformation of aqueous droplets in an oil-based ferrofluid [4], or of oil drops in an
aqueous ferrofluid [5], and the splitting and demulsification of micro-droplets within a
hydrophobic ferrofluid continuous phase [6].

The use of toroidal, or “ring” shaped, annular droplets in ferrofluidics is also fairly
limited, but their dynamics under a magnetic field has been considered in a Hele–Shaw
cell [7] (the fluid region between two parallel glass plates separated by a narrow gap),
in single droplet soft robotics [8], and for manipulating isolated water droplets on a
substrate [9]—albeit always with the annular droplet being that composed of the ferrofluid,
and thus giving, perhaps, some novelty to the present work where it is the surrounding
medium that is a ferrofluid.

2. Methods
2.1. Numerical Implementation

Consider a Newtonian, viscous, non-magnetic fluid droplet, occupying an “interior”
region Ω, with a density, ρ, and dynamic viscosity, ν—excuse the non-standard notation,
but µ will be needed elsewhere—so much greater (for convenience) than that of its linearly
magnetic ferrofluid surrounding “exterior” medium, occupying Ω∞, and with which it
shares a boundary Γ, that the latter’s density and viscosity may be neglected.
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Given that quasi-stable equilibrium geometries will be of primary interest, using
non-negligible surrounding (“matrix”) fluid parameters would only effect the kinematics
of actually reaching any stable state, and not the state itself. Thus the extra calculations
needed for simulating the ambient fluid motions in the (unbounded) exterior would be
superfluous—a similar argument could be made against the interior fluid too, but simu-
lating the fluid parameters here does at least allow good control of the progression of the
calculations to the steady state.

With a surface energy/tension of γ, between the interior and exterior fluids, the fully
coupled governing equations, derived from [3] and all collected together for ease of ref-
erence in the next sub-section, will start with those of incompressible Navier-Stokes (5a)
and (5b), for the interior fluid velocities, u, and pressure, p.

The divergence of the magnetic stress tensor, ∇ · øm, now present only in the exterior
rather than the interior [10], then gives rise to the extra magnetic forcing—after application
of the divergence theorem to its integral—to be added to the usual local mean curvature, κ,
based surface tension forcing (5h).

Now, the magnetic field, H, and inductive flux, B, in an electrically non-conducting
medium are, of course, governed by Maxwell’s equations. However, these equations are
not here discretised directly, but their representations on the “magnetic vector potential”,
or “MVP”, are.

Before introducing the two MVP’s used, let the toroidal droplet lye in a Cartesian
x− y plane, with the current carrying wire coincident with the z axis through its centre,
and (·, ·, ·) indicate a simple three-dimensional Cartesian vector triple; it is also useful to
adopt the terminology of wave scattering problems for describing the various magnetic
fields present.

Thus a ‘total’ (superscript ‘t’) magnetic field is the summation of an ’incident’ (subscript
‘0’) field hitting the target torus droplet and the ‘scattered’ (superscript ’s’) field purely
arising due to the droplet’s presence—if, later on, no clarifying super-/sub-script is present,
then a total value is to be assumed.

Because of this simple geometrical setup, the magnetic fields can then be approximately
described everywhere by the single, scalar, ‘z’-component of either a scattered or a total
magnetic vector potential As|t.

The single, scalar MVP component for the total magnetic field inside the
non-magnetisable drop, is given by φ, while that for only the scattered field in the lin-
early magnetisable outside medium is ψ, such that At = (0, 0, φ) inside, As = (0, 0, ψ)
outside and, by definition of the MVP, ∇×As|t = Hs|t everywhere.

Of course, this is a notable simplification of the “true” MVP for the three-dimensional
problem considered here; however, given the relatively flat nature of the toroidal geometries
to be studied, the central premise of the current work is that informative results may still
be obtained when any x or y components to the MVP are neglected.

This all allows respective expressions for the total magnetic fields inside, Ht =
(φy,−φx, 0) and outside, Ht = H0 + (ψy,−ψx, 0), where H0 is the imposed incident mag-
netic field and a subscript x, y or z ONLY ON φ or ψ indicates a derivative of φ or ψ in that
Cartesian direction.

The imposed magnetic field of interest here is that which decreases with radial, r,
distance from an infinitely long straight wire, of negligible thickness, directed along the
Cartesian z-axis, centred at the origin, and carrying an electric current I0

H0 =
I0

2 π

(
y
r2 ,
−x
r2 , 0

)
=

I0

2 π

(
y

x2 + y2 ,
−x

x2 + y2 , 0
)

(1)

which may itself be formed from the curl of an MVP with a single scalar z-component, h0,
given by

h0 =
I0

4 π
log
(

x2 + y2
)

(2)

such that H0 = ∇× (0, 0, h0).
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Now using the Coulomb gauge condition ∇ ·A ≡ 0 together with the vector identity

∇×∇×A = ∇(∇ ·A)− ∆A (3)

and letting µ0, and µ, denote the magnetic permeability of the drop and that of its sur-
rounding magnetizable medium respectively—so B = µ0 H inside the drop, and B = µ H,
outside—the Maxwell equations

∇ · B = 0 and ∇×H = 0 (4)

reduce to just the Laplace equation for the single MVP scalar components, both inside (5c),
and outside (5d), where the latter has been cast into its boundary integral form [11] involv-
ing the use of the appropriate 3-D Greens function G = 1/|r− r′| between spatial positions
r and r′.

Now, because we are assuming a linearly magnetisable surrounding matrix fluid,
its magnetisation, M, will be colinear with the applied external magnetic field, with a
magnitude ratio given by the magnetic susceptibility, χ = (µ/µ0 − 1), such that M = χH
and µ = µ0(χ + 1).

So while the magnetic flux inside is just B = µ0H = µ0(φy,−φx, 0), outside it is then
the sum of this magnetisation and the incident field already there

B = µ0(H + M) = µ0(H + χH) = µ0(1 + χ)H = µ0(1 + χ)
[
H0 + (ψy,−ψx, 0)

]
Across the surface, Γ = ∂Ω, of the droplet, with normal n = (nx, ny, nz), continuity of

the normal magnetic flux, B · n, and of the tangential magnetic field, H× n, demand jumps
in the MVPs (5e) and their normal derivatives (5f) due to the incident field.

Note that inside H× n = (φy,−φx, 0)× (nx, ny, nz) = (−φx nz,−φy nz, φx nx + φy ny)
= (·, ·,∇ φ · n) = (·, ·, φn), and similarly for ψ outside, when considering the gauge condi-
tion ∇ ·A ≡ 0 attempted, such that φz ≈ ψz ≈ 0.

For the exterior region, Ω∞, of unlimited extent, an integral representation (the “bound-
ary element method”) of the MVP is used [11], requiring a solution only along the fluid
droplet/medium interface Γ to support values of the MVP either throughout Ω∞ or else just
on the interface Γ itself; hence the integral form of the Laplace equation in (5d) involving
either 4 π or 2 π as coefficients respectively. Such integral forms naturally support solutions
that decay towards infinity (5g), leaving just the imposed magnetic field there.

2.2. Governing Equations

The complete set of equations then looks like:

ρ
∂ u
∂ t

+ ρ(u · ∇)u = −∇ p− ν∆u u, p ∈ Ω (5a)

∇ · u = 0 u ∈ Ω (5b)

∆ φ = 0 φ ∈ Ω (5c)

(4 π | 2 π)ψ =
∮

Γ
G

∂ ψ

∂ n
ds−

∮
Γ

ψ
∂ G
∂ n

ds ψ ∈ Ω∞ | ψ ∈ Γ (5d)

φ− (1 + χ)ψ = (1 + χ) h0 φ, ψ ∈ Γ (5e)
∂ φ

∂ n
− ∂ ψ

∂ n
=

∂ h0

∂ n
φ, ψ ∈ Γ (5f)

lim
|r|→∞

ψ = 0 ψ ∈ Ω∞ (5g)

∂ u
∂ n

= 2 γ κ n + øm · n on Γ (5h)
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where ν denotes the dynamic viscosity, and øm the magnetic stress tensor for an incom-
pressible, isothermal, linearly magnetizable medium, which, if the magnetic field H has
scalar magnitude H, and I represents the identity matrix, is given by [3]

øm = −µ

2
H2 I + µ H HT (6)

Note that in [10] the gradient of a scalar potential was used to support H, rather than
the curl of a scalar potential as done here.

However, the governing equations above are happily almost identical to those in [10]
due to the natural symmetries present in the mathematical constructs—except for the
transmission conditions (5f) and (5e) which have swapped roles.

While the ∇ · B = 0 gives rise to the Laplacian on the potential, and ∇×H = 0 is
identically satisfied when using a gradient formulation, the opposite is true when using
the curl based forms above.

Similarly, the H× n and B · n boundary continuities exchange their roles working
with either the scalar potential or its normal derivative over said boundary—which is also
a reversal of the conditions found in the gradient formulation.

Because of these formulation symmetries, an almost identical time iterative scheme
to that presented in [10] is adopted, with iteration equations to be summarized after the
non-dimensionalization coming next, but with the further implementation details using
piecewise linear and constant finite elements not repeated thereafter.

2.3. Non-Dimensionalization

With magnetic susceptibility, χ, already unitless, the non-dimensionalization of (10)
follows that done in previous work [10,12] with tildes on the corresponding (untilded)
physical quantities to indicate dimensionless time t̃ ≡ t/t̂, density ρ̃ ≡ ρ/ρ̂, surface tension
γ̃ ≡ γ/γ̂ and pressure p̃ ≡ p/ p̂ where

t̂ =

√
ρ a3

γ
; ρ̂ =

ν t̂
a2 ; γ̂ =

ν a
t̂

; p̂ =
ν

t̂
(7)

and the physical distance scale, a, may here be considered to be the radius of the sphere
with equal volume to the toroid of interest.

With the ’Ohnesorge’ number again providing a measure of non-dimensional viscosity
by dividing the square root of the Weber number We =

(
ρ u2a

)
/γ by the Reynold’s number,

Re = (ρ u a)/ν

Oh :=

√
We

Re
=

√
ρ u2a√

γ

ν

ρ u a
=

ν
√

γ a ρ
=

ν√
γ̃ γ̂ a ρ̃ ρ̂

=
1√
γ̃ ρ̃

ν√
ν a
t̂ a ν t̂

a2

=
1
ρ̃
=

1
γ̃

the non-dimensionalization is completed by just redefining the dimensionless magnetic
Bond number, Bom, in terms of a new non-dimensional current, i0, in the wire instead

Bom =
a µ0 H2

0
2 γ

=
a µ0 I2

0
2 γ a2 =

µ0 I2
0 κ0

4 γ
= i20 (8)

where κ0 = 2/a is just the mean curvature (the sum of the principle curvatures) of the
sphere of radius a with equivalent volume to the torus of interest.

Dropping all the tildes from here on then gives for the momentum Equation (5a):

1
Oh

{
∂u
∂t

+ (u · ∇)u
}

= −∇ p− ∆ u (9)
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2.4. Time-Stepping Strategy

Using a plus superscript, x+, to indicate a value that is to be computed at a particular
timestep, and a minus, x−, for its value at the previous timestep, and adopting an “Arbitrary
Lagrangian–Eulerian” (ALE) approach [13], with a mesh velocity, v, to keep the interior
mesh nodes well positioned, the governing system may be decomposed into a few FEM
solves and one BEM solve to be performed at each iteration:

1
Oh

u+

∆ t
+

1
2

∆u+ =
1

Oh
u−

∆ t
− 1

Oh
[(

u− − v
)
· ∇
]
u− −∇ p− − 1

2
∆u− u, p ∈ Ω (10a)

∇ · u+ = 0 u ∈ Ω (10b)

∂ u+

∂ n
=

2 κ

Oh
n +

i20
Oh

χ
[
χ (H · n)2 + H2

]
n on Γ (10c)

α φ+ + ∆ φ+ = α φ− φ ∈ Ω (10d)

∂ φ+

∂ n
=

∂ ψ−

∂ n
+

∂ h0

∂ n
φ, ψ ∈ Γ (10e)∮

Γ
G

∂ ψ+

∂ n
ds = 2 π

{
φ−

(1 + χ)
− h0

}
+
∮

Γ

{
φ−

(1 + χ)
− h0

}
∂ G
∂ n

ds φ, ψ ∈ Γ (10f)

Detailed discussion on the actual linear finite-/boundary-element discretisation,
integration-by-parts, and implementation of the above iterative equations may be found
in [10], and is not repeated here, but note the sign reversal on the magnetic forcing term
in (10c) due to the magnetisable medium now being on the outside of the droplet/ambient-
fluid interface Γ.

It was noted by a reviewer of the present work that the above decomposition into
scattered, incident and total fields was very similar to that of early “reduced” scalar
potential formulations, see [14] and references therein, where “the gradient of which is
defined to be the field from the magnetized regions of the problem, that is to say, the total
field diminished by the known source [incident] fields.”

Interestingly, in regions containing magnetically permeable media a problematic
“cancellation of the known source and calculated potential fields“ was also identified that
implied a formulation in terms of a total potential is necessary for such regions [14].

Now at first glance this looks problematic, because a scattered (or “reduced”) potential
for the permeable region here is unavoidable since the latter is unbounded and thus needs a
boundary integral formulation whose operators can only support fields that decay towards
infinity—something which a total field obviously does not do.

Fortunately, however, [14] then also further suggests that this cancellation problem in
permeable regions applies only for magnetic scalar potentials, thus working with a magnetic
vector potential (even when using but one scalar component of it) will hopefully neatly
side-step any such issues in the now unbounded permeable region considered here because
“a vector potential formulation, [. . . ] does not suffer from [such] cancellation problems”.

3. Results and Discussion

In Figure 1 (left) can be seen the initial volume torus mesh used for all the major calcu-
lations presented in the current work. It was generated using the distmesh algorithm [15]
and has 4407 nodes and 24,699 tetrahedral elements, with major and minor radii of R = 0.66
and r = 0.30, respectively, giving an overall volume of about 0.1.

The exact radii chosen just come from a simple “parameter sweep” using the mesh
generator over very many different possible values for both radii and desired mesh element
diameter looking for a sufficiently dense mesh, but of manageable computational size,
and with a good enough quality—as measured by the maximum volume ratio of any
tetrahedron in the mesh to its respective circumsphere [16].
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Figure 1. Initial “fat” R = 0.66 and r = 0.30 torus mesh used for most calculations (left) and
alternative “thin” R = 0.84 and r = 0.24 mesh just for validation experiment (right—see text).
Indicative colouring corresponds to MVP values.

Starting from this initial torus mesh, the iterative scheme described above, with a
magnetic susceptibility of χ = 5, was allowed to progress over non-dimensional time
for different choices of (the square of) the non-dimensional current i0 using a timestep
∆ t = 0.01 below which preliminary experiments indicated little improvement in overall
solution stability.

The calculations would continue until either a given end time point of t = 20 was
achieved, or a break-down of the calculations occurred if the electric current was either (a):
insufficient to prevent the collapse of the whole toroidal drop naturally under the effects
of surface tension, or (b): big enough to lead to an extreme expansion and certain loss of
axi-symmetry—either of which would usually lead to a point of such poor mesh quality
that the calculations would cease.

The changes to the “proxi”-major radius, R̃, of the torus over time for the different wire
currents then tried may be seen in Figure 2, and are calculated from the torus volume and
the maximum distance of its surface from its centre on the assumption of a perfectly uniform
minor radius.

Figure 2. Plots of the proxi-major torus radii R̃ over non-dimensional time t from initial state,
R̃ ≡ R = 0.66, for a selection of different wire currents, i20.



Magnetism 2022, 2 386

Of course, this assumption of a perfectly circular minor cross-section is soon violated
after most currents tested, as will be seen, however, this proxi-major radius does provide a
readily calculable and convenient basic overall size measure for the torus which can easily
identify rough stability and instability trends of its general form over time.

With convergence of the MVP solution happening within a few iterations of the start—
as with the magnetic scalar potential (MSP) in [10]—it is safe to assume that the balancing
acts between the magnetic and surface tension forces under-pinning the behaviours seen in
Figure 2, commence almost immediately and drive all the motions from the very beginning.

Furthermore, as stated earlier, it is the possibility of a stable (or at least relatively
stable) equilibrium shape that is of primary interest here, with the kinematics involved
in actually achieving one being of less importance, and so a very large non-dimensional
viscosity, or Ohnesorge number, of Oh = 5, was used in all the calculations for Figure 2 to
effectively “stabilise” against any small irregularities in either mesh or local surface tension
force calculations by heavily slowing down any adverse effects they might otherwise have
over time.

Studying Figure 2, it is clear that the most “stable” current of those tried is found
around i20 = 16.5, for which the proxi-major radius remains broadly the same for most
of the time—and also quite close to the initial value. Smaller currents cannot prevent the
natural torus collapse under the effects of surface tension, while larger currents just cause
ever greater expansions over time.

So, to give some sense of a physical real-world problem, for a non-magnetic toroidal
fluid droplet surrounded by a light hydrocarbon oil-based ferrofluid with the magnetic
susceptibility χ = 5 used for the present results and with, say, the same volume as a
3 millimetre radius sphere and a surface tension coefficient with the ferrofluid medium of
30 dynes per centimetre, Equation (8) would suggest

I2
0 =

2 i20γ a
µ0

=
2× 16.5× 30× 10−5@@N 100���m−13× 10−3

ZZm
4 π × 10−7AAJ A−2��

�m−1

=
2× 16.5× 30× 3

4 π
× 10 A2

I0 ≈ 48.6 A

Thus, a current of about 50 Amps would be needed in a perpendicular wire through
the centre of the torus-shaped droplet to keep it quasi-stable in the SI system used here,
where the magnetic permeability is expressed in Joules, J, per Ampere, A, squared per
meter, m,—equivalent to “Henrys” per meter—and one dyne is just 10−5 Newtons, N.

Given the proximity of the stable proxi-major radius to its starting value, it was also
thought prudent to just check that the major/minor radius ratio R/r of the starting torus
was not having an undue influence on the results—which, of course, should only depend
on the overall size of the drop.

Thus, just for this purpose, a small selection of the wire electric current values were also
tried with a thinner initial torus mesh with a major/minor radius ratio of R/r = 0.84/0.24
(and slightly fewer elements at 24,003), see Figure 1 (right), which was then linearly scaled
geometrically to have exactly the same volume as the first.

The results from using both this “thin” torus, and the original “fat“ one, can be seen in
Figure 3—with a logarithmic time scale introduced just to clarify the two different starting
points given the rapid early changes—and do indeed suggest that the initial radii ratio has
but a limited influence.

Returning to the results of Figure 2, what is very interesting about the most stable
toroidal droplet configuration that has been found at i20 = 16.5 is the complete loss of
circular minor cross-section from the initial form, as can be seen developing over time in the
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sequence of cross-sections shown in Figure 4—to be viewed chronologically in descending
vertical column order, as per normal columnised text.

The unusual “egg” shaped stable minor cross-section that can be seen developing
in Figure 4 is quite striking, but starts to make sense when one considers the balance of
surface forces that is needed to achieve such a relatively stable state.

The inside edge of the torus is inevitably closer to the current carrying wire located
at the torus centre than the outer edge, thus the (annular) magnetic field there will be
correspondingly stronger too, and the surface magnetic forces arising from this field
equally so.

Figure 3. Plots of the proxi-major torus radii R̃ over non-dimensional time t from two different initial
states “f” and “t”, with respectively R̃ ≡ R = 0.66 and ≈ 0.9 (scaled out from 0.84 to give same torus
volume—see text) for a selection of different wire currents, i20.

Figure 4. Cross-section sequence over time from the initial torus mesh used for the calculations (top
left) to the quasi-steady state form found using a wire current of i20 = 16.5 to the same scale (bottom
right). Indicative colouring corresponds to MVP values. Note the distinctive “egg” shaped minor
cross-section that develops over time.

However, for stability of the whole torus shape these magnetic surface forces need to
be perfectly balanced out by the surface tension forces everywhere.

By adopting an egg cross-sectional shape—with the “pointy” end directed towards
the torus centre—this can be achieved, however, because the smaller radii of curvature
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on the inside edges will naturally strengthen the surface tension forces there, which are
inversely directly proportional via the constant surface tension coefficient.

Note that this egg-like cross-section can also develop to differing degrees with current
values below that of the roughly “stable” form—except of course for the zero current case as
seen in Figure 5—and thus effectively further limits just how low the proxi-major radii can
go in Figure 2 before the corresponding meshes degenerate as the torus “hole-in-the-middle”
fills-in and disappears.

Figure 5. Cross-sections of the initial torus mesh used for the calculations (top left) evolving to that of
the almost collapsed drop (bottom right) with no wire current to the same scale. Indicative colouring
corresponds to MVP values. Note the broadly continued circular minor cross-section throughout the
collapse owing to the absence of any magnetic field.

Naturally, for a given overall torus volume and maximum distance of the surface
from the centre, the greatest hole diameter (and thus usually the least degenerate mesh) is
achieved when the minor cross-section is circular, see Figure 5 (bottom right), and thus it is
the zero current case i20 = 0 in Figure 2, which shows by far the lowest proxi-major radii
achieved in all the experiments of about R̃ = 0.42.

Now for wire currents i0 greater than that of rough stability, it is suggested here that
any egg shaped minor cross-section is progressively less effective at counter-acting the
differential magnetic field strengths at the inside and outside edges of the torus as the
electric current strengths increase, thus allowing the former to expand ever outwards, see
Figure 6 for the most extreme i20 = 95 case tried.

Figure 6. Cross-sections of the initial torus mesh used for the calculations (top left) expanding-out
over time to one of the most extreme shapes (bottom right) with a wire current of i20 = 95. Indicative
colouring corresponds to MVP values. Note the loss of axi-symmetry towards the end.
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As seen in this figure, while the egg outline does develop at first, the torus, how-
ever, continues to expand, with the ever smaller minor cross-section becoming an ever
more distorted egg shape as it does so, and evidently failing to balance the ever more
unequal magnetic forces felt on the inside and outside edges of the torus as it gets thinner
and thinner.

It must be said, however, that a certain loss of axi-symmetry is present in the latter
stages of many of these more extreme results with the larger wire currents, especially when
the proxi-major radii get large, which could be influencing the above interpretation.

Now these asymmetries may or may not have their origins in the assumptions made
for the MVP formulations described above, with some of the ‘z’-derivatives of the MVP
perhaps becoming less negligible with new distortions over time, but they could start to
test those assumptions either way, and this should be bourne in mind when considering
the results.

However, adopting these assumptions has now at least shown the possibility for
broadly stable, non-magnetic, toroidal droplets about an azimuthal magnetic field to be
maintained within a surrounding ferrofluid medium, and this presents some interesting
possible applications.

If the droplet and surrounding matrix fluids are immiscible with different densities,
as they easily could be, then the exact line of motion of such toroidal droplets up or down
(depending on their relative buoyancy in a gravitational field, say), could be precisely
controlled by effectively “threading” them onto an electric current carrying wire like beads
on a string.

With surface tension always trying to collapse the torus to a sphere, and the magnetic
forces from the wire current always opposing this collapse, but weakening with distance
from the wire, the natural tendency would perhaps be for the toroidal drops to stay centred
and perpendicular with respect to this wire as they move along it.

To quickly test this out, two final very simple numerical experiments were performed
using the most stable i20 = 16.5 wire current found above.

The first involved tilting the initial torus mesh by 45 degrees to the direction of the
wire (always coincident with the ‘z’-axis), while the second displaced the whole initial
mesh by a distance of about 80% of the radius of the inner torus “hole” perpendicularly
away from the wire—thus avoiding the wire itself (and hence singular magnetic fields)
ever being actually within the computational domain.

The results of these two experiments may be seen in Figure 7 (left) and (right) re-
spectively, and show a very rapid—relative to the egg cross-section formation—effective
“correction” of both initial tilts and initial displacements back to the wire centred and
perpendicular over time, thus confirming suspicions.

Figure 7. Snap-shots of the computational torus with a wire current of i20 = 16.5 showing “correction”
of both an initial tilt (left) and an initial perpendicular displacement (right) over time, with a very
thin cylinder marking the z-axis for reference. Note the almost complete corrections in both tilt and
displacement before the development of the egg minor cross-section does much change to the centre
hole diameters.

However, some physical experiments might also be desirable to fully confirm that the
toroidal drops would naturally correct any angled tilt away from the wire perpendicular
and any displacement of its centre from the wire itself as suggested here, but otherwise
such a precise control of toroidal drop positioning could be extremely useful.
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Furthermore, of course simply switching off the stabilising magnetic field by turning
the electric current in the wire off at any moment could also have applications by auto-
matically triggering an instant collapse in all the toroidal droplets (or even bubbles· · · )
travelling or aligned along it at the time, allowing for the controlled release of sound waves,
for example, or the initiation of mixing processes as required.

The size of such toroidal droplets could even be used as a proxi for identifying the
current actually flowing within a wire, giving an easy to use optical measure, although this
might also require a knowledge of the time involved too given that “stability” is not found
with all wire currents.

Finally, it should be noted that while the assumption of negligible ‘z’-variance of
the MVP, made in the formulations above, φz ≈ ψz ≈ 0, could be considered quite
a severe constraint on the modelling, at no point are zero ‘z’-derivatives actually enforced
directly in a Dirichlet manner—which would of course then force the MVP solution to be
truly two-dimensional.

Thus, it is hoped that the iterative scheme used for the results presented here allows
for a relatively negligible but still sufficient ‘z’-variability of the magnetic field, via the MVP,
to give at least an approximation to the true, three-dimensional, real-world behaviour—and
at least enough to inspire some future physical and further numerical experiments in
this direction.

4. Conclusions

The relatively stable toroidal shape of a non-magnetic droplet about an azimuthal
magnetic field within an immiscible surrounding ferrofluid has been established via a
coupled finite element/boundary element numerical simulation.

The loss of a perfectly circular minor cross-section has been noted in the stable shape,
with instead an “egg” shaped profile allowing surface tension forces to locally balance
magnetic surface forces that increase towards the torus centre.

Applications have been suggested for the precise controlled motion of toroidal droplets
or bubbles, due to buoyancy in a gravitational field, along an electric current carrying wire
generating the required azimuthal magnetic field. Stability corrections against both tilting and
perpendicular displacement from the wire have also been suggested by numerical calculations.

Finally, it should be noted that future numerical investigations could benefit from the
use of a true axi-symmetric formulation, to both avoid non-axisymmetric perturbations
polluting the solution and for speed of computation allowing the easy use of larger mesh
densities—though convergence of an MVP over a much more restricted boundary might
be more difficult.
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