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Abstract: Combining a current source involving vortical surface currents in the set of Maxwell’s
equations offers a functional framework to address the complex phenomena of electromagnetic
turbulence. The field structure equations exhibit fluid behavior with associated electromagnetic
viscosity and reveal that the electromagnetic field, as a fluid, shows turbulent properties. This
is an entirely new mechanism, investigated for the first time to the best of our knowledge. The
fluidic–electromagnetic analogy implies that diffraction is the analog phenomenon of EM turbulence.
The method clarifies the role of vortical surface currents in generating electromagnetic turbulence
and classical fractal-like behavior in optical devices and suggests norms to design suitable plasmon
circuity to control electromagnetic turbulence in stealth technology and propulsion machines.
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1. Introduction

In 1883, Osborne Reynolds discovered the phenomenon of fluid dynamic turbulence
when studying the flow of water in a cylindrical pipe driven by a pressure gradient.
He found that when a critical velocity (well-characterized by a critical value of the so-
called Reynolds number Rec) was exceeded, the flow becomes turbulent. However, an
absence of an adequate understanding of the origin of turbulence persists, outlasting a
fundamental challenge to scientists and engineers as well, considering that most significant
flows are turbulent.

Large-scale computational and experimental capabilities at the disposal of researchers
and engineers certainly help in better comprehension and managing the source of turbulent
flows. It is comprehended that turbulence is a random solenoidal motion of the fluid
accompanied by a large increase of transport properties, such as viscosity (momentum),
diffusivity (mass), heat conductivity (energy), and resistivity (electric current). The turbu-
lent flow is energetically fed by the main flow, and energy losses may rise as a pressure
drop or friction loss (with energy spectra E(k) = CKε2/3k−5/3, according to Kolmogorov’s
theory), see Refs. [1,2]. Turbulence also occurs in conducting fluids (ionic flows) due to
an interaction with the background electromagnetic field (radial profile of EEE × BBB shear
flows at the edge of fusion device characterized by the gyrocenter shift induced by the
collisions between ion and neutral [3,4]), and turbulent suppression is possible when the
radial shearing rate of the EEE× BBB plasma flows, ωωωEBEBEB = dvvvEBEBEB

dr is of the order of the linear
growth rate of the turbulent modes [5,6]. Understanding the effects of sheared flows is
paramount for attaining a fusion reactor, in particular due to their typically beneficial effects
upon plasma energy confinement and stability.

For an inviscid, ideally conducting fluid in the presence of an electromagnetic field, the
magnetic field lines hook to the fluid [7]. If the fluid has a small resistivity, then the magnetic
field lines will slowly diffuse through the medium [8]. If turbulence may be defined as the
field of random or chaotic vorticity, then the noise may be defined as the random motion of
boundaries [9]. Although there are some difficulties in defining turbulence, there seems to
exist a consensus that turbulence evolution in a fluid is a thermodynamically irreversible
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process [10–12]. Furthermore, according to von Karman [13] turbulence appears when fluid
flows past solid surfaces or by the flow of layers of fluids with different velocities past or
over one another [14].

The main focus of the present work is to treat the electromagnetic field as a fluid
revealing turbulent property. For this purpose, we adequately introduced vortical structures
in Maxwell’s equations and associated them with the concept of electromagnetic viscosity.
Later on, we examine the electromagnetic field’s turbulent behavior per se. In this sense, we
follow Marmanis’ suggestion, that vorticity (w = ∇× u) and the Lamb vector (l = w× u)
should be central to the theory of turbulence [15].

MHD formulations with an appropriated Ohm’s law would offer a more self-consistent
formalism, for a particular geometrical configuration, to the electromagnetic turbulence
generated by the motion of electrically conductive eddies (e.g. [16,17]). However, in this
work, we aim to contribute with physical insight into the electromagnetic turbulence from
the standpoint of classical fields, supported by established analogies with turbulent hydro-
dynamics, especially highlighting the role of electric surface currents. The method gives
access to an electromagnetic viscosity, clarifies the role of surface currents in generating
electromagnetic turbulence and classical fractal-like behavior in optical devices [18,19], and
suggests norms to design suitable plasmon circuity to control electromagnetic turbulence
in stealth technology [20,21] and propulsion machines [22,23].

1.1. Modification of Maxwell’s Equations

Maxwell put the source current under the general form (as it follows from the
Helmholtz’s theorem):

C = J +
∂D
∂t

+ curl Z, (1)

with ∇ ·C = 0, without specifying, or going further, on the characterization of the physical
quantity Z. We can verify that this new field has the dimension of a surface density of
current [Z] = A/m. Equation (1) encodes the Hodge–de Rham decomposition theorem for
a regular p-form of degree p, which is a sum of exact, harmonic, and co-exact p forms.

Vorticity generates turbulence, and Stoke’s theorem indicates that a local vortex pinned
at a location will drag fluid in a rotating state, even in the case of a perfect fluid [24]. This
effect is analog to the production of a magnetic field by a rectilinear current, a sort of
induction of velocity . Vorticity is the seed of turbulence. The vortex starts to grow on a
mixed layer of magnitude δ(y), where x is the distance relative to the point where the
flowing starts, the leading edge. Consequently, we can assimilate the vortex as a kind of
surface molecular current or eddy current. Eddy currents are dissipative processes. We will
represent the structure of this vector field by the Ansatz M, such as an associated induced
current density Jrot = curl M, is created, introducing the magnetization vector field M
(with Jrot in units A/m2).

However, there exists a well-known relationship between the magnetization vector
and the magnetic field intensity H, M = χmH, where χm is a dimensionless quantity called
magnetic susceptibility, and H = 1

µ B, then we may write

Jrot = −
χm

µ
∆A, (2)

since∇∇∇ ·A = 0, ensuring continuity in the current flow and B =∇∇∇×A. It results from the
above that the Ampère’s equation should read instead:

c2[∇∇∇× B] =
∂D
∂t

+ J− χm

µ
∆A. (3)
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The previous Equation (3) appears (without the new term) more frequently under the
form of Ampère’s equation for vector H:

∂D
∂t

= [∇×H]− J, (4)

after introducing a new excitation magnetic field H ≡ B/µ0 −M. Equation (3) has a
dissipative component in the last term. It allows a straightforward deduction of London’s
equation characterizing superconductors. Inside the sample B = 0 and as E arises from a
changing magnetic field, then grad V = 0. So, Equation (3) gives straightforwardly

∇2A− µ

χm
J = 0. (5)

London admitted that the superconductor consisted in a condensation in a state of
zero momentum, and hence:

P = mv + qA = 0. (6)

However, since J = nqv, then, from Equation (6), we obtain

m
nq2 J + A = 0. (7)

Combining Equations (5)–(7) and noting that for a superconductor, χm = −1, we
obtain:

∇2A− λ2
LA = 0, (8)

admitting the solution A = A0 exp(−z/λL), with λ2
l = µnq2/mχm denoting the London

penetration depth, the characteristic distance over which the field penetrates the supercon-
ductor. q is the effective charge of the carriers of the superconducting state (i.e., q = 2e,
with −e denoting the electron charge).

As shown in previous work [25] the electromotive force is given by:

ρE = −ρ∇φ− ρ
DA
Dt

. (9)

Adding the term corresponding to the vortex structure, as subsumed in Equation (1),
we introduce

ρE = −ρ∇φ− ρ
∂A
∂t
− ρ∇(v ·A) + ρ[v× B]− ns

h̄
| e |∇
∇∇×M. (10)

The last term on the r.h.s. contains two fundamental constants, h̄ and e, to secure
homogeneity, and for consistency with the quantization of the magnetic flux. Notice
that in superconductors, we have the flux given by Φ quantized according to eΦ

h̄c = 2πn,
(n = 0,±1,±2, . . .), with ns being the surface density of vortices filling the texture on the
boundary layer above the blunt-body. The rationale of this simple choice is confirmed
when compared with known phenomena. Using the relations M = χmH and H = 1

µ curl A,
we finally obtain:

∂A
∂t

=
Fext

ρ
−∇φ−∇(v ·A) + [v× B] + νem∆A. (11)

1.2. The Electromagnetic Viscosity Term

From the above Equation (11) we are required to define

νem ≡
h̄
ρ

(
nsχm

|e|µ

)
, (12)
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that plays the role of an electromagnetic viscosity, provided we replace E = [v× B], a result
also proposed by Marmanis in his Thesis [26].

The introduction of the electromotive force in connection with the convective (total)
derivative drives us directly to the specific condition, which must be satisfied by B. Taking
the rotational of Equation (11) and not regarding external forces, is straightforwardly taken
the following expression (e.g., [27]):

∂B
∂t

= curl [v× B] + η∆B, (13)

where η is the resistivity of the medium, and it is equivalent to the magnitude obtained
earlier, that is, η ≡ νem. Equation (13) is the induction equation for the magnetic field in
magnetohydrodynamics. In MHD this is taken to be η = me < νei > /nee2 in SI units,
where µ0 is the magnetic permeability. In order for the analogy to be completed, we have
η ≡ ns h̄/eρ, with ρ = ne, or

η =
ns

nv

h̄
e2 χm. (14)

This result attests to the nature of the electric resistivity depending on the prefac-
tor ns/nv, which shows its dependency from the electrons surface density, that without
electrons present on a sheath-layer, no electromagnetic turbulence is achievable. Still,
Equation (14) must be valid when analyzing an electromagnetic wave incident to an obsta-
cle, when light passes through an aperture and the formed diffraction pattern.

Using the Bohm sheath criterion, where ions are supposed to leave the sheath with

speed us above the Bohm speed uB =
√

ekBTe
M , such as us ≥ uB, and considering that the

potential drop Φp across the sheath–presheath launch the ions until they reach the Bohm
speed, Mu2

B/2 = eΦp, we have Φp = Te/2, delivering to us a thumb rule for the ratio of the
density at the sheath edge ns over the density in the plasma nv, such as ns ≈ 25

41 nv (see, e.g.,
Ref. [28]). Hence, in normal conditions, we may expect that the resistivity of the medium
may have a maximum value:

η ≤ ns

nv

h̄
e2 χm. (15)

The Bohm sheath theory should be valid in a nonequilibrium plasma at a sufficiently
large energy scale. The local balance of kinetic energy conserves independently of the type
of dominant forces, molecular in fluids or electromagnetic in plasma. Liouville’s theorem
imposes the trend on a bunch of particles in the phase space [29,30]. The Equation (15)
implies that higher magnetic susceptibilities χm contribute to a substantial increase of
the electric resistivity of the medium, typical in ferrimagnetic substances exhibiting high
values of χm, and high electrical resistivity. Additionally, insulants, only possessing more
increased surface charge density than volume charge, can hold high electric resistivity.

Conversely, Equation (14) gives for the surface density:

ns =
me < νei > µ

h̄χm
. (16)

In a typical plasma, we have < νei >≈ 109 s−1 and for electrons we got ns ≈ 103/χm
particles/cm2. For example, for hydrogen χm ≈ 10−9 and ns ≈ 1012 electrons per cm2.
The obtained expression for the electromagnetic viscosity scales well with the (magnetic
diffusion based) Sweet–Parker sheet-model, τ = L2/η, with L representing a field diffusion
region, for example, L ≈ 104 km in a solar flare [31]. Our estimated value for χm gives a too
much longer time of reconnection in a solar flare, typically of the order of tens of minutes.
However, a possible discrepancy may have originated on the physical mechanism related
that emerges from the presence of the Planck’s constant h̄ and the magnetic susceptibility
χm in Equation (15).
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Therefore, we may consider Equation (11) and, using the fluidic electrodynamics
analogy, write the Navier–Stokes equation:

∂u
∂t

= −∇p− (u · ∇u) + ν∆u. (17)

1.3. Time Rate of Magnetic Reconnection

The preceding arguments lead to the construction of a new expression for the viscosity,
in terms of the superficial density of the fluid, and bulk density, as the critical ratio. One
immediate advantage attained with this model stays in the important separation between
the two groups of electrons, let us say, the normal (bulk) electrons nv and the surface
electrons ns (that emerge at the surface of the medium, in the plasma sheet), and the total
density of conduction electrons is n = ns + nv. Equation (13) provides us with a new
formula for the time decay for a magnetic field (diffusion time):

τ ' nv

ns

e2L2µ

h̄χm
. (18)

Here, L is a global length scale of change in the magnetic field. From Equation (18)
we obtain an estimate for the time rate of magnetic reconnection, τ ≈ 109 years, assuming
nv = 1012 electrons per cubic centimeter, and ns = 0.1nv. However, the term χm may
become negative (and growing in magnitude) in an ideal plasma dominated by the dia-
magnetic effect of the charged particles in their helical trajectory around the magnetic field
lines (see, e.g., Ref. [32]). As the forward Equation (21) shows, for a negative value of χm a
spontaneous instability appears leading to |AAA|∼eηk2t for wavenumber k. Now, a plasma
in pressure–balance equilibrium is perfectly diamagnetic (see, e.g., Refs. [33,34]), a state
of generalized zero vorticity and helicity, the ends of the loop anchored in the dense pho-
tosphere, and this is the first state of minimum energy before the kink instability surging
from a highly twisted flux rope evolves to a coronal mass ejection [35], the large eruption
of plasma and magnetic fields from a star leading to the destruction of excess energy.

2. Spiral Structures and Turbulence

Equation (13) can be compared with the dynamical equations describing the fields the
vorticity ω and Lamb vector l:

∂ωωω

∂t
= −[∇× lll] + ν∇2ωωω (19)

and also
∇∇∇ ·ωωω = 0. (20)

can be the analogue of∇ ·B = 0. Equation (19) is equivalent to the equation of conservation
of angular momentum [36]. It can be shown that the parallel component of the angular
momentum is conserved in a fully developed turbulence, result encoded in the Loitsyansky-
like integral I‖ = −

∫
r2
⊥ < u⊥ · u

′
⊥ > dr, with < u · u′ > denoting the usual two-point

velocity correlation and⊥ indicating the component perpendicular to the external magnetic
field [37]. It is a cornerstone in treating turbulence.

Equation (11) results in a diffusion type equation for each component of the vector
potential field A (in a rest-frame, v = 0) that comes out from the modified Ampère’s
Equation (4):

∂A
∂t

= νem∇2A + s(r, t). (21)

The theory of turbulence in fluids is primarily founded on the flow representation of
the vorticity field. Hence, we expect from Equation (21) to obtain a valid representation of
the EM turbulence. We know that diffraction through an aperture can be explained through
Faraday’s induction law [38], using Equation (13). We propose here an additional vectorial
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source term s(r, t), which might represent an incident electromagnetic wave hitting an
obstacle. Remark that there is a field penetration depth, λL =

√
νem

f , correlated to an elec-

tromagnetic wave with frequency f , which typically fall in the nanoscale (near-field) region.
We intend to establish an analogy between both hydrodynamic and EM fields to solve
problems in both fields, recommended by the similarity between Equations (19) and (21).

From a parabolic partial differential equation, like Equation (21), we can obtain a
hyperbolic partial differential equation applying directly to the following field dependency

A(x, y, z, t) = A(x, y, z)T(t), (22)

which is convenient for individual radiation sources, and obtaining a Sturm–Liouville type
of equation where the electromagnetic theory matches the geometrical optics, according to
the Sommerfeld and Runge approach [39]

∇2A(r) + k2A(r) = δ(r). (23)

Here, k =
√

εµω = 2π/λ is a constant in a given medium, and, for consistency with
the above described framework, we should put ω = νemk2 (as noticed before, νem has the
dimension [L]2/[T]).

Controlled Electromagnetic Turbulence

Hence, the framework outlined above suggests that the solution of Equation (23)
represents the turbulent vector potential and that diffraction is the analog phenomena
of EM turbulence. Besides, it shows that the surface density of plasmons present on the
obstacle to the waves impacts the diffraction phenomena. The solution of Equation (23) is
given by (see Ref. [40])

A(r) =
1

4π

∫∫∫
∞
[µ0J⊥e(r

′)+

ε0J⊥m(r
′)]

ei
√

ω
νem |r−r′ |

|r− r′| d3r′,
(24)

where A(r, t)) = A(r)eiωt, and J⊥m,e(r′) represent the transversal (electric and magnetic)
current densities. It points out the action of scalar and vectorial waves on diffraction effects
when an electromagnetic wave interacts with a surface layer of a material [41] (surface
plasmons) or plasma, and to the possibility to control diffraction, aiming, for example,
to enhance its intensity through gratings, or stealth technology, utilizing an appropriate
combination of material properties and the light wave incident on its surface. Radiating
EM waves are fed only by the transverse part of the current density, the source of the
vector potential.

Could an array change its reflectivity by optimally grading the density of surface
plasmons? This feature is feasible if conditions i) k� 1/R, R� λ, and ii) z ≈ R hold, then
we rewrite for the plan z > 0

A(x, y, z) =
1

4π

∫∫∫
∞
[µ0J⊥e(r

′) + ε0J⊥m(r
′)]

ei[u1(x−x′)+u2(y−y′)]dx′dy′eiz
√

k2−u2
1−u2

2 /R
(25)

with R =
√
(x− x′)2 + (y− y′)2 + z2. Equation (24) is valid for a monochromatic wave,

but using the superposition principle, we can construct a more general solution of the wave
equation that includes plane waves with different amplitudes, phases and directions. Let
us denote by α and φ the direction of propagation of the wave, with kx = u1 = k sin α
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and ky = u2 = k cos α sin φ, and assume that the plan (x, y) is coplanar to the diffraction
structure. Equation (25) becomes (for z > 0):

A(x, y, z) =
1

4π2

∫∫∫
∞

g(u1, u2)ei[u1(x−x
′
)+u2(y−y′)]

eiz
√

k2−u2
1−u2

2 du1du2.
(26)

setting the wave plan distributions of amplitudes and phases in all directions, and with

g(u1, u2) =
∫∫ ∞

−∞
A(x′, y′, 0)e−i[u1(x−x′)+u2(y−y′))dx′dy′ (27)

representing the field angular spectra, build on the transversal current densities, and sit on
the surface. Consider the relevant case when the field doesn’t depend on coordinate y, such
as A(x, y, z) = A(x, 0, z), where the source is located only along the Ox axis.

Then,

g(u1, u2) =
∫∫

A(x′, 0)ei[u1(x′)+u2(y′)]dx′dy′ =

2πδ(u2)g(u1)
(28)

with
g(u1) =

∫ ∞

−∞
A(x′, 0)eiu1(x′)dx′. (29)

The vector potential becomes:

A(x, 0, z) =
1

2π

∫ +∞

−∞
g(u)eiz

√
k−u2

eiuxdu. (30)

Applying the method of stationary phase, the vector potential can be written under
the form (with i denoting the unit vector along the Ox axis, and also j and k):

A(x, 0, z) =
1

2π
g(u0)ei f (u0)∓ π

4

√
2π

∓ f ′′(u0)
eiωti (31)

with

f (u) = −z
√

ω

νem
− u2 + ux. (32)

After multiplying by the independent temporal term (according to Equation (22)) with

u0 = ± x√
x2 + z2

ω

νem
, (33)

for the condition f
′
(u0) = 0, and defining f (u) such as:

f (u0) ≡ −z
√

k2 − u2
0 + u0x. (34)

The variation of the wave number u that is related to phase variation of f (u) from 0 to
π is given by:

∆u =
√

2π/(∓ f ′′(u0)). (35)

The signs ∓ in front of f
′′
(u0) must be chosen for the argument of the square root to

be positive, and g(u0) is the angular spectrum of the wave field.
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Finally, Equation (31) is written under the form:

A(x, 0, z) =
1

2π
g(u0)

√
2πω

νem
eiωt z

(x2 + z2)3/4 eı f (u0)∓ π
4 i. (36)

Then, the conditions for anti-reflectivity, or superluminosity, are obtained. The max-
imum and minimum intensity A patterns are observed within the following conditions
(where n is an integer), xn expressing the position on the Ox axis of the n radiation sources:

A(x, 0, z) =


A = 0, for xn = ±π(n + 1

2 )
νem
ω ,

A = Amax, for xn = ±2πn νem
ω

(37)

The electric field can be calculated, giving

E =
∂A
∂t

=
1

2π
g(u0)iωeıωt

√
2πω

νem
eı f (u0)∓ π

4
z

(x2 + z2)3/4 i, (38)

and the magnetic field is

B = ∇×A =
1

2π
g(u0)eiωt

√
2πω

νem
eı f (u0)∓ π

4 x2(2− 2i
√

ω
νem

xz√
x2+z2 ) + z2(−1− 2i

√
ω

νem
xz√

x2+z2 )

2(x2 + z2)7/4

k.
(39)

Figure 1a,b illustrate the effect of an applied electromagnetic wave of frequency ω
acting on plasmons present on one point-like nanodevice, with one surface layer with ns
surface electrons density, sit on a metallic surface, or plasma, with nv volumetric electron
density. An EM wave with frequency ω actuates on electrons that shine modulated light
above and below the nanodevice. It is assumed z� 1 in the numerical calculations shown
in Figures 1a and 2b, representing the intensity of the emitted light I =< |EH| >, with
the Poynting vector, S = 1

µ EB, including only the real part of the fields. We may notice
that the Poynting vector aligns along the vertical axis, despite the EM momentum confined
to a restricted volumetric region, with a maximum adjacent to the surface. The intensity
distribution inside the thin surface layer where the EM viscosity is built-up is due to
the plasmons vortex generating the effect of surface EM waves, that develop in multiple
beam-like structures, depending on the ratio ω/νem, as portrayed in Figure 2a,b, with
evidence of turbulent, classical fractal-like behavior [42], when ω/νem � 1, with similarity
to a transition to turbulence in the boundary layers. The scattered waves do not progress
isotropically, but are transmitted or reflected, bordering along with the device structure.
Similar streamwise vorticity fluctuations induced by near-wall vortices are visible in tubular
structures in plane channel flows [43].

In the natural world, a multifunctional, angle-dependent anti-reflection structure
occurs on cicada wings. The insect’s wings are composed of highly ordered, tiny vertical
“nano-nipple” arrays, forming a biomorphic TiO2 surface with small spaces between the
ordered nano-antireflective structures allowing multiple reflective and scattering effects
of the antireflective structures [44]. Another recent technique revealing the role of surface
charges on cloaking and shielding was proposed using electroosmotic dipole flow that
occurs around a localized surface charge domain under the application of an external
electric field in a Hele-Shaw cell, revealing that the superposition of surface charge spots
does produce complex flow patterns, without the application of physical walls [45].
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(a)

(b)

Figure 1. (a) 2D plot of the EM intensity distribution (in a.u.) below and above the device surface,
ω/νem = 3.1; (b) contour plot of the EM intensity distribution at y = 0.

In stealth technology, we also may use a programmable plasmonic circuit, as was
proposed in Ref. [46], using a transparent patterned zinc oxide gate to provide full control of
plasmons in graphene. These techniques may assist in better design stealth technology [47],
and Figure 3 exemplifies the concept. As wide spectrum surveillance (wide bandwidth
capability) is needed because the frequency of the enemy radar is not known beforehand,
the parameter νem may be adjusted to lock with the enemy frequency radar ω [48].
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(a)

(b)

Figure 2. (a) 2D plot of the EM intensity distribution (in a.u.) below and above the device surface,
ω/νem = 105; (b) contour plot of the EM intensity distribution at y = 0.

Figure 3. Plasmon circuit to induce electromagnetic amplification or attenuation. In the Fraunhofer
diffraction (in the far-field region) analyzed here, in the far-field region, ∆x determines the possible
extent of the source, or pillar, as in cicada wings, here discussed as a punctual source.
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3. Conclusions

The above scaling and methodology, based on the hydrodynamic construct of the
electromagnetic field, introduces a new tool to assess electromagnetic turbulence or practical
means to control optical phenomena such as cloaking and shielding and further reveals
the diffraction nature of EM turbulence. The method gives access to an electromagnetic
viscosity, clarifies the role of surface currents in generating electromagnetic turbulence and
classical fractal-like behavior in optical devices, and suggests norms to design suitable
plasmon circuity to control electromagnetic turbulence in stealth technology and propulsion
machines. The diffraction pattern is dependent not only on the form of the encountered
barriers but, additionally, is essentially linked to the surface density of surface plasmons
vortices and electrons being on the obstacle.
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