
Article

Ferroelectric and Dielectric Properties of Strontium Titanate
Doped with Barium

Ahmed Maher Henaish 1,2,*, Maha Mostafa 1, Ilya Weinstein 2,3 , Osama Hemeda 1 and Basant Salem 1

����������
�������

Citation: Henaish, A.M.; Mostafa,

M.; Weinstein, I.; Hemeda, O.; Salem,

B. Ferroelectric and Dielectric

Properties of Strontium Titanate

Doped with Barium. Magnetism 2021,

1, 22–36. https://doi.org/10.3390/

magnetism1010003

Academic Editor: Tarek Bachagha

and Joan-Josep Suñol

Received: 4 September 2021

Accepted: 1 November 2021

Published: 11 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Physics Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
maha_mostafa@science.tanta.edu.eg (M.M.); omhemeda@science.tanta.edu.eg (O.H.);
basant.salem@science.tanta.edu.eg (B.S.)

2 NANOTECH Center, Ural Federal University, 620002 Ekaterinburg, Russia; i.a.weinstein@urfu.ru
3 Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences, 620016 Ekaterinburg, Russia
* Correspondence: a.henaish@urfu.ru

Abstract: Ferroelectric samples Sr1−xBaxTiO3 (BST), where x = 0, 0.2, 0.4, 0.6, 0.8 and 1, were
prepared using the tartrate precursor method and annealed at 1200 ◦C for 2 h. X-ray diffraction,
“XRD”, pattern analysis verified the structure phase. The crystallite size of the SrTiO3 phase was
calculated to be 83.6 nm, and for the TiO2 phase it was 72.25 nm. The TEM images showed that the
crystallites were agglomerated, due to their nanosize nature. The AC resistivity was measured as
temperature dependence with different frequencies 1 kHz and 10 kHz. The resistivity was decreased
by raising the frequency. The dielectric properties were measured as the temperature dependence at
two frequencies, 1 kHz and 10 kHz. The maximum amount of dielectric constant corresponded to
the Curie temperature and the transformation from ferroelectric to paraelectric at 1 kHz was sharp at
10 kHz. Polarization–electric field hysteresis loops for BST samples were measured using a Sawer–
Tawer modified circuit. It was shown that the polarization decreased with increasing temperature for
all samples.

Keywords: ferroelectric; AC resistivity; dielectric constant; Sawer–Tawer

1. Introduction

Ferroelectric materials are widespread materials for progressive technology. Ferro-
electric materials are arduous elements used in piezoelectric equipment and sequenced
missions, such as sensing and actuation. They have featured behaviors, such as switchable
macroscopic polarization, that have attracted prolonged interest for purposes in nonvolatile
memories, micro-electromechanical systems, nonlinear optics and sensors. Additionally,
in nano ranges, the ferroelectric structure has demonstrated completely different features
from materials with a bulk structure. The dependence of ferroelectric characteristics on
grain size is due to its electrical properties [1]. BaSrTiO3 (BST) is the most popular ferroelec-
tric oxide in the perovskite ABO3 structure. Convenient insulating BST, which has a high
dielectric constant, is suitable for use in capacitors and is preferred in several devices, such
as high-speed random-access memories, dynamic random-access memories, piezoelectric
transducers, wireless communication devices and pyroelectric elements [1,2].

BaSrTiO3 (BST) has attracted considerable research interest, due to its strong dielectric
nonlinearity under a bias electric field and linearly adjustable Curie temperature with
the (Sr) content [3–5]. The extension of (Sr) into BaTiO3 changes the Curie point to make
BST a paraelectric material at room temperature, offering a high dielectric constant and
low leakage current. Previous studies [6–15] have explained different techniques for
obtaining BST.

Ying Yao et al. [13] have scrutinized the sintering and (ε) of BST. The structure becomes
more homogeneous through sintering operations, involving the inter-diffusion of ions.
This can be deduced from dielectric measurements, both phase transitions for BST and
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for BaTi4O9. Moreover, the neoteric structure transition for BaTi4O9 greatly affects the (ε)
properties in main-phase BST, as well as for BT ceramics. K.A. Razak et al. [14,15] studied
BST generated by a hydrothermal reaction, forming a two-phase structure. The two phases
have diverse grain size after sintering, in which grain size grows with the raised Ba content.
It can observed that a clear increase in dielectric properties by adding Ba content is affected
by the electronic state of materials and grain sizes. Nisha D. Patel et al. [16,17] prepared
(BST) with different Sr/Ba ratios. It is known that crystallinity reduces with an increase in
Sr content.

The present work focuses on the synthesis of BaxSr1-xTiO3 through the tartrate pre-
cursor method, and a comparative study of the structural, morphological, AC electrical
resistivity properties and ferroelectric hysteresis measurements was carried out. The nov-
elty of this work is the success of preparing the ferroelectric BST using the tartrate precursor
method. It was noticed that d33 factor increased by increasing Ba ions to control some
properties of SrTiO3.

2. Materials and Methods

A ferroelectric BST (x = 0, 0.2, 0.4, 0.6, 0.8 and 1) system was prepared by the tartrate
precursor method [18]. Figure 1 shows the tartrate precursor method. The powder was
collected and heat-treated at 1200 ◦C for 2 h. The Rietveld refinement of XRD patterns
was examined using COD on the website http://www.crystallography.net/ (accessed on
23 April 2021) to match and fit, using the software Fullprof and Vesta. The microstructure
was analyzed using a TEM model (JEOL1010). For AC resistance studies, the samples
were pressed in pellet form, then measured by using RLC Bridge (BM591) to measure
(ε) and dielectric loss (tanδ) of all the samples at temperature range from −70 to 250 ◦C.
P–E hysteresis loops were measured with a modified Sawyer–Tower circuit, as shown in
Figure 2 [19]. For hysteresis measurements, the sample was polarized at 2 kV for 2 h at RT,
and the hysteresis loop was shown using an oscilloscope.
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Figure 3. XRD of BST with x = 0, 0.2, 0.8 and 1. 

From the Rietveld refinement for SrTiO3, the presence of two phases, TiO2 and SrTiO3, 
can be proposed. The TiO2 phase with a space group of P42/mnm has a tetragonal 
structure with weight fraction of 27.44%, and the SrTiO3 phase with a space group of Pm-
3m has a cubic structure with weight fraction of 72.56%. Both were confirmed from XRD 
analyses. The analyzed Rietveld refinement values of both phases are given in Table 1, 

Figure 2. The Sawyer–Tawer circuit.

3. Results
3.1. Rietveld Refined of X-ray Patterns

Figure 3 shows the XRD patterns of the structure BST at x = 0, 0.8 and 1. It is observed
that the major phase is BST with the presence of some peaks at 2θ= 27.4◦ which may be
due to the presence of small amounts of Sr3Ti2O7 and the peak at 2θ= 29.14◦ due to the
presence of BaTi4O9. The peak at 2θ= 36.15◦ can be attributed to the Sr(NO3)2, and at higher
concentrations of barium, it disappears [20–22]. The intensity of these diffraction peaks
decrease with increasing Ba, and with higher contents, the pattern confirms a single
tetragonal phase of BST [23]. The XRD pattern is mentioned in detail in a previous
paper [24–26].
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From the Rietveld refinement for SrTiO3, the presence of two phases, TiO2 and SrTiO3,
can be proposed. The TiO2 phase with a space group of P42/mnm has a tetragonal structure
with weight fraction of 27.44%, and the SrTiO3 phase with a space group of Pm-3m has a
cubic structure with weight fraction of 72.56%. Both were confirmed from XRD analyses.
The analyzed Rietveld refinement values of both phases are given in Table 1, with lattice
parameter a = b = c for cubic SrTiO3 and a = b # c for tetragonal TiO2. The crystallite size
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of the SrTiO3 phase was calculated to be 83.6 nm, and 72.25 nm for the TiO2 phase [27,28].
Figure 4a shows a ball-and-stick model for the SrTiO3 phase (cubic phase) drawn using
crystallographic information with FullProf and Vesta software. It is shown in Figure 4 (a)
that Sr ions are present in the body center of the unit cell with coordination (0.5, 0.5, 0.5),
whereas Ti ions are located at the corners with coordination (0, 0, 0) and O ions are located
at the edge centers with coordination (0.5, 0, 0). as given in Table 2.

Table 1. Summary of the Rietveld analyses of XRD data for samples x = 0, 0.8 and 1.

Sample Phase
Structural Parameters Crystallographic

System
Space
Group

Weight
Fraction

Density
(g/cm3)

Crystallite
Size (nm)a (Å) b (Å) c (Å)

x = 0
No.1 TiO2 3.9053 3.9053 3.9085 Tetragonal P42/mnm 27.44% 4.450 72.2548

No.2 SrTiO3 3.9066 3.9066 3.9066 Cubic Pm-3m 72.56% 5.111 83.662

x = 0.8

No.1 Ba0.8Sr0.2 TiO3 3.9878 3.9878 3.9819 Tetragonal P4mm 60.53% 6.819 39.71

No.2 BaTiO3 5.6708 5.6708 13.9200 Hexagonal P63/mmc 39.37% 7.828 9.02

No.2 Sr2 3.9852 3.9852 3.9852 Cubic Im-3m 0.10% 4.598 21.95

x = 1
No.1 BaTiO3 3.98913 3.98913 4.00730 Tetragonal P4mm 71.05% 6.073 22.28

No.2 BaTiO3 5.6781 5.6781 13.9300 Hexagonal P63/mmc 28.95% 6.078 25.38

Table 2. Summary of ball-and stick-model for samples x = 0, 0.8 and 1.

x Atom
Atomic Parameters

x y z

0

Sr 0.5 0.5 0.5

Ti 0 0 0

O 0.5 0 0

0.8

Sr 0 0 0

Ba 0 0 0

Ti 0.5 0.5 0.5

O 0.5 0.5 0

O 0.5 0 0.5

1

Ba 0 0 0

Ti 0.5 0.5 0.5

O 0.5 0.5 0

O 0.5 0 0.5

The Rietveld analysis for the sample where x = 0.8 showed three phases: a tetragonal
phase with space group P4mm and weight fraction 60.53%; the second phase (hexagonal
phase) was BaTiO3 with space group P63/mmc and weight fraction 39.37%; and the last
phase was Sr2, which has a cubic structure with space group Im-3m and weight fraction
0.1%. The density, crystallite size and lattice parameters of these three phases are given in
Table 1.

The Rietveld refinements of lattice constant agree with the experimental value previ-
ously reported in [29,30] for the first phase at x = 0.8, which demonstrated that the lattice
parameter was 3.98 Å. Figure 4b shows a ball-and-stick model for the phase at x = 0.8
(tetragonal phase). This was drawn using crystallographic information with FullProf and
Vesta software. The ball-and-stick model shows that Ti ions are present in the body center
of the unit cell with coordination (0.5, 0.5, 0.5), and both Sr and Ba ions are located at
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corners of the unit cell with coordination (0, 0, 0) and O are at the face center, as given in
Table 2.
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The last sample where x = 1 (BaTiO3) contains two phases: the tetragonal phase with
space group P4mm and a weight fraction of 71.05%, and the hexagonal with space group
P63/mmc and with a weight fraction of 28.95%. The density, crystallite size and lattice
parameters of these two phases are given in Table 1. Figure 4c show ball-and-stick model
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for the BaTiO3 phase (tetragonal phase). It was drawn using crystallographic information
with FullProf and Vesta software. The ball-and-stick model shows that Ti ions were present
in the body center of the unit cell with coordination (0.5, 0.5, 0.5), and Ba ions were located
at the corner center with coordination (0, 0, 0), as given in Table 2.

3.2. High-Resolution Transmission Electron Microscopy (HR-TEM)

TEM micrographs of BST samples for x = 0, 0.8 and 1 with electron diffraction patterns
and high-resolution TEM images are shown in Figure 5. The TEM images show that the
crystallites were agglomerated due to their nanosize nature, with an average crystallite size
ranging from 20.2 nm to 48.02 nm belonging to a tetragonal phase which iwas confirmed by
XRD, whereas the crystallite size in both XRD results and TEM results were nearly the same
as those given in Table 3; BST had lower values than SrTiO3. The high-resolution TEM
images show the lattice planes with an inter-planar distance d = 0.32 nm, corresponding to
the diffraction plane (100) which clearly appeared in the diffraction pattern at 2θ= 22.72◦.
The electron diffraction pattern was also consistent with the tetragonal lattice structure
which was observed by XRD.

Table 3. The crystallite size (D) determined from TEM and X-ray diffraction for BST samples.

Sample D (nm) from HRTEM D (nm) from XRD

x = 0 48.02 43.40

x = 0.8 20.2 26.79

x = 1 37.5 30.11

The high-resolution TEM images in Figure 4B for samples x = 0.8 and 1 show the
interference of two planes (101) and (100) with d-spacing 0.27 nm and 0.32 nm, which
appeared in the XRD pattern at 2θ= 32.29◦ and 22.72◦, respectively.

Figure 4C shows the selected area electron diffraction patterns for samples x = 0, 0.8
and 1. The crystalline features of the nanopolycrystalline material could be confirmed
from the electron diffraction patterns, which contained a set of halo rings with a uniform
center [31–33]. The crystalline lattice planes for the different circles, corresponding to
different peaks of the tetragonal phase, are defined as (100), (110), (111), (200) and (210),
which appeared in the XRD pattern and showed a comparison between the electron
diffraction pattern and X-ray diffraction pattern [34].

3.3. AC Electrical Resistivity

The AC resistivity for BST related to reciprocal temperature is shown in Figure 6, where
Figure 6a is at a frequency of 1 kHz and Figure 6b is at 10 kHz. Notably, the resistivity
reduced by raising the frequency, which might have been due to the high relaxation time of
charge carriers occurring at low frequency, which resulted in high resistivity. Moreover, as
the frequency increased, more charge carriers could respond easily to the external electric
field, resulting in lower resistivity.

The decrease in AC resistivity with increasing temperature was observed in the high-
temperature zone, discerning that the mobility of charge carriers are thermally activated,
leading to the decrease in resistivity. The conduction process in our samples is attributed
to the hopping electron between Ti3+ and Ti4+ when an electric field is applied [35]. The
addition of a barium ion obstructs the hopping electrons, which raise the resistivity for all
samples compared with the SrTiO3 sample. The total AC resistivity can be given from the
equation [36]:

ρAC = ρDC + A ωn,

where A is a constant and n is a dimensionless parameter. The values of n were calculated
using the formula n = ln ρ

ln ω [37] and demonstrated in Figure 7. It shows that the value
of n decreased in the high temperature region and increased with the increasing barium
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content, indicating the increased disorder in the samples. The samples became more
frequency-dependent and sensitive to any frequency variation when the barium content
increased.
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3.3. AC Electrical Resistivity  
The AC resistivity for BST related to reciprocal temperature is shown in Figure 6, 

where Figure 6a is at a frequency of 1 kHz and Figure 6b is at 10 kHz. Notably, the resis-
tivity reduced by raising the frequency, which might have been due to the high relaxation 
time of charge carriers occurring at low frequency, which resulted in high resistivity. 

x=0.8 

x=1

A B C 

Figure 5. (A) HRTEM images, (B) the fringing spacing and (C) selected area electron diffraction pattern for BST with x = 0,
0.8 and 1, respectively.
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Figure 6. The variation in ln ρ vs. 1000/ T (K−1) at different frequencies of 1 kHz (a) and 10 kHz (b) for BST samples with
different Ba contents (x).
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Figure 7. The variation of n with temperature T (K) at different frequencies of 1 kHz and 10 kHz for BST samples with
different Ba contents (x).

3.4. Dielectric Constant with Temperature Properties

Dielectric constant (ε) and dielectric loss at two fixed frequencies of 1 kHz and 10 kHz
for BST samples at different temperatures are illustrated in Figure 8. The dielectric constant
increased slightly with increasing temperature and exhibited a peak at around room
temperature. This peak at the Curie point was due to the transition from the ferroelectric
to paraelectric phase, and originated from the presence of the BaTi4O9 phase. This phase
appeared in the XRD patterns, which confirmed our hypothesis. The ultimate (ε) value
appeared at Curie temperature [38]. Encouragingly, there was compatibility between our
results and the result obtained in a previous study [39].

The dielectric constant results show that the sharp increase in dielectric constant
varied from 241 K to 300 K for x = 0 and x = 0.8, respectively. The dielectric peak become
broad and intense by raising the Ba content up to x = 0.6. The Curie temperature for pure
barium titanate gave a transition temperature (Curie temperature) of around 415 K and
another small peak at 287 K due to the minor BaTi4O9 phase. The evident rise of (ε) near
room temperature resulted from the impure BaTi4O9 phase, which exhibited abnormal (ε)
and (tan δ) and greatly influenced the dielectric properties of the major BST phase. The
disappearance of the second peak (at TC = 415 K) for other samples indicated that the minor
phase plays a dominant role in the (ε) features of these samples. The phase transition for
BaTi4O9 was shifted to lower temperatures by increasing the barium content. As shown in
Figure 8, the broad peak appearing at around 415 K corresponded to the Curie temperature
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for the barium titanate, whereas the small peak at around 287 K was related to the BaTi4O9
phase.
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10 kHz, for different barium contents (x).

Usually, the Curie temperature of around 415 K for BaTiO3 is due to alterations in the
structure from the tetragonal to cubic phase. Furthermore, the phase transition around RT
is related to the transition from an orthorhombic to tetragonal structural. From previous
work [40], it could be concluded that the phase changed from ferroelectric to paraelectric,
and the dielectric constant of BST at x = 0.2, 0.4 increased at around 288 K, whereas in our
work, it was at about 281 K.

Notably, the value of the dielectric constant at 1 kHz was larger than that at 10 kHz.
Thus, we deduced that the dielectric properties of BST are greatly affected by the barium
and strontium contents.

All phases in the BT sample were in the rhombohedra phase at T < 183 K, which was
outside our temperature range (203 K–523 K). The second was the orthorhombic phase
from 183 K to 278 K, which appeared at 270 K, as illustrated in Figure 9. The third phase
was the tetragonal phase from 278 K to 450 K, which was the ferroelectric phase. The fourth
phase was cubic at temperatures above 450 K, and as the paraelectric phase. The four
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phases are illustrated in Table 4. The broad peak around 450 K, which was the transition
from ferroelectric to paraelectric, was characteristic of relaxor phase transition.
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Table 4. The four phases of BST samples.

Phase Rhombohedra Orthorhombic Tetragonal Cubic

TC out of range 270 450 > 450

3.5. The Ferroelectric Hysteresis-Loop of BST Samples

Figure 10 represents ferroelectric hysteresis loops for BST samples at 30 ◦C. It can
be observed that the inclination of hysteresis loop increased with increasing the barium
content. The x = 0.6 sample had the highest inclination, and the x = 0.4 sample had the
minimum inclination. The increase in polarization for the x = 0.6 sample was due to the
increase in 180◦ and 90◦ domains in the trend of the applied field. From the results of
the tan δ, it was found that the x = 0.6 sample had the highest value of dielectric loss,
confirming the present results of the dielectric hysteresis loop which indicated that the
x = 0.6 sample had the highest polarization.

The remnant polarization as well as the coercive electric field simultaneously de-
creased by increasing the Ba content, suggesting that our ferroelectric samples were ferro-
electric relaxors with slim hysteresis loops, as shown in Figure 10.

Figure 10 represents the P–T hysteresis loops of BST samples measured from RT ≈ 45 ◦C
to 160 ◦C. In general, in all compositions, the hysteresis loops became slim and narrow as
the temperature increased and nearly closed to certain temperature around TC, as given in
Table 5, due to the transformation from ferroelectric to paraelectric states. At this temperature
the polarization of material dropped and the relationship between the electric field and
polarization became linear without hysteresis. This trend is reflected by the decrease in
polarization as the temperature increased, as shown in Figure 11.
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Table 5. Curie temperature from the hysteresis of ferroelectric material (BST).

x Tc from P–T Curve (K) Tc When Hysteresis Closed (K)

0 393 433

0.2 333 317

0.4 313 298

0.6 323 310

0.8 313 314

1 380 388

The polarization decreased with increasing sample temperature, as shown in Figure 10,
due to the random orientation which occurred in the domains under the effect of thermal ag-
itation, and the polarization become temperature-independent at high temperature [40,41].
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3.6. Piezoelectric Coefficient of BST Samples

The effects of Ba content on the piezoelectric charge (Q33) at different loading stresses
are shown in Figure 12. It can observed from the Q33 of the polarized sample that synthesis
by the tartrate method increased by increasing the load stress. From Figure 12, we measured
the d33 of the different samples by taking the slope of the linear part in the units of pC/N.
As a result of the orientation of 90◦ domains and 180◦ domains, the piezoelectric response
was observed in BST samples. Table 6 represents the d33 with different Ba concentrations.
It was observed that the x = 0.4 sample had the highest d33 compared with other samples.
The increase in d33 for the x = 0.4 sample may have been due to the presence of a large
number of 90◦ domains, which gave higher values of d33 under high mechanical stress.
From these results, we can conclude that the x = 0.4 sample is suitable for piezoelectric
technical applications and sensors.
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Table 6. Piezoelectric modulus, d33, and grain size of BST samples with different Ba contents (x).

x d33 (pC/N) Grain Size (µm)

0 770.7143 0.1905

0.2 377.1395 0.1955

0.4 1144.8673 0.1594

0.6 50.5204 0.1699

0.8 178.2653 0.2063

1 262.5646 0.3125

The main factor that affects the d33 is domain wall motion, which increases the
polarization, and hence increases the d33 and the generated piezoelectric charge.

It is shown in Table 6 that the samples with smaller grain sizes had higher values
of d33. The small area of the grain increased the domain wall mobility, giving rise to
high d33 under applied stress. The higher value of d33 was obtained when the grain
size was equal to 0.15 µm. It is important to state that the piezoelectric features and
the grain size are strongly affected by the method of preparation and the type of raw
material [1,24,25]. The x = 0.4 sample, which had the smallest grain size and the narrowest
grain width, exhibited more activity of the 90◦ domain wall and enhanced the piezoelectric
properties [26]. This mechanism sufficiently explains the high value of the piezoelectric
constant at x = 0.4. The value of d33 for sample x = 0.8 with formula Sr0.2 Ba0.8 TiO3 was
178. The value of 2653 pC / N is higher compared with another study experimenting with
the same concentration, where x = 0.8 was 160 pC / N [22]. We can consider that x = 0.4 is
the decisive grain size at which the piezoelectric constant has a higher value. At the higher
Ba content of x = 0.4, the piezoelectric constant decreased after increasing the grain size
and reached minimum at x = 1, where the grain size was equal to 0.32 µm.

4. Conclusions

The BST powders with x = 0, 0.2, 0.4, 0.6, 0.8 and 1 were prepared with the tartrate
precursor method. For higher barium contents, the X-ray diffraction patterns indicated a
single tetragonal phase of BST. From the TEM images, it was observed that the crystallites
agglomerated due to their nanosize nature. The resistivity decreased with increasing the
frequency for all samples. The addition of barium ions obstructed the hopping electrons,
leading to increases in resistivity for all samples compared with the SrTiO3 sample. The
dielectric peak became broad and intense after increasing the barium content up to x = 0.6.
The x = 0.4 sample had minimum inclination compared with other samples, and the
polarization decreased with increasing the temperature for all samples. The x = 0.4 sample
had the highest d33 compared with other samples.
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