
Citation: Ghorbanpour, A.

Cooperative Robot Manipulators

Dynamical Modeling and Control:

An Overview. Dynamics 2023, 3,

820–854. https://doi.org/10.3390/

dynamics3040045

Academic Editor: Christos Volos

Received: 1 November 2023

Revised: 3 December 2023

Accepted: 6 December 2023

Published: 11 December 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Cooperative Robot Manipulators Dynamical Modeling and
Control: An Overview
Amin Ghorbanpour

Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, CA 95616, USA;
aghorbanpour@ucdavis.edu

Abstract: Robot manipulators possess the capability to autonomously execute complex sequences of
actions. Their proficiency in handling challenging and hazardous tasks has led to their widespread
adoption across diverse sectors, including industry, business, household appliances, rehabilitation,
and many more. However, certain tasks prove to be challenging for individual robots, primarily due
to constraints in their structure and limited degrees of freedom. Cooperative robot manipulators
(CRMs) emerge as a compelling solution when dealing with large, heavy, or flexible payloads.
The utilization of CRMs offers a host of benefits, including enhanced manipulation performance
achieved through the synergy of sensing and actuation capabilities or by tapping into increased
redundancy. Numerous techniques have been devised for the control and dynamical modeling of
CRMs. Nevertheless, the field continues to present technical challenges and scientific inquiries. To
inspire and facilitate further research and development in this realm, this review aims to consolidate
the current body of knowledge pertaining to CRMs kinematics, dynamics modeling, and various
control methodologies used for payload manipulation via CRMs.
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1. Introduction

With recent advances in robotic technology, the adoption of multiple robots performing
a task cooperatively, such as moving a payload, in lieu of a single robot, has gained broad
research interest. Here, the term cooperative means the collaboration of multiple robots
executing a task simultaneously. The limits in the structure of a robot prevent a sole robot
from operating on large, unbalanced, or flexible payloads. On the other hand, cooperative
robots show better performance in tasks such as grasping, gripping, lifting, transferring,
lowering, and approaching an object. Hence, the driving force behind the creation of a
cooperative robotic system stems from its superior capabilities compared with a single robot.
This advancement aims to enhance the functional abilities of human operators, enabling
the successful completion of challenging tasks, including managing hefty loads (e.g., see
references [1–3]), intricate assembly procedures [4], efficient pick-and-place operations [5,6],
and more.

Drawing from the existing literature, the significant challenges within the domain
of cooperative robot manipulators (CRMs) encompass two primary problems: (1) the
intricate task of modeling the dynamical system and (2) the formulation of an effective
control scheme. Cooperative robot systems lend themselves to diverse approaches for
kinematic and dynamic modeling, presenting a spectrum of techniques to choose from.
Similarly, a variety of control methodologies, such as linear control theory, nonlinear
control, and intelligent control, among others, are applicable. Each modeling approach
possesses its own set of advantages and limitations, which in turn can propose distinct
control strategies. Given the relative novelty of cooperative robot control as a research area,
the predominant focus has been on introducing and contrasting different control methods.
An illustrative depiction of this concept is shown in Figure 1, where multiple robots
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collaborate to manipulate a load within their workspace. Within this context, the payload
may be affixed to each robot via either a fixture or an end-effector, and the robots have
rigid links and joints that are either revolute or prismatic. The “workspace” denotes the
spatial region within which the payload can maneuver. The subsequent sections provide
a more precise definition of cooperative robot manipulators. Furthermore, these sections
elucidate the rationale behind the need for a comprehensive survey paper dedicated to this
specific subject.

Figure 1. The images showcase the schematics of cooperative robots carrying a payload, with
(a) from [7] (Image credit: MIT), (b) from [8] (Image credit: National Institute of Standards and
Technology, US Department of Commerce), and (c) from [9] (Image credit: MIT).

1.1. Background

The system of CRM consists of multiple manipulators that form a coupled robotic
system with a closed-chain mechanism, as shown in Figure 1. CRMs do not have a
specific agreed-upon definition. Dual arm manipulation, human–robot cooperation (a
complete literature review of human–robot interaction is presented in [10]), mobile and
fixed-based cooperative manipulators, cooperation of unmanned aerial vehicles, space
multiarm robotics, and many other forms of cooperation can be categorized under the
definition of CRMs. Any form of multiple dynamical system (e.g., robot manipulator,
human, . . . ) interactions can be recognized as CRMs.

The collaborative manipulation of solid objects represents a formidable challenge and
an actively explored research field. This paper primarily focuses on fixed-based coopera-
tive robot manipulators, i.e., CRMs, which are employed for the handling of rigid objects.
By leveraging multiple robots working in concert to execute tasks, new horizons have
opened up for the utilization of robot arms and their applications. CRMs hold the potential
to be tailored for a wide spectrum of applications, as outlined in Table 1. In general, the de-
ployment of multiple robot manipulators offers opportunities to enhance productivity,
reduce labor costs, and enhance safety across various industries. The synchronized move-
ment and manipulation of multiple robot arms can be optimized to achieve the highest
levels of efficiency and precision. The utilization of CRMs offers a multitude of advantages,
including the following:

• Increased Productivity: Cooperation allows for parallel execution of tasks, resulting in
higher productivity compared with a single robot. CRMs can work simultaneously on
different parts of a task, reducing overall completion time.
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• Enhanced Task Complexity: Complex tasks that may be challenging or impossible
for a single robot arm can be tackled by CRMs. Each arm can specialize in a specific
aspect of the task, enabling the completion of intricate operations.

• Flexibility and Adaptability: CRMs offer flexibility in adapting to different tasks and
environments. The modular nature of the system allows for easy reconfiguration and
allocation of robot arms to specific tasks based on requirements.

• Fault Tolerance and Redundancy: In case of a failure or breakdown of one robot’s
joint, the other joints can continue to work, ensuring that the overall task progresses.
Redundancy in the system improves fault tolerance and system reliability.

Table 1. Cooperative robot applications.

Types Specific Applications

Manufacturing [11–22]

CRMs can be used in manufacturing for tasks that requires complex movement such as
assembly [19,20]. For example, a team of robot arms can work together to assemble a car engine,
with each arm performing a specific task such as tightening bolts or installing parts 1. Other works
such as welding [21] and slabstone installation [22] can be performed by CRMs as well.

Warehousing and
Logistics [23–30]

They can be used in warehousing and logistics to pick and pack products, move boxes [29,30],
transport, and perform other tasks. Multiple arms can work together to increase efficiency and
throughput.

Construction [31,32] They can be used in construction to perform tasks such as welding, drilling, and painting. Multiple
arms can work together to perform these tasks on a larger scale or in a shorter time frame.

Healthcare [33]
They can be used in healthcare to assist with surgeries or other medical procedures, such as nursing.
Multiple arms can work together to perform complex procedures, increasing precision and reducing
the risk of errors.

Agriculture [34,35] They can be used in agriculture to harvest crops or perform other tasks. Multiple arms can work
together to cover more ground and increase efficiency.

Aerospace [36–43]

CRMs ability to work alongside human operators, enhance efficiency, and perform tasks that are
challenging or unsafe for humans makes them valuable tools in aerospace manufacturing,
maintenance, inspection, training, space exploration, and research. Grasping a non-cooperative
object [37,42], carrying a load with UAVs [38,41], on-orbit capture, space structure construction
and assembly tasks [39], and grasping non-cooperative objects with specific orientations [43].

1 A comprehensive survey for additive manufacturing application is presented in [17].

Regardless of the aforementioned benefits, employing CRMs comes at the cost of
complexity for mathematical modeling, control, and coordination. CRMs are kinemati-
cally and dynamically coupled and usually overactuated systems. Overall, the following
disadvantages have been detected in the literature:

• Increased Complexity: Coordinating the movements and actions of multiple robot
arms requires sophisticated algorithms and communication protocols. The complexity
of system design, synchronization, and control can be challenging and may require
advanced programming and planning.

• Communication and Coordination Overhead: Effective cooperation among multiple
robot arms necessitates robust communication and coordination. The need for ex-
changing information, synchronizing actions, and avoiding collisions can introduce
communication overhead and latency.

• Cost and Maintenance: Implementing and maintaining a multirobot arm system can
be costly. Each additional robot arm adds to the hardware and maintenance expenses,
requiring regular calibration.

• System Scalability: Scaling up a multirobot arm system to accommodate a larger num-
ber of arms may introduce additional challenges. Ensuring seamless coordination and
efficient task allocation becomes more complex as the number of robot arms increases.
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• Limited Workspace: When multiple robot arms operate in a shared workspace, they need
to be carefully coordinated to avoid collisions and ensure safe operations. The available
workspace may restrict the number of robot arms that can operate simultaneously.

It is important to note that many of these disadvantages can be mitigated or over-
come with careful system design, appropriate algorithms, and advances in technology.
As research and development in multirobot arm systems continue, the advantages are
expected to outweigh the disadvantages, making them increasingly viable and beneficial in
various applications.

1.2. Motivation

Advancements in the realm of cooperative robots hinge upon the evolution of robotic
structures, the facilitation of collaboration devoid of human intervention, and the deploy-
ment of intricate control algorithms. Driven by the absence of comprehensive surveys and
the distinct demands of this domain, this article aims to assess and underscore the dis-
tinct prerequisites essential for the evolution of CRMs. Drawing upon significant research
endeavors conducted thus far, the focus primarily centers on dynamical modeling and
the execution of control methodologies. These aspects are necessary and challenging for
achieving efficient models and fully autonomous CRMs. The ultimate goal is to make them
not only functional but also reliable for a wide range of applications in the near future.

Acknowledging the abundance of published papers on the topic of robot collaboration,
particular attention has been directed toward peer-reviewed works that explore fixed-based
cooperative robot manipulators engaged in object handling. In particular, this survey stud-
ies the following subjects: (1) an overarching exploration of the dynamics and kinematics
modeling of both robots and payload, encompassing challenges and advancements; (2) a
concise compilation of diverse control algorithms employed for payload manipulation and
regulation, accompanied by identified limitations, technical challenges, and prospective
pathways for future research.

It is worth clarifying two points: (1) In this paper, collaborative robots are exclusively
considered, excluding parallel mechanisms. A parallel mechanism is a type of mechanical
arrangement in which multiple rigid links are connected to a fixed base and a moving
platform through multiple joints. On the other hand, cooperative robots are defined
as multiple agents which are interacting with each other for task execution. The key
distinction is the ability of CRMs to interact safely and effectively. Readers are referred
to [44–46] for more information regarding parallel mechanisms. (2) In this survey, the
primary emphasis is placed on fixed-base robotic arms; however, depending on the context,
mobile-based robots may also be examined. The key distinction is that fixed-base robotic
arms are stationary and rely only on joint motion and coordination to manipulate the object
within the reach of their fixed bases, while mobile-based robotic arms, e.g., humanoid
robot cooperation [30], have the added advantage of mobility, allowing them to adapt to
different scenarios and locations. This mobility provides greater flexibility in navigating
around obstacles or accessing different locations within the environment. A discussion
of mobile cooperative robots can be found in [47,48]. Evidently, addressing the modeling
and control aspects of cooperative robots with fixed bases presents a heightened level of
complexity, necessitating the utilization of advanced techniques and tools to tackle the
problem effectively.

1.3. Contributions and Organization

By providing an all-encompassing examination of noteworthy achievements and
unresolved challenges within the domain of cooperative robot manipulators, this work
can serve as a valuable resource for the robotic research community. This survey has the
potential to diminish redundancy in research efforts, facilitate the pinpointing of critical
bottlenecks in this domain, and greatly enhance the capacities of forthcoming CRM systems.
As far as the authors are aware, no prior endeavor has been undertaken to assemble such
an exhaustive survey within this particular realm. The remainder of this paper is organized
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as follows: In Section 2, an extensive examination of the dynamics and kinematics of CRM
systems is presented. Section 3 offers a thorough survey of diverse control methodologies
employed for regulating robots, payloads, and achieving specific problem objectives. Lastly,
Section 4 encompasses the conclusion and prospects for future endeavors.

2. Dynamics and Kinematics Modeling

A precise CRM model, ensuring accurate control design and facilitating simulation
studies, is indispensable for developing control methodologies. This necessitates pre-
liminary exploration of a well-defined mathematical model along with rational system
parameters. Typically, a standard model encompasses both the dynamics and kinematics
aspects of robots and the payload. Considered here is a system of N robots, each equipped
with ni joints, securely grasping and moving a payload as illustrated in Figure 2.

In this section, exploration unfolds into the domain of dynamical modeling and its
associated challenges. To provide a structured overview, commencing with the presentation
of the robots’ dynamics in Section 2.1, the dynamics of the payload are subsequently
explored in Section 2.2. Following this, attention turns to two key aspects: the closed-
chain constraint and degree of freedom, addressed in Section 2.3, and the load distribution
among robots, detailed in Section 2.4. To conclude, two significant issues are tackled: the
augmented model for robots and payload interactions in Section 2.5 and the formulation
of grasping strategies in Section 2.6. Additionally, less explored topics in this domain are
introduced in Section 2.7.

Figure 2. Illustration of N robots grasping a payload. The coordinate frames are attached to the end-
effector (Σei, i ∈ {1, . . . , N}), robots’ base (Σi), payload’s center of mass (ΣO), and world frame (ΣW ).

2.1. Robot Modeling

The dynamics of a robot manipulator can be presented in either joint space or task
space, depending on the context and the goals of the analysis or control. Joint-space
modeling focuses on describing the robot’s motion and behavior in terms of its joint angles
and/or positions. Task-space modeling describes the robot’s motion and behavior in terms
of its end-effector’s spatial position and orientation. In the context of CRMs, task-space
modeling may happen at the end-effector, Σei, or the payload frame, ΣO. The merits and
drawbacks of adopting either modeling approach are listed in Table 2.
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Table 2. The advantages and disadvantages of robot modeling in the joint and task space.

Advantages Disadvantages

Joint-Space Modeling

(1) More suitable for decentralized control
algorithms with low communication

overhead, scalability, etc.

(1) In some scenarios, like dynamic obstacle
avoidance, joint-space control may require
complex algorithms and planning to adapt

to changing environmental conditions.

(2) Joint-space modeling makes it easier to
identify and handle singularities.

(2) Complex coordination and
synchronization require careful design to
ensure overall system objectives are met.

Task (Operational)-Space Modeling

(1) More intuitive (natural) representation
for specifying and controlling tasks directly

related to end-effector motion, such as
moving to a particular position

or orientation.

(1) Following a task-space trajectory usually
needs an inverse kinematics (IK) solution,

which means computational burden,
especially if the IK solver is running

an optimization.

(2) Often, the unified model in task space is
suitable for centralized control

implementation with better-coordinated
decision making.

(2) Task-space modeling and control may
lead to a loss of direct control over

individual joints, making it less suitable for
tasks that require precise manipulation at

the joint level.

The dynamics of the ith robot in joint space can be modeled as

Di(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = Ti + JT
i (qi)Fi i ∈ {1, . . . , N} (1)

where qi ∈ Rni is the vector of joint coordinates, Di(qi) is the inertia matrix, Ci(qi)
is the matrix accounting for centripetal and Coriolis effects, gi(qi) is the gravity vector,
Ji ∈ Rni×li is the Jacobian matrix (usually assumed to be nonsingular, i.e., full-row rank),
Fi = [ f T

i , τT
i ]

T ∈ Rli is the vector of forces ( fi) and moments (τi) (henceforth called
wrenches) applied by the object at the end-effector, and Ti ∈ Rni is the vector of wrenches
applied at the joints. Caution should be exercised when determining the sign of wrenches.
In other words, the wrenches exerted by the robot on the payload are equal in magnitude
but opposite in direction to the wrenches applied by the payload on the robot’s end-effector,
i.e., Fiobj→bot = −Fibot→obj , where Fiobj→bot is the wrench vector applied by the object to the
robot [49]. Hence, all equations in the dynamics of CRMs should be written accordingly. It
is crucial to recognize the interconnection between the robots through the wrench parameter.
The wrench value depends on the motion of the payload, which, in turn, is influenced
by the movements of all robots. Consequently, there is a form of information exchange
between the robots through the wrench. The following properties of the robot are required
for the subsequent development [50]:

Property 1. The inertia matrix Di(qi) is a uniformly bounded positive definite symmetric matrix
for all qi ∈ Rni .

Property 2. The matrix N(qi, q̇i) = Ḋi(qi)− 2Ci(qi, q̇i) is skew-symmetric, so q̇T
i N(qi, q̇i)q̇i = 0

for all qi, q̇i ∈ Rni

Property 3. The dynamic model in Equation (1) is linear in a set of basic dynamic parameters and
can be written as

Di(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = Yi(qi, q̇i, q̈i)θi (2)

where Yi ∈ Rni×si is the so-called dynamic regressor matrix, and θ ∈ Rsi is the vector of
dynamic parameters.

Property 1, comes from the physical fact that the inertia matrix, Di(qi), is inherently
positive definite (PD). The proof for skew-symmetry property can be found in [50]. By com-
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bining the dynamics of all N robots, the comprehensive dynamics of CRM can be written
as [51–53]:

D(q)q̈ + C(q, q̇)q̇ + G(q) = T + JT(q)F (3)

where X = [XT
1 , . . . , XT

N ]
T , X ∈ {q, G, T , F} and Y = diag(Y1, . . . , YN), Y ∈ {D, C, J}.

It is possible to present Equation (1) in task space, as demonstrated in many papers,
such as [54,55]. In the literature, the primary motivation for this transformation is to
combine the dynamics of the robots and the payload, as elaborated in Section 2.5. To obtain
the dynamics of the ith manipulator in task space, the following relations between the
velocity and acceleration of the joints and end-effector are employed:

ẋi = Ji(qi)q̇i, ẍi = Ji(qi)q̈i + J̇i(qi)q̇i (4)

where ẋ and ẍ are the velocity and acceleration of the end-effector, respectively. Using the
above equalities with some modifications, the task-space equation can be presented as

D̄i(qi)ẍi + C̄i(qi, q̇i)ẋi + ḡi(qi) = T̄i + Fi (5)

where:
D̄i(qi) = J−T

i (qi)Di(qi)J−1
i (qi)

C̄i(qi, q̇i) = J−T
i (qi)(Ci(qi, q̇i)− Di(qi)J−T

i (qi) J̇i(qi))J−1
i (qi)

ḡi(qi) = J−T
i (qi)gi(qi)

T̄i = J−T
i (qi)Ti

The dynamical model presented in this section can be adapted according to the partic-
ular problem at hand. This may involve introducing modifications such as incorporating
disturbance terms, accounting for joint mechanism (JM) dynamics, employing a task-space
model, and more. In the following sections, some of the dynamical model adaptations
documented in the literature are examined.

Modification of Robot Dynamical Model

The dynamical model as described in Equation (1) is subject to modification in accor-
dance with the specific requirements of the problem at hand. Several alternative approaches
for representing this dynamical model are as follows:

Actuator dynamics: It is possible to combine the robot and actuators’ dynamics
as presented in [51,56,57]. In this way, a model can be obtained which can be utilized
for low-level control. The interface torque between the JM and the jth robot link can be
described by

τij = −mijn̄2
ij q̈ij − bijn̄2

ij q̇ij + n̄ijτindij
(6)

where mij, n̄ij, and bij are the JM moment of inertia, the gear ratio, and friction coefficient,
respectively. The superscript ij indicates the value of the jth joint of the ith robot. By com-
bining the above equation and robot dynamics, the system can be presented as a function
of the torques that have been produced in the actuators. For instance, if the actuators are
DC motors, then τindij

= αij Iij is the induced torque of the motor, where Iij is the current in
the motor and αij is the motor constant. From this equation, the voltage of the DC motor
can be presented in the dynamical model [51].

Actuator saturation: The input to the robot dynamics, as presented in Equation (1),
is devoid of any constraints. To incorporate saturation into the controller design, Ti can
be substituted with the subsequent equation, where Tmax is the maximum wrench of the
joint [58–60]:

Sat(Ti) =

{
Tmaxsign(Ti), for |Ti| ≥ Tmax

Ti, for |Ti| ≤ Tmax
(7)
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2.2. Payload Modeling

The dynamics and kinematics of manipulators are coupled because the contact wrenches
in all robots interact through the payload. The dynamic coupling effects can be measured
using the dynamics of the payload. Hence, modeling the payload is a crucial stage. In terms
of identifying the payload, we can distinguish three groups of research:

• Studies that presume full knowledge of the physical properties of the payload, a pre-
vailing assumption in most of the literature in this domain.

• Investigations that employ a basic point-mass model for the payload, as exemplified
in works such as [61,62].

• Research endeavors that consider unknown or only partially known physical proper-
ties of the payload, as observed in studies like [54,63,64].

The dynamic model of the payload in Cartesian space, with the assumption that ΣO is
situated at the center of mass, is expressed as

AẌobj + G ,
[

mo I3×3 03×3
03×3 Io

][
P̈o
ω̇o

]
+

[
−mog

ωo × Ioωo

]
= JT

o (F + Fenv) , Fo (8)

where Ẋobj = [ṖT
o , ωT

o ]
T = [ẋo, ẏo, żo, ωx, ωy, ωz]T is the vector of linear and angular veloci-

ties of the load. I3×3 and 03×3 are the identity and the null matrices, respectively, mo is the
mass of the payload, and Io is the moment of inertia about the center of mass (CM). Fo is
the vector of all wrenches applied at the center of mass of the load, and JT

o = [JT
o1

. . . JT
oN
] ∈

R6×6N is called the grasp (grip) matrix and defined as

JT
o =

[
I3×3 03×3 . . . I3×3 03×3
−S(r1) I3×3 . . . −S(rN) I3×3

]
(9)

where ri is the vector from Σei to Σo described in the payload frame (see Figure 2), S(.) is a
skew-symmetric matrix operator, and Fenv = [ f T

env, τT
env]

T is the vector of applied wrenches
by the environment of the payload [65,66]. Fenv is assumed to be either a known quantity or,
in the latter scenario where it is unknown, subject to estimation [67]. Finally, note that the
rank of the grasp matrix is six. It is worth noting that the dynamical equations are provided
here in their most universal format, i.e., six degrees of freedom. In the case of investigating
a special case, e.g., a planar manipulator, careful consideration and alignment of the chosen
states are essential. Also, note that the provided equations are for a rigid object. The CRM
problem carrying a flexible payload is discussed in [68].

It is often necessary to obtain the kinematics information of various points on the
payload, e.g., the contact points between the payload and robots. Assuming rigid grasping,
this information can be obtained using the following equations:

Pi = Po − Rori, ξei = ξo ∗ δξeio

Ṗi = Ṗo + ωo × ri, ωei = ωo

P̈i = P̈o + ω̇o × ri + ωo × (ωo × ri), ω̇ei = ω̇o

(10)

where for any ith point, e.g., the ith robot end-effector, Pi, ξei, Ṗi, ωei, P̈i, ω̇ei are the position,
orientation, linear velocity, angular velocity, proportional linear acceleration, and angular
acceleration, respectively. Ro is a matrix transformation that transfers ri from the payload’s
frame (Σo) to the frame attached to the ith point(Σei) [53,65,66]. Here, ξei is the orientation
in the form of quaternion, δξeio is the relative orientation, and ∗ represents quaternion
multiplication. Note that the orientation of the payload can be described either by Euler
angles [69,70] or quaternion [71,72]. In the case of using a rotation matrix, the quaternion
equality can be substituted with Rei = Ro, where R(.) is the rotation matrix. Specifically, Ro
is a matrix transformation that transfers ri from the object’s frame to the frame attached to
the ith end-effector [53].
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The mathematical relationships described in Equation (10) hold great significance,
as they facilitate the computation of velocity and acceleration for any location on the
payload, provided that these values are known for the CM. Conversely, this holds true if
they are known for any point on the payload. For instance, in scenarios involving a contact
point between the payload and the environment, these equations serve as the foundation
for developing a precise control algorithm aimed at regulating the contact force [69,73].

To apply the aforementioned equations, it is necessary to determine the velocity
and acceleration vectors. Assuming X = [PT , ξT ]T ∈ R7, where X ∈ {xi, Xobj} in
Equations (5) and (8), respectively, X can be decomposed into the translational position,
P ∈ R3, and orientation can be represented as a unit quaternion, ξ = [η, εT ]T ∈ R4.
Subsequently, Ẋ = [ṖT , ωT ]T ∈ R6, and Ẍ = [P̈T , ω̇T ]T ∈ R6, where ω and ω̇ ∈ R3

correspond to angular velocity and acceleration, respectively, which can be calculated by

ω = 2ET(ξ)ξ̇, ω̇ = 2ET(ξ)ξ̈ (11)

where E(ξ) = [−ε, (η I3×3 − ST(ξ))T ]T ∈ R4×3 [72]. Koivo and Unseren, in [69], used the
yaw, roll, and pitch angles to present the orientation and perform the tasks mentioned
in Equation (11). In general, it is imperative to adhere to the appropriate procedures for
manipulating parameters based on the chosen orientation representation. This may involve
tasks such as calculating the rotation difference or error accurately.

In Equation (8), the applied wrenches by manipulators and environment, F + Fenv, can
be decomposed to motion-inducing and internal parts as

F + Fenv = FM + FI (12)

where FM is the motion-inducing part that may balance the object’s dynamics, and FI is
the internal part consisting of compressive, tensile, and torsion wrenches. Since FI does
not contribute to the motion of the object and has no net force, it spans the null space of JT

o ,
i.e., JT

o FI = 0 [74]. Based on this fact, decomposition as Equation (13) can be used to find
FM and FI , where (JT

o )
+ is the generalized inverse of JT

o [75]:

FM , [FT
M1

, . . . , FT
MN

]T = (JT
o )

+ JT
o (F + Fenv)

FI , [FT
I1

, . . . , FT
IN
]T = (I6N×6N − (JT

o )
+ JT

o )(F + Fenv)
(13)

Using Equation (13) requires measuring the wrench at the end-effectors. This can be
accomplished by installing a sensor at the end-effector. To avoid direct measurement of
force/moment, methods based on sensorless force estimation must be employed.

The equations above present the dynamic model of the payload under the assumption
of complete knowledge of its mechanical properties. However, in practice, this assumption
may not always hold, and there may be a need to estimate these parameters. Notably,
authors in [41,67] have proposed solutions for estimating the physical characteristics of
the payload. In [41], the authors explored various estimation methods and opted for a
straightforward approach based on the static conditions of the payload. They provided
simple equations for determining key parameters such as mass, center of mass, and inertia.
On the other hand, in [67], the authors leveraged the dynamical equations of the payload,
assuming that the applied wrenches and accelerations are known. They used this infor-
mation to estimate the physical characteristics of the payload. These studies shed light on
different strategies for estimating payload properties when complete knowledge of the
mechanical parameters is unavailable.

It is important to recognize that the dynamical equations governing the robots and
payload may be subject to uncertainty and might not be directly employed in the control
algorithm. Table 3 is analyzed to explore the approaches adopted in the literature for
tackling the challenges of CRM modeling. Within this table, the following key aspects
are examined:

1. Whether the control model is based on joint space or task space.
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2. The degree to which the payload dynamics are understood, either known or par-
tially unknown.

3. The level of knowledge about the robots’ dynamics, which can be either known or
partially unknown.

4. The introduction of external disturbances into the system.

It is important to note that in certain papers, the dynamics of the payload and/or
robots are not integrated into the control algorithm. To streamline the representation and
avoid unnecessary complexity, such research is grouped under the common category of
“partially unknown dynamics”.

Table 3. Modeling Cooperative Robot Manipulators in the Literature. X indicates the presence of
characteristic and × indicates the absence of characteristic.

Reference * Joint/Task-Space
Modeling

Known Payload
Model

Known Robot
Parameters Disturbance

[54,67] Task × X ×

[57] Task X X X

[52,64] Task × X X

[55,76] Task X × ×

[29,77–80] Joint X × X

[56,81,82] Joint × × X

[21,37,59,60,72,83–86] Task × × ×

[87] Task × X ×

[88,89] Joint × X ×

[74,90–95] Joint × × ×

[20,22,40,66,75,96–107] Task X X ×

[51,53,62,65,69,70,73,82,98,107–127] Joint X X ×
* Note that certain references may appear more than once, suggesting that the control scheme has been applied in
various contexts or spaces.

2.3. Closed-Chain Constraint and Degree of Freedom

Closed-chain systems impose constraints on the degrees of freedom (DOF) of the
system, hence it is important to understand how to determine the DOF of the system.
First, it is essential to remember that a robot’s mobility, often referred to as DOF, is defined
as the minimum number of independent joint variables needed to precisely define the
positions of all the robot’s links in space. This number is also equivalent to the minimal
count of actuated joints necessary to control the entire system effectively. The payload does
not add any DOF to the CRM system. In fact, all state variables in Equation (8) can be
determined based on the state variables of the robots. The number of DOFs of the CRMs
can be determined from

NDOF ,
N

∑
κ=1

Lκ − Lc (14)

where Lκ is the DOF of each robot and Lc is the number of constraints in the system [69,128].
For example, if two planar RRR robots grasp a load, then NDOF , {3 + 3} − 3 = 3 or, if
the connections to the payload are pin joints, then NDOF , {3 + 3} − 2 = 4, since in the
latter example, the only position is a constraint and not the orientation due to pin joint
connection. Usually, CRMs can be categorized as overactuated systems because the number
of actuators is more than the DOFs.

Comprehending the count of the DOF is essential for studying a system’s constraints.
The interplay between the payload’s dynamics and kinematics results in constrained motion
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for each robot, primarily because of the closed-chain configuration within the CRM system.
This kinematic coupling is characterized by a set of equations that establish relationships
between the translational and rotational movements of the end-effectors responsible for
grasping and manipulating the rigid payload securely, as discussed in [69]. To establish the
constraint equations, a homogeneous transformation from an arbitrary Σ1 frame to any Σ2
frame is defined as

Σ2TΣ1 =

[Σ2RΣ1
Σ2PΣ1

0 1

]
(15)

where Σ2RΣ1 ∈ R3×3 is the rotation matrix and Σ2PΣ1 ∈ R3 is the translation vector
used to transfer orientation and translation parameters, respectively. This is the Denavit–
Hartenberg matrix, often called the transformation matrix. The concept involves represent-
ing Po in Figure 2 through diverse coordinate transformations. This entails expressing the
vector connecting the center of the world frame to the center of the payload frame as the
sum of vectors connecting the world frame to the base of the ith robot, the vector linking the
base to the end-effector of the ith robot, and the vector connecting the end-effector frame
to the payload frame. Hence, the closed kinematic chain is characterized by the following
equations [22,51,84]:

T1 = T2 = · · · = TN (16)

where:
Ti ,

ΣOTΣei.ΣeiTΣi .
ΣiTΣW i ∈ {1, . . . , N} (17)

Each transformation, Ti, expresses the position and orientation of Po in Figure 2.
In other words, according to Equation (16), the construction of Po should be the same using
the concatenated vectors through each robot that connect ΣW to ΣO.

Furthermore, it is feasible to calculate the positions and orientations of the payload
by utilizing the joint positions of any arm. The CRM system introduces the following
kinematic constraint [126]:

Xobj = Φ̄1(q1) = · · · = Φ̄N(qN) (18)

where Φ̄i(qi) represents the vector containing the load’s position and orientation, which is
computed through the joint positions of arm i, essentially encapsulating the arm’s direct
kinematics. Depending on the application, one of the Equations (16) or (18) can be used.
The velocities of the load are constrained by

Ẋobj = J−1
o1

(Xobj)J1(q1)q̇1 = · · · = J−1
oN

(Xobj)JN(qN)q̇N (19)

When formulating a controller, it is crucial to take into account the position and
velocity constraints, as any control scheme must be developed in a manner that ensures the
fulfillment of these constraints.

2.4. Load Distribution Analysis

Load distribution, also known as load allocation or load sharing, plays a crucial
role in the problem of CRMs. This concept involves distributing the weight or load of a
payload among the robots in an efficient and coordinated manner. Overall, load distribution
addresses the following concerns:

• Balanced Load Handling: Proper load distribution ensures that each robot carries its
fair share of the payload’s weight. This balance prevents the overloading of any single
robot and ensures that the payload is handled safely and securely. Overloading can
lead to mechanical stress, wear, or even damage to the robots.

• Enhanced Stability: Cooperative robots, especially when forming a closed kinematic
chain, rely on each other for stability. When the load is unevenly distributed, it can
lead to instability, causing the object to sway or tip. Proper load distribution helps
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maintain the equilibrium of the system, reducing the risk of accidents and ensuring
safe operation.

• Efficiency and Speed: An optimally distributed load can lead to increased efficiency
and faster task completion. When robots work together to distribute the load efficiently,
they can coordinate their movements more effectively, reducing the time required to
accomplish the task.

• Energy Efficiency: Uneven load distribution can result in some robots expending more
energy than others. When the load is distributed evenly, the energy consumption
across the robots is balanced, leading to improved overall energy efficiency.

• Fault Tolerance: CRMs often include redundancy. In the event of a robot failure,
a well-distributed load allows the remaining robots to compensate more effectively,
maintaining task performance and system functionality.

• Adaptability to Payload Shape and Size: Load distribution strategies can be adapted
to the size, shape, and weight of the payload. This adaptability allows the system
to handle a wide range of payloads effectively, from small and lightweight items to
larger and heavier ones.

• Safety: An even distribution of the load minimizes the risk of accidents, such as objects
falling or robots colliding. Safety is of utmost importance in collaborative environ-
ments, and proper load distribution contributes to a safer working environment.

To achieve effective load distribution in CRMs, advanced control algorithms and
sensor systems are often employed. These algorithms can take into account factors like
the payload’s weight and shape, the capabilities of each robot, and real-time feedback
from sensors to optimize load distribution dynamically. As a result, load distribution is
a fundamental consideration for achieving efficient, safe, and reliable cooperative robot
operations. In the literature, two cases are often considered: static and dynamic load
distribution. The former case deals with the distribution of the weight of the payload when
all the robots and the object are stationary or in a steady-state condition. The static load
distribution ensures that each robot bears an equal or proportionate share of the weight to
maintain balance. The latter case is concerned with the redistribution of the load while the
system is in motion. This is crucial for maintaining stability and preventing the robots from
losing control or colliding with each other.

Assuming rigid grasp, the relationship between the wrench vector, Fo ∈ R6, applied
to the object at the payload’s frame, and end-effector wrenches, F = [FT

1 , . . . , FT
N ]

T ∈ R6N ,
corresponds to

JT
o F = Fo (20)

where the grasp matrix, Jo, is defined in Equation (9) and F is defined in Equation (3).
The above equality represents the basis for most of the analysis performed so
far [58,66,104,116,129–134]. If the desired object wrench, Fo, is given, for example, by
specifying the payload trajectory and computing Fo through inverse dynamics, there are
infinite solution for F given Fo [116,129]. Note that Jo is a nonsquare and constant matrix.
Therefore, when Fo is a known quantity, the challenge in load distribution shifts to the
process of choosing the end-effector F in order to achieve Fo as outlined in Equation (20).
The general solution to this equality is

F = (JT
o )

+Fo + (I6N×6N − (JT
o )

+ JT
o )ε , (JT

o )
+Fo + FI (21)

where (JT
o )

+ is the generalized inverse of the grasp matrix and may be obtained using
(JT

o )
+ = AJo(JT

o AJo)−1 for a positive-definite matrix A [129]. ε ∈ R6N is an arbitrary
vector whose selection dictates the specific solution to be chosen from the potential solutions
in Equation (20). It is important to note that the first term in the above equation causes
the motion of the object, while the second term (also known as null space solution since
JT
o (I6N×6N − (JT

o )
+ JT

o )ε = 0) corresponds to the internal payload wrenches. The above
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equation along with Equation (9) are the basis for defining the general format of load
distribution as

(JT
oi
)+Fo = Qi(t)(AẌobj + G) (22)

where Qi(t) ∈ R6×6 (in the most general format) is the load distribution diagonal matrix
meeting ∑N

i=1 Qi = I [58]. In fact, Qi(t) shows the contribution of each robot in carrying
the payload. In the case of uncertainties, a neural network can represent the right-hand
side of the above equation for the purpose of adaptive control [64].

As mentioned, in Equation (21), the wrench applied by the end-effectors to the payload
can be divided into motion-induced and internal-loading. The internal loads do not
contribute to the motion, and if they exceed a certain amount, they may cause damage to
the payload and the robots [75]. Therefore, the main problem in the literature is downsized
to define the generalized inverse of the grasp matrix so that the motion-inducing and
internal-loading terms can be specifically defined and/or decoupled. The following are the
solutions represented for this problem in the literature:

Walker et al., in [129], and Boniz, R., Hsia, T.C., in [132], suggest the following equation
to calculate the generalized inverse of a grasp matrix for a free internal-loading calculation
(often referred to as nonsqueezing load distribution):

(JT
o )

+
∆ =

1
N

[
I3×3 03×3 . . . I3×3 03×3
−S(r1) I3×3 . . . −S(rN) I3×3

]
(23)

The authors in [132] provide proof for the fact that the internal force is zero. They also
proved that the equation is valid for frictional point contact grasping.

The problem of load distribution is tackled by the same authors in [116], taking into
account the manipulator dynamics. It is aimed at selecting ε and hence the internal load
based on the manipulator dynamics. By combining Equations (3) and (21), one can write

T = T ‘ − JT(q)(I6N×6N − (JT
o )

+ JT
o )ε (24)

where T ‘ = D(q)q̈ + C(q, q̇)q̇ + G(q)− JT(q)(JT
o )

+Fo. It is evident from the above equation
that the choice of ε affects the loading of the manipulators. It is possible to accomplish
various tasks, e.g., decreasing the arms’ loading, having wrench-free joints, etc., using this
approach. In [29], the value of ε is calculated based on optimizing the energy consumption
by the joints, i.e., the cost function is equal to T T T , and the external and internal wrenches
are determined. In [130], Unseren introduced the practice of setting the value of ε as
ε = MF, with M being a matrix whose determination is required. Equation (21) is expressed
as F = ΦFo + Ψε. This problem is addressed through different scenarios: when M is
orthogonal to the grasp matrix, it results in the standard pseudoinverse solution; if M is a
linear function of the grasp matrix, an optimization approach is explored. The optimization
process aims to minimize the cost function (F − F∗)T(F − F∗), where F∗ represents the
desired force value.

Another approach to solving the load distribution is based on finding the virtual work
that is carried out by all the robots in the CRM system. In the work in [134], the authors
defined optimal internal forces as the internal forces that result in the lowest forces required
to achieve a specified resultant force while adhering to static frictional constraints. They
also devised a computational method to calculate these optimal internal forces.

The authors in [134] defined the optimal internal forces as the inner forces that yield
the minimal forces for the specified resultant force under the static frictional constraints
and established a computational procedure to obtain them.

Bais et al., in [131], found a solution based on optimizing the applied wrenches by the
robots. They discussed two cases of static and dynamic load distribution. In the dynamic
case, the distribution of the load is being planned or calculated while acknowledging that
not all parts of the system may be equally capable of handling the same amount of load,
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and these differences need to be considered in the distribution plan. The general format of
the optimization is presented as

min
X

XT AX

Subject to: C(X, Ẋ) = 0
(25)

For the static case, X = F, C(X, Ẋ) = Fo − JT
o F, and A = blockdiag I6×6

βi
, where βi

are the weight coefficients that can be tuned for individual manipulator load, satisfying
∑N

i βi = 1, 0 < βi < 1. A unique solution is presented in this paper. For a dynamic
case, X = F + (I6N×6N − (JT

o )
+ JT

o )ω, where ω is the output of dynamic distribution and
defined as

ω̇ = −K(I6N×6N − (JT
o )

+ JT
o )

TCX

wherein K is symmetric positive definite gain and C is a function of joint torque limits and
the saturation of X.

Erhart, S. and Sandra, H., in [133], suggest the following formula to calculate the
generalized inverse of the grasp matrix for free-of-internal-loading wrenches:

(JT
o )

+
M =

[
m∗1(m

∗
o )
−1 I3×3 03×3 . . . m∗N(m

∗
o )
−1 I3×3 03×3

−m∗1(J∗o )−1S(r1) J∗1 (J∗o )−1 I3×3 . . . −m∗N(J∗o )−1S(rN) J∗N(J∗o )−1 I3×3

]T

(26)

where m∗i ∈ R and J∗i ∈ R3×3 are some positive-definite weighting coefficients that satisfy

m∗o = ∑
i

m∗i

J∗o = ∑
i

J∗i + ∑
i

S(ri)m∗i ST(ri)

03×1 = ∑
i

rim∗i

(27)

Load distribution is a primary consideration, especially for cooperative robots with
fixed bases. In the case of mobile robots, the base’s motion can offset the internal load,
reducing concerns about excessive internal loads that might damage both the robots and
the payload. Nevertheless, the challenge of load distribution extends beyond managing
internal loads; it involves distributing the load effectively in both static and dynamic
situations to accommodate the capabilities of the robots. This issue becomes particularly
prominent when different robots, each with distinct physical characteristics, are engaged
in performing the same task. The manner of grasping can significantly influence load
distribution, and it is imperative to ensure that the grasping mechanism aligns with the
load’s characteristics, as elaborated in Section 2.6.

2.5. Robots and Payload-Augmented Model

In the process of designing a controller, researchers often seek a unified equation
to streamline the controller design procedure and, consequently, reduce computational
complexity compared with individually designing controllers for each robot. This approach
is frequently referred to as a centralized control scheme. To derive a single equation
that represents all components of the system, the augmented model of the robots and
payload is employed. This allows for the elimination of terms involving wrenches from
Equations (1) and (8), resulting in the augmented model of the entire system. Many studies
have adopted this method, as seen in works like [57,83,84,86,90,91,93,96,97,123]. Moreover,
it is shown that the augmented model has properties No. 1,2, and 3 [57,86,96].

To obtain the augmented model, the dynamics equations of the robots should be
written in the payload frame (transformed to the task space). The first step is to obtain the
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velocity (ẋ) and acceleration (ẍ) of the end-effector (both linear and angular) as a function
of joint position, velocity, and acceleration using the following equations:

ẋ = J(q)q̇, ẍ = J(q)q̈ + J̇(q)q̇ (28)

On the other hand, the velocity of the end-effectors can be obtained based on the
velocity of the payload as [96]

ẋ = Jo(Xobj)Ẋobj (29)

Using ẋ from Equations (28) and (29) results in J(q)q̇ = Jo(Xobj)Ẋobj. Then, one can
obtain the relation between the velocity in joint space (q̇) and the velocity of the object (Ẋobj)
and also the acceleration by taking the derivative of the velocity in joint space as

q̇ = J−1(q)Jo(Xobj)Ẋobj

q̈ = J−1(q)Jo(Xobj)Ẍobj +
d
dt
(J−1(q)Jo(Xobj))Ẋobj

(30)

Note that Jo(Xobj) is a constant matrix, so its time derivative is zero. Furthermore,
from the payload dynamics and force decomposition in Equations (8) and (21) we have

F = (JT
o )

+(AẌobj + G) + FI (31)

Using the above equations together with Equation (3), one can write the augmented
model of the CRMs as

DaugẌobj + CaugẊobj + Gaug = Uaug (32)

where
Daug = JT

o J−T(q)D(q)J−1(q)Jo +A
Caug = JT

o J−T(q)(D(q) d
dt (J−1(q)Jo) + C(q, q̇)J−1(q)Jo)

Gaug = JT
o J−T(q)G(q) + G

Uaug = JT
o J−T(q)T

Note that caution must be exercised when using the augmented model. In particular,
factors such as the existence of the inverse of the Jacobian matrix, the coherence of joint
angles within the same coordinate system, and the distribution of the load are among the
most critical considerations. The inverse of the Jacobian matrix for a nonredundant robot
is trivial; however, this is not the case for a redundant robot. Although a pseudoinverse
solution is available as a remedy, depending on the problem, more investigation might be
necessary. The representation of angles, i.e., q, in the same coordinate is necessary as the
augmented model is meaningful as long as all parameters are defined in the same frame.
Finally, the load distribution could be implemented in the augmented model. This can
be performed by utilizing the load distribution matrix in Equation (22). In the process of
substituting the motion-inducing portion of the net wrench, the generalized format of the
Equation (22) for all robots can be used instead of Equation (31) [86,90,91].

The augmented model represented here is the most widely used format in the litera-
ture. However, early investigations into CRMs offered different approaches for finding the
augmented model. Gudino and Arteaga, in [11], propose a systematic method for deriving
the augmented model of robots along with a payload. The resulting augmented model
consists of two interconnected equations, each formulated within the robots’ joint space.
These equations encompass the dynamics of the robots, the payload, and a component
representing the force interaction between the robots mediated by the payload. The differ-
ence between this approach and the previously mentioned one is the representation of two
equations (each with its reference frame). However, this approach does not offer a unique
equation for the augmented model.

It is important to highlight that in many decentralized approaches, the dynamical
equations of the robots and the payload are typically treated separately. Control designs
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are developed for each robot individually at its respective level. This approach is primarily
adopted to circumvent the difficulties associated with the augmented model.

2.6. Grasping Strategies

In the realm of CRM control, the majority of published papers typically focus on
scenarios involving rigid contact points, such as rigid grasping. This approach often
necessitates the presence of a wrench sensor at the end-effector, enabling feedback on
force and torque to be employed for motion regulation, ensuring safe task execution.
Nevertheless, some papers delve into alternative methods of connecting payloads to robots
at the end-effector point. In this section, the diverse connections investigated in the existing
literature are explored (a complete discussion of various grasping strategies and related
mathematical equations is presented in chapters 27 and 28 of [46]). Figure 3 shows common
types of grippers that can be used in the field of robotics.

Figure 3. Illustration of various types of grippers: (a) pneumatic, (b) three-finger, (c) vacuum,
(d) electromagnetic, (e) soft, and (f) parallel-jaw. The images are sourced from [135] (Image credit:
Trossen Robotics).

As previously mentioned, the majority of research papers in this field predominantly
focus on rigid grasping, e.g., see [53,100,133]. Rigid grasping refers to the ability of a
robotic system to securely and firmly hold a payload at multiple points with minimal
slippage or deformation. In this case, all wrenches are transmitted to the payload, and
the transitional and rotational velocities are the same for the robot end-effector and the
payload at the contact point, as described in Section 2.3. Alternative types of connections
transfer the wrench value partially. For instance, in [49], a form of grasping called pin joint
is considered. If the pin is frictionless during the rotation about an axis, it will not transmit
the moment about the pin axis, i.e., the moment vector in Equation (1) can be written (in
world frame) as

Fiobj→bot =

τixobj→bot

τiyobj→bot

0

 = −

τixibot→obj

τiyibot→obj

0

 = −Fibot→obj (33)

Also, Zheng and Luh, in [136], discussed handling a pair of pliers and a spherical
connection, which are similar to pin joint grasping. A spherical joint, also known as a
ball-and-socket joint, is a type of mechanical joint that allows for rotational movement in
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all directions. It provides three degrees of rotational freedom, making it capable of rotation
on any axis and enabling a wide range of motion.

Rolling contact without slip, as investigated in [85,137], presents another mode of
connection. In this scenario, only the forces applied by the end-effector can be conveyed
to the payload, with no direct transmission of moments. This type of contact can be
contrasted with “sliding” or “grasping” contacts, where the interaction involves relative
sliding or gripping without rolling. The absence of slippage implies that, at the contact
point, the velocity of both the payload and the robot is identical. The grasp matrix in
Equation (9) should be modified as

JT
o =

[
I3×3 03×3 . . . I3×3 03×3
−S(r1) 03×3 . . . −S(rN) 03×3

]
(34)

It is worth emphasizing that the adjustment of the grasp matrix is crucial, and it should
align with the chosen grasp strategy to formulate precise mathematical equations for the
particular problem. This approach was exemplified in [119], where both two-hand and
three-finger grasps were examined. Depending on the chosen grasp type, the constraints
on the linear and angular motion of the end-effector may vary.

A comparable method to rolling contact is point contact, as described in [11,101,132].
Point contact shares similarities with rolling contact and secures the payload by applying
pressure to it. Rolling contact involves a continuous and smooth motion between the
robot’s end-effector and the object. It is characterized by a larger contact area, typically
along a curved or cylindrical surface, such as a wheel or a roller. Point contact, on the other
hand, involves a single point of contact between the robot’s end-effector and the object.
The contact area is minimal, usually occurring at a single point or a small area, resulting in
higher local pressure and potentially more friction. Both forms are depicted in Figure 4.

Figure 4. Two types of contact: (a) point contact and (b) rolling contact.

The nature of the contact between the robot and the payload can indeed influence the
choice of control methodology and facilitate the implementation of certain types of control
algorithms. For instance, ref. [101] discusses using follower–leader control with two robots
employing point contact and slave–master control, with one robot securely gripping the
payload and the other using point contact.

In both rolling and point contact scenarios, it is presumed that no slippage occurs
at the contact point. The mathematical formulation of the nonslipping condition can be
established by examining the tangential and normal components of the applied force to
the payload, as well as the friction coefficient and their interrelation, as discussed in [105].
The static friction requirements are presented in [28,70,102,104,106,138,139]. In [104,106],
the range of applied force based on the grasping strategy is discussed. In [104], a lower
bound on the amount of force based on static friction is introduced, and in the paper by
Luo et al. [106], the discussion revolves around determining the maximum and minimum
force values based on considerations involving the friction coefficient at the contact point.
Also, the internal force constraints and deformation constraints are discussed. The authors
in [28] proposed a method for raising and relocating a payload by securely gripping it
between the robot’s end-effector. Naturally, the maintenance of nonslip conditions should
be monitored constantly to guarantee stable operation. Moreover, ref. [107,139] delves
into contact modeling that takes into account the elastic properties. One such model
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involves the incorporation of a parallel spring and damper at the contact point, referred to
as Kelvin–Voigt modeling.

Lastly, it is important to emphasize that every grasp strategy should prioritize safety,
ensuring that the safe grasp condition is met. In broad terms, a safe grasp is established
by applying the minimum amount of force required to securely affix the object to each
end-effector [103].

2.7. Research Gaps and Opportunities

This section delves into areas of study that have not garnered substantial attention
and remain partially unexplored. These subjects are typically treated as specialized cases,
focusing on particular scenarios within the dynamical system. From the extensive body of
literature in this field, singularity, passive joint mechanisms, and obstacle avoidance are
selected as facets that have received comparatively less exploration.

In the context of CRMs, understanding the workspace and addressing issues related
to singularities are essential for effective operation and control. The workspace is the
combined reachable space of all the robots in the system, and it encompasses the entire
volume where the payload may be located or moved. The CRMs have a complex and
irregular workspace due to the kinematic constraints imposed by the closed loop. Sim-
ilarly, the singularities are imposed due to the kinematic constraints as well. Effective
workspace analysis and singularity avoidance strategies are essential for ensuring safe,
precise, and reliable cooperative robot operations. For cooperative robots, there are a few
papers that discussed workspace or singularity, such as [61]. This problem is well-studied
for parallel mechanisms in [44,45,140]. Kumar and Gardner, in [61,127], described two
types of singularities: kinematic and static singularities. The former case occurs when there
is a loss of control over certain degrees of freedom in a closed-chain system. In other words,
it is a configuration where the system loses the ability to change its position or orientation
in a particular direction. In the latter case, given the velocity of the joints, a unique velocity
of the end-effector cannot always be specified because of linear dependency in the mapping
matrix. In this work, an interesting idea is explored that takes advantage of kinematic
singularities for payload displacement. Considering the primary objective of the system
as resistance against applied loads, exploiting some of the singularities becomes advan-
tageous. Specifically, kinematic singularities hold potential appeal. These configurations
signify instances where externally applied loads are not counteracted by the actuators.
By formulating a control strategy that intentionally prioritizes sets of actuators near or
at kinematic singularities and avoids those near “static” singularities, one can achieve
increased load-bearing capabilities, such as lifting, with reduced joint deflections, improved
accuracy, and superior overall performance. It is crucial to emphasize that employing
singularity for load resistance introduces inherent risks and potential hazards. Therefore,
careful consideration is advised for anyone contemplating this approach.

Another problem that received less attention is the CRM system with passive
joints [126,141,142]. A joint can become passive as a result of a faulty actuator or in-
herently designed to be passive. In this case, the dynamical equations of the robot must
be modified or decoupled to account for active and passive joints. The problem of control
design becomes different from a system without any passive joint, and it is discussed in the
next section.

Finally, another important but less-explored topic is obstacle detection and collision
avoidance. Obstacle avoidance refers to the capability of a CRM system to navigate through
its environment while identifying and circumventing obstacles or obstructions. Even
though the dynamical modeling does not change, the dynamics of an obstacle can be
introduced to the problem as a constraint [89,137,143]. This control design is of interest,
and it discussed in the next section.
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3. Control Algorithm

In this section, the control methodologies applied in the context of CRMs are explored.
According to the existing literature, the development of a control algorithm for CRMs typi-
cally encompasses achieving precise position control and effective internal force regulation.
It has been shown that generally to achieve force regulation, some kind of force feedback is
necessary [106]. The secondary concerns involve addressing disturbances, uncertainties,
obstacle avoidance, etc.

It is crucial to recognize that there exist significant distinctions in the motion character-
istics between closed-chain systems that exhibit coordinated motion and open-chain robots
that exhibit uncoordinated motion. Firstly, in coordinated motion, trajectory planning
must incorporate the kinematic constraints, as elaborated in Section 2.3. Secondly, there
are external wrenches that act as constraints on the end-effector of the robotic systems.
Certain research papers, like [49], have straightforwardly developed a control algorithm.
This algorithm generates actuated torque to address the two primary concerns mentioned
above: firstly, it compensates for the motion of the robot’s links and joints to achieve the
desired position, and secondly, it applies actuated torque to reposition the object as desired.

Generally, the coordinated manipulation control can be divided into two categories:

• Joint-Space-Level Control, e.g., ref. [51].
• Task-Space-Level Control, e.g., ref. [20].

The complete list can be found in Table 3. Usually, joint-space-level control is catego-
rized under decentralized control and task-space-level control under centralized control.
In the context of CRMs, centralized control, e.g., [53,74,77,78,124], would involve a central
entity determining the motions and actions of all robots simultaneously to ensure coordi-
nated manipulation of the object. In order to effectively utilize the various manipulator
states within the centralized controllers, it is imperative that these states are appropriately
aligned within a consistent coordinate frame. Decentralized control, on the other hand,
would involve each robot making its own decisions about how to manipulate its portion
of the object while exchanging information with other robots to ensure they collectively
achieve the desired manipulation outcome [53,67,72,79,82,101,106,137,144].

In this section, a range of control methodologies developed for a CRM system are
examined. The author recognizes the value of all peer-reviewed papers within the realm of
CRMs and their potential contributions. Nevertheless, in pursuit of the goal of creating
a cohesive review paper and given the multitude of approaches in the field, this section
highlights papers that have introduced innovations or possess the potential for further
advancement in control schemes. Commencing with the prevalent techniques rooted in
impedance relationships, as expounded in Section 3.1, the exploration proceeds to adaptive
control techniques and the rationale for adaptation, as discussed in Section 3.2. Less
commonly used control methods in CRMs, including hybrid position/force control, are also
examined in Section 3.3. Specific issues such as redundancy, fault tolerance, and objective
optimization are investigated in Section 3.4.

3.1. Control Scheme Based on Impedance Relation

When there is an interaction between the robot and its environment, and the control
of force and position is a critical consideration, the impedance control approach is often
the most suitable choice. This is why the majority of research in this area is grounded
in impedance control. The concept of designing a controller based on an impedance
relation was initially introduced by Hogan in his seminal works [145,146]. Impedance
control includes regulation and stabilization of robot motion by establishing a mathematical
relationship between the interaction forces and the robot trajectories. The general format of
this relationship can be described by a nonhomogeneous nonlinear ordinary differential
equation (ODE):

G(t, x̃, x̃′, · · · , x̃m) = F(t) ∀ t ≥ 0 (35)
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where x̃ ∈ Rn is the states vector of error defined in a general coordinate, and it is a function
of reference and actual states, x̃m , dm x̃/dtm is the time derivative, and F(t) ∈ Rn is the
interaction forces and/or moments defined in the same reference frame as states vector.
Note that the right-hand-side term can be assigned as the force error or include other
components related to interaction forces. It is a common practice to employ coordinate
transformations to ensure that all variables in Equation (35) are referenced in the desired
frame. The state vector is typically defined as the discrepancy between reference and
actual states. Furthermore, it is worth noting that in different orders of derivation, x̃ may
or may not be a function of both reference and actual states. Since the inception of the
impedance control concept, various mathematical relationships have been introduced.
The most prevalent form is a second-order linear ordinary differential equation (similar to
a forced spring–mass–damper system), represented as follows:

M ¨̃x + B ˙̃x + Kx̃ = F(t) (36)

where M, B, and K are the inertia, damping, and stiffness matrices, respectively, here
called gain matrices, which are positive definite (usually diagonal) and could be constant, a
function of time and states, or defined accordingly as the dynamics of a robot. Nondiagonal
gain matrices introduce coupling in the impedance relation, e.g., between translation and
rotation movement [53]. However, they are usually chosen as constant diagonal matrices,
which is equivalent to considering a linear damper and spring. One possible inherent
weakness of the impedance control is its approach to modeling the interaction between
force and motion, which does not account for the transient interval of motion, e.g., from
free to constraint motion [147]. This problem has been addressed in [51].

The impedance relation in Equation (36) can be modified based on the specific problem
at hand. For instance, the linearity of spring term, Kx̃, can be replaced by nonlinear
relation [148]. Another example is the presence of elastic deformation in the contact point,
which can be added to the formula by adding a deviation term to the error. This term can
be a function of the motion-inducing wrench, FM [22].

The concept of impedance control has been used extensively in CRMs, mainly because
forces and robot trajectories need to establish a relation for task execution. One of the
main differences among various approaches is the definition of the mathematical terms
and the structure of the impedance relationship. Here, various control schemes, based on
impedance, in the literature are presented.

As previously elucidated, control can be devised at the task-space level, which often
encompasses both the payload and end-effector levels of control. Many researchers prefer
this approach for controller design. In particular, the works of [29,53,65,108,117] employ
two distinct impedance relations. One is applied at the end-effector frame to address
internal forces, and the other operates at the payload frame, addressing environmental
forces acting on the payload. An experiment conducted in [53] demonstrates that through
the adaptation of both impedance controllers, successful interaction between the payload
and the environment, as well as secure payload movement, can be achieved. In [65], a more
comprehensive examination of six-DOF impedance behavior is presented, encompassing
the calculation of position and orientation errors integrated into the impedance relation.
A similar approach is employed in [71]. However, in the latter work, only the impedance
at the end-effector is considered, and the entire control is executed based on a master–
slave architecture.

Other works that used the task-space control level are [20,75,99,101,119,123]. In [20,119],
an impedance relation acting on the payload is introduced. In [119], the impedance relation
is used similarly to Equation (36), only considering the error for position/orientation
term, and the velocity and acceleration terms are only functions of the actual veloc-
ity/acceleration. In other words, the authors only incorporated the position/orientation
information of the desired trajectory, and the impedance relation was introduced as
Mẍ + Bẋ + Kx̃ = F(t). In [101], the architecture of the impedance control considers the
error for position/orientation term and corresponding velocities at the end-effector level.
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The authors in [75] used the same structure as in Equation (36) at the end-effector frame
for each robot. In this study, the right-hand side of the equation is the difference between the
actual and desired internal force, which is used as the feedback to the impedance relation.
In [99], an impedance relation similar to Equation (36) is established in the end-effector
frame. The right-hand side is defined as the difference between the desired and actual
force. To determine the applied force, a visual-based algorithm using a camera is utilized to
measure the distance error. If the error is higher than a defined threshold, then the applied
force is set as proportional to the distance error.

Note that forming an impedance relation that corresponds to the internal force,
e.g., see [75,108], or creating one that corresponds to the applied force to the payload,
e.g., see [29], requires a centralized evaluation, as it requires using Equations (20) and (13),
which may not always be convenient [111].

The authors in [123] used the impedance relation for the augmented model at the
object frame, and the objective is to follow a desired trajectory in task space. Based on the
impedance relation, the acceleration of the system is obtained and the desired acceleration
of the joint is calculated using Equation (28). Then, a sliding mode controller is used
in joint space to find the output controller to the joint based on the obtained desired
acceleration. To handle both motion and internal force, in the impedance relation used
in [123], the right-hand side is set equal to the sum of the desired motion force and error in
the internal force.

One major problem with only using impedance relation to regulate the motion and the
interaction forces is that the interaction forces are not explicitly controlled. So, the CRMs are
thus unable to reject disturbances that make interaction forces deviate from their desired
values. To alleviate this problem, the authors in [101] divided the robots into two groups.
In both groups, the impedance relation was used, but in one group there was a feedback
of force to actively control the interaction force. The idea is similar to the master–slave
control architecture utilized in [71]. Jiao et al. (2022) adopted the master–slave idea for
dual-arm CRMs with unknown payload dynamics. In this study, the master arm takes
care of absolute motion control and the slave arm adjusts its position/orientation based
on master arm information, hence relative motion control. The feedback of force sensor
measurement is utilized to calculate the internal wrenches and form the impedance relation.

The papers mentioned above primarily emphasize the application and utilization of the
impedance relation. Nevertheless, the fundamental structure of the impedance mathematical
equation has remained consistent. In the subsequent part of this section, the alterations and
adjustments made to the structure of the impedance equation are examined.

One important modification of impedance relation is the gain adjustment. naively
applying impedance control may cause undesirable results. Human beings have the ability
to adjust the stiffness of their arms, enabling them to exert greater force when needed and
reduce contact force by making their arms softer. Additionally, humans can maintain force
accuracy within a specific range even without precise knowledge of object parameters,
as long as they are aware of the force they are applying to the object. This concept can be
employed to enhance the adaptive capabilities of robotic manipulators. The idea of variable
gain has been used in [29,51,71,108].

In [29], a variable stiffness is introduced based on adapting the stiffness using a
proportional–derivative (PD) control. The adaptation law is

K(t) = (kpe + kd ė)(xd − x)−1 (37)

where Kp and kd are the proportional and derivative gains, e is the difference between
desired and applied environmental forces, and xd and x are the desired and actual position
of the end-effector. In [51], a systematic approach is suggested to find the damping and
stiffness gains within a defined range based on the CRMs’ mission and the optimization
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of a cost function representing the energy consumption. In [71], the adaptation law for
variable stiffness is

K(t) = λ(t)(be(t))−1 λ(t) = λ(t− T) +
σ

b
∆ f (t− T) (38)

where T is the sampling period, b and σ are the damping gain and update rate, and λ(t) is
the adaptive compensation, which is adjusted online according to the error between desired
and actual internal forces, ∆ f (t). Finally, in [108], an adaptation formula is introduced to
tune the impedance gains based on desired and actual states, i.e., position and velocity, as

∆B , Bnew − Bold = −G1(eobj + λėobj)(ėobj)
T ∆K , Knew − Kold = −G2(eobj + λėobj)(eobj)

T (39)

where Gi, i = 1, 2 and λ are positive gains, and eobj is the error between the desired
and actual object trajectories. Based on the old values of the gains, the new value can
be determined.

In the variable gains approach, the idea is to have an impedance relation compatible
with the dynamical system and environment. This requires knowledge about the dynamics
of the robots and/or the payload that may not always be available. Some works tried to
circumvent this prerequisite of control implementation by devising new techniques, as
carried out in [104,113].

In [113], the impedance relation is used as an equality constraint in an optimization.
The idea is to minimize a term containing the interaction force and its time derivative
subject to the impedance relation established between the dynamical error between the
desired and measured force and the general force calculated as a result of the difference
between the desired and actual trajectory of the end-effector. The novelty of this work is
that, due to the position-based impedance implementation, neither the dynamic model of
the robots nor the object dynamics are required.

Furthermore, the authors in [104] used a novel method to generate the reference
position of the end-effector despite knowing the stiffness of the object. In this method,
a buffer that stores data of past actual force and position is used to perform function fitting
and generate reference position.

3.2. Estimation, Adaption, and Robustness

Within this section, papers are explored that have leveraged diverse estimation tech-
niques to address issues such as modeling system uncertainties, mitigating sensor noise,
and estimating unobservable states, among other aspects. Estimation techniques can be
employed for adaptive control, where the controller continuously adjusts its parameters
based on the evolving dynamics of the system. This adaptability is crucial for systems that
change over time or are subject to external disturbances. The purpose of using adaptive
control for CRMs is to enhance the performance and robustness of the control system in
the face of uncertainties, variations, and changing conditions. Adaptive control techniques
are employed to address specific challenges and achieve several objectives in this context,
such as the following:

1. Compensating for Uncertainties: CRMs may encounter uncertainties related to an
object’s weight, shape, friction, or the robot’s physical parameters. Adaptive control
allows the system to adapt and adjust control parameters in real time to account for
these uncertainties, ensuring accurate and stable manipulation, e.g., see the works
in [77,79].

2. Improving Accuracy: Adaptive control can improve the accuracy of task execution
by continuously adjusting control inputs based on feedback from sensors and the
system’s states. This is particularly important when precise positioning and force
regulation are required.

3. Enhancing Robustness: Cooperative manipulation scenarios often involve complex
and dynamic environments. Adaptive control strategies can make the system more
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robust by adapting to changes in the environment or disturbances that may affect the
robots’ ability to carry and manipulate the object, e.g., see the work in [77].

3.2.1. Observer Design

As previously mentioned, estimators serve the purpose of estimating uncertainties,
such as disturbances [58,79] and specific states [74]. To move forward, in the majority of
the studies, the dynamics of the robots or the augmented model, whether in joint space or
task space, are typically formulated as

Ẋ1 = X2

Ẋ2 = H(X1, X2, t) + U
(40)

where X1 and X2 are the generalized states of the system, and H represents the lumped
term often included in the uncertainties. He et al., in [58], used the above notation to
estimate the disturbance in the system, and the authors in [74] used it to estimate the joints’
velocities. Note that the above presentation only describes the state-space representation
of the dynamical system and the observer is not attached to the system. Readers are en-
couraged to check the papers for the complete representation of the observer design. Here,
a brief explanation is provided for the general idea used in [74]. To structure the observer,
the approximation error is defined as the difference between actual and approximated
quantity, i.e., X̃i = Xi − X̂i, i = {1, 2}. The designed observer (ŷi) and state estimates (X̂i)
can be formulated as

˙̂y1 = X̂2 + α1X̃1, ˙̂y2 = Ĥ + U + µX̃1
X̂1 = ŷ1, X̂2 = ŷ2 + α2X̃1

(41)

where α1, α2 > 0, µ = µT is a positive matrix with a compatible dimension, and Ĥ is the
approximation of the lumped term with uncertainties. The observer error dynamics are
obtained as

˙̃X1 = X̃2 − α1X̃1, ˙̃X2 = H − Ĥ − µX̃1 − α2X̃2 (42)

By solving the dynamical approximation error equations, the states can be estimated.
The above equations are the basis for most of the observers that have been used in the
literature. As noted, the term H is a highly nonlinear function, and the term H − Ĥ can be
approximated with function approximators, as explained in the next section.

3.2.2. Adaptive Control

Adaptive control techniques are employed to address parametric uncertainties, as ob-
served in several studies, such as [74,77,95]. These methods are rooted in establishing a
dynamic equation for a specific parameter, which is dynamically adjusted based on the
system’s states, typically encompassing the error between the actual or estimated values
and the desired values. Most of the studies in the field of CRMs are based on considering
the parameter H in Equation (40) encompassing uncertainties and trying to estimate H so
the state-space representation can be solved [21,52,55,56,58,59,74,86,124]. To estimate this
parameter, the universal approximation is used. Hence, the function can be expressed as a
combination of basis functions, denoted as H = WT

0 Z0 + ε0, where W0 ∈ Rl×v represents
the weight matrix, Z0 ∈ Rl is the vector of basis functions (Gaussian function is often
selected as basis function), and ε0 accounts for approximation errors. Note that dimension v
should be compatible with the dimension of the term H and l can be adjusted based on the
number of basis functions. Furthermore, it should be acknowledged that the precise weight
matrix W is frequently unknown. In practical applications, an estimated weight matrix, Ŵ,
which can be refined through a weight updating process, is commonly substituted for W to
approximate a nonlinear function, i.e., Ĥ = ŴT

0 Z0. So, an adaptation law is introduced to
estimate the weight matrix, effectively approximating the uncertainties within the system.
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This adaptation law is founded on the system’s position and velocity error. The following
format is often utilized in the literature as the updating law:

˙̂W = −k(Z0sT + ‖s‖Ŵ) (43)

where k > 0 is the learning rate gain and s is a function of error in the system, e.g., as
a linear function of the error and its time derivative. Zhang et al., in [64], assumed the
payload is unknown and used a forward neural network to estimate the payload dynamics.
More specifically, the dynamics of the payload are estimated with UTσ(VTx) + ε, where U
and V are the weight matrices, σ is an activation function like sigmoid or ReLu, and x is a
vector of the function of the payload position and velocity.

Equation (40) is not the only format that has been selected for adaptation algorithms.
The authors of the works in [57,79] used the regressor format in Property 3. It is assumed
that there is uncertainty in the dynamic parameters, i.e., θi in Equation (2). A simple
adaptive law is introduced to estimate the parameters as

˙̂θi = −ρYi(qi, q̇i, q̇r
i , q̈r

i )ėi (44)

where ρ > 0 is a constant, ėi is the time-derivative error between the desired and actual
joint trajectory, and q̇r

i is the reference trajectory that can be obtained based on the desired
joint velocity and error between actual and desired joint values [149].

Moreover, intelligent control techniques are employed for adaptation. These methods
leverage advanced algorithms, sensors, and decision-making processes to make the robots
work efficiently and adapt to dynamic environments. The authors in [105,138,139] used
the Multiple Adaptive Neuro-Fuzzy Inference System (MANFIS), which has the following
structure: input–membership–fuzzification–normalization–defuzzification–output. The
input of the desired position and force is to train the MANFIS to regulate and control both
the position and force in the CRMs. Note that this approach used the augmented model of
the system. Solely the fuzzy control is also utilized in [149,150].

3.3. Control Algorithm Variations for Cooperative Resolution

In this section, an examination is made of some of the prominent approaches employed
in CRM manipulation. It is essential to acknowledge that the realm of CRMs offers many
suggestions and solutions. However, the focus is on the solutions that are recognized as
significant and dependable.

One solution that has been used extensively within this realm is hybrid position/force
control. This scheme might be considered the second most popular approach after impedance
control. Hybrid position/force control is valuable in applications where precise control
of both position and force is necessary. For example, in tasks involving the assembly of
delicate components, collaborative manipulation, or situations where the robots need to
maintain contact with an object while navigating through cluttered environments, this
control strategy plays a crucial role in ensuring task success and safety. In this control
approach, the primary objective is to control both the position and the forces applied at
the end-effector or on the payload. The position control aspect of the strategy ensures
that the end-effector (or payload) follows a desired trajectory in terms of its position and
orientation. This is essential for tasks like accurately placing and moving an object within
a workspace. The force control component focuses on controlling the interaction forces
between the object and the environment. It ensures that the forces applied to the object
are within specified limits, preventing excessive forces that could potentially damage the
object or the robots [54,80,88,94,99,125,149,151–154].

The hybrid position/force control approach finds the reference trajectory of the gen-
eralized position for the force controller and the reference trajectory of the generalized
position for the position controller, then by combining these two values, the reference
value is built and the controller can be formulated directly as a proportional value to the
reference value.
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Another solution that has found extensive application in CRMs is sliding mode control
(SMC), which is renowned for its exceptional qualities, such as robustness and swift
transient response. SMC is well-explained in [155]. These attributes render it highly
effective in tackling the complexities introduced by uncertainties in nonlinear systems.
Many adaptive solutions rely on adaptation law, which is a function of an error. This error
is often defined as a sliding mode surface. For instance, in [29], the sliding mode surface
is defined as the error between the actual and desired joint states, and a term including
the sign of the sliding surface is used to compensate for the uncertainties in the robot’s
dynamics with the objective of an end-effector motion task.

Another interesting control approach is published in [106], which aims to find the
frequency bandwidth of the overall control system. Luo et al., in [106], introduced a transfer
function that connects the desired trajectory to the actual trajectory of the payload and
internal forces. In order to perform the compliant cooperation, the frequency bandwidth
of the overall control system, including the robots and the payload, should be adjusted
according to the payload dynamics, and an upper bound should be found for the frequency,
which is a function of the force constraint. This constraint can be used as a reference in
devising a control scheme to make sure an appropriate controller is offered.

Finally, machine learning techniques, such as reinforcement learning, can be harnessed
in this domain. Reinforcement learning provides a range of methodologies for training an
agent, which forms the central component of a controller. An instance of this approach
is presented in [156], where an actor–critic method is employed to train an agent within
a simulated environment. This approach can often be used as a model-free method for
obtaining an adaptive and robust controller. However, being model-free comes at the cost
of the need for a learning process, which can be a challenging task.

3.4. Other Challenges and Solutions

Up to this point, various control approaches primarily applied to CRM motion control
have been explored. Nevertheless, some papers have delved into other facets within this
domain, crafting control schemes to attain specific objectives. These objectives encompass
a range of challenges, from objective optimization to addressing collision avoidance issues.
In this section, a concise overview is provided of the most significant accomplishments in
this context.

3.4.1. Optimization

Two important optimization objectives that have been explored in the literature are
energy consumption and time-optimal path tracking [51,70,102]. The authors in [102]
optimized the energy consumption based on considering the cost function of the applied
joints’ torque subject to the equality and inequality constraints of the grasp and friction
constraints. The cost is defined as

Cost = T TT (45)

The cost aims to find the optimal load distribution. This optimization is often referred
to as energy-aware optimization, where the cost is related to the energy consumption of
the dynamical system. Another example of this type of optimization is used in [51], where
the authors assumed that all joints are connected to a supercapacitor and, based on the
energy transformation between joints and the power source, suggested a cost function that
minimizes the energy draw from the supercapacitor. The objective of their study was to
find the optimal gains of an impedance relation so that less energy is consumed. The cost
function in their study is defined as

Cost =
∫ T

0
(q̇TT − T T RaT )dt (46)
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where Ra is a positive matrix. The other optimization, time-optimal, is more significant,
as it can be used as a basis for further investigations, e.g., time-optimal optimization with
obstacle constraint, time-optimal optimization with minimum energy consumption, etc.
The problem of time-optimal path tracking is explored by Haghshenas in [70]. The formu-
lation is based on the fact that a robot’s parameters, i.e., its joints’ velocity and acceleration,
can be written as a function of a single parameter s as

q̇(s) = q′(s)ṡ

q̈(s) = q′(s)s̈ + q′′(s)ṡ2 (47)

where q′(s) = ∂q(s)/∂s, q′′(s) = ∂2q(s)/∂s2, ṡ = ds/dt, s̈ = d2s/dt2. Then, the dynamics of
the robots, the payload, and the relation between the wrench applied at the center of mass
of the payload and the wrench applied by the robots can be described as a function of s.
Note that s represents a parameterization of the trajectory along which the manipulator
moves. It is a scalar variable that typically represents progression or advancement along
the trajectory. In many cases, the parameter "s" can represent time. Finally, the time-optimal
problem can be defined as

Min
∫ 1

0

1√
b(s)

ds

Subject to :

T (s) = F1(q′(s), q′′(s), s), Fo(s) = F2(q′(s), q′′(s), s), Fo(s) = F3(q′(s), q′′(s), s)

b(0) = ṡ2
0, b(1) = ṡ2

T

0 ≤ b(s) ≤ b̄(s)

b′(s) = 2a(s)

min(T (s)) ≤ T (s) ≤ max(T (s)), ∀s ∈ [0, 1]

(48)

where F1, F2, F3 can be obtained from robots, payload, and grasp matrix relation equations,
respectively. b(s) = ṡ2(t), a(s) = s̈(t). The optimization solution provides a time history of
joint torque. Nevertheless, due to the open-loop nature of the problem, it does not offer
alternatives when encountering disturbances and uncertainties. (This issue also applies
to the work in [51].) Furthermore, the control of internal forces has not been addressed.
Nevertheless, this approach can be a basis for more advanced control algorithms, such as
model predictive control (MPC).

3.4.2. Redundancy

In the context of CRMs, redundancy can be harnessed to undertake secondary tasks,
typically of lower priority compared with the primary task [122]. To allocate multiple
tasks with distinct priorities, the Relative Jacobian Method can be employed. This method
involves constructing a Jacobian matrix that accounts for the joint positions of all the
robots within the same reference frame. In CRMs, the highest priority is the joint limits
and kinematic constraint, while the secondary task is given by the desired motion. This
problem is solved in [122].

3.4.3. Collision Avoidance

Ensuring collision avoidance is of paramount importance when formulating a con-
troller for CRMs. Within the existing literature, few papers have addressed the challenge
of collision avoidance in CRM scenarios [28,43,47,48,89,143,157,158]. This is a complex
issue due to the potential presence of static and dynamic obstacles or even the risk of
robot-to-robot collisions.

Safeguarding against collisions primarily hinges on the effectiveness of sensing and
perception systems. For instance, when crafting a controller in task space and employing
inverse kinematics techniques to derive joint positions, meticulous attention is required to
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confirm the absence of any impending collisions between robots. The inherent redundancy
within CRM configurations can often serve as an asset, offering the flexibility to choose
configurations that ensure collision-free maneuvers.

3.4.4. Fault Tolerance

The challenge of dealing with faulty dynamical systems and potential solutions are
explored in [142,159]. In the former, four types of faults are addressed, including faulty joint
mechanisms and actuators, locked joint mechanisms, incorrect joint mechanism position
measurements, and incorrect joint mechanism velocity measurements. The proposed
solution involves neural-network-based approaches for the first two failure types, while
kinematic constraints are employed to detect the remaining faults. Conversely, in [159],
the focus is solely on the problem of faulty joint mechanisms and actuators. Both papers
offer alternative control strategies to rectify these issues, primarily based on reconfiguring
the system with a different number of active joints.

4. Conclusions and Future Works

In this review paper, I have delved into the dynamic analysis and control of cooperative
robot manipulators involved in the manipulation of objects. The field of CRM presents a
captivating realm where multiple robots work in tandem to collaboratively handle and
control objects. Throughout the exploration, a multitude of studies encountered have
contributed significantly to our understanding of this intricate domain.

Our journey commenced with an investigation into the fundamental aspects of CRM
dynamics. We navigated through the intricacies of dynamic modeling, taking into account
factors such as coupling constraints and the augmented model that encapsulates the
robots and the payload. The analysis of load distribution among the robots, an essential
aspect of CRMs, unveiled the delicate balance required to ensure effective and damage-
free cooperative object manipulation. Furthermore, we delved into the intricacies of
grasping strategies and their associated challenges. The modeling of this complex closed-
chain dynamical system presents numerous hurdles. It is imperative for researchers to
gain a comprehensive understanding of how to model the system, formulate constraints,
and determine the appropriate load distribution for their specific problem. This knowledge
is foundational for the accurate development of effective control mechanisms. Researchers
can utilize Table 3 as a point of reference to gauge the areas that have garnered greater
attention from scholars in terms of modeling and addressing uncertainties and disturbances,
as well as to identify areas that warrant further investigation.

In the exploration of control strategies, various approaches have been unearthed,
ranging from impedance control to adaptive control techniques. These strategies have
proven their effectiveness in addressing the unique challenges posed by CRM manipulation,
offering robustness and versatility. It has become evident that any form of controller must
confront the challenges posed by both motion task and force control.

Examining the literature revealed that only a limited number of papers included
real-world simple experimental evaluations [11,20,21,53,71,79,100,101,111–113,122,131,156].
This underscores the importance of designing controllers that are practical for real-world
implementation, as without such practicality, their validity diminishes, and their value
diminishes accordingly.

Therefore, it is imperative for future research endeavors to avoid redundancy and
instead focus on formulating problems that address real-world challenges. The domain
of cooperative robots offers a wide array of applications with the potential to enhance
people’s quality of life. Despite the inherent complexity and challenges, there exists a firm
belief in the vast potential for further exploration and expansion in this field, as it holds a
promising and bright future.

While our review has shed light on the current state of research in cooperative closed-
chain robot manipulators, there remain several avenues for future exploration. Here, a set
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of problems that remain either unsolved or necessitate further development and in-depth
investigation is enumerated:

Workspace Exploration: It is essential to identify singularities for a robotic system
and find the workspace region, as it has far-reaching implications for task planning, safety,
efficiency, and the overall success of the system in a variety of applications. The problem
is solved for open-chain robotic systems. However, it remains unsolved for closed-chain
CRMs. Various analytical and numerical solutions are offered for open-chain robots, such
as [140,160], which can be adopted for closed-chain CRMs.

Passive Joint Investigation: CRMs with passive joints have been relatively underex-
plored, despite their potential to serve as robust load-bearing mechanisms, enabling the
effective manipulation of payloads. The problem of finding the set of active and passive
joints to optimize specific criteria such as energy consumption is an open problem.

Trajectory Planning: To the best of the authors’ knowledge, the challenge of devising
a trajectory based on certain criteria, such as minimizing energy consumption as inves-
tigated in [161], has yet to be thoroughly investigated. Interesting and reliable control
formulations such as MPC can be used in this domain. Some other papers, like [157],
introduced motion planning techniques that are not directly applied to CRMs. However,
they have the potential to be employed in this subject.

Improved Load Distribution Algorithms: Developing more advanced algorithms
for load distribution among cooperating robots, considering their physical characteristics,
will enhance the efficiency and safety of CRM systems.

Addressing Payload Variations: Objects that cooperative robots handle can vary in
weight, size, and shape. Adaptive control allows the robots to handle a wide range of pay-
loads without requiring significant reprogramming or parameter tuning for each variation.

Obstacle Avoidance: Investigating obstacle avoidance strategies in CRM manipu-
lation is crucial, especially in dynamic and cluttered environments. The development of
real-time obstacle detection and collision avoidance techniques is an open area for research.

Fault Tolerance: Enhancing the fault tolerance capabilities of CRM systems will
ensure continued operation in the presence of failures or disruptions, a vital aspect for
practical applications.

Human–Robot Collaboration: The integration of CRM systems with human opera-
tors for collaborative tasks is a burgeoning field. Future work should focus on the seamless
interaction between humans and multiple robots in cooperative object manipulation.

Sensory Integration: The incorporation of advanced sensor technologies, such as
computer vision and haptic feedback, can enhance the perception and adaptability of
CRM systems.

Machine Learning Algorithms: Leveraging machine learning algorithms, partic-
ularly reinforcement learning, holds the potential to advance the development of more
sophisticated systems. Nevertheless, this approach necessitates access to real-world systems
and data collection, which can prove to be a cumbersome task for implementing reinforce-
ment learning. As a practical solution, using robotic simulators like CoppeliaSim [162] or
OpenAI Gym [163] is recommended to acquire reliable and accurate data.

In conclusion, the dynamics and control of cooperative closed-chain robot manip-
ulators in object manipulation offer a rich landscape of challenges and opportunities.
As technology continues to advance, future research in this domain promises to further
improve the capabilities of CRM systems, making them even more versatile, reliable,
and suitable for an array of real-world applications.
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