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Abstract: Quantum squeezing, an intriguing phenomenon that amplifies the uncertainty of one
variable while diminishing that of its conjugate, may be studied as a time-dependent process, with
exact solutions frequently derived from frameworks grounded in adiabatic invariants. Remarkably,
we reveal that exact solutions can be ascertained in the presence of time-variant elastic forces, es-
chewing dependence on invariants or frozen eigenstate formalism. Delving into these solutions as an
inverse problem unveils their direct connection to the design of elastic fields, responsible for inducing
squeezing transformations onto canonical variables. Of particular note is that the dynamic transfor-
mations under investigation belong to a class of gentle quantum operations, distinguished by their
delicate manipulation of particles, thereby circumventing the abrupt energy surges commonplace in
conventional control protocols.
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1. Introduction

In the fascinating domain of quantum mechanics, one encounters the remarkable
phenomenon of squeezing, where the uncertainty tied to a canonical variable diminishes,
while that of its conjugate partner swells. This delicate balance between conjugate vari-
ables emerges from the grounds of Heisenberg’s uncertainty principle, which prescribes a
minimal boundary on the product of their uncertainties, granted that we confine ourselves
to a realm where high-energy scales do not warrant further adjustments [1].

In light of this understanding, within the realm of quantum measurements, the uncer-
tainty attached to a particular observable bears the responsibility for any deviations from
the intended value—assuming the experimentalist refrains from inadvertently compromis-
ing the measurement through extraneous factors. Nevertheless, these imperfections can
be ameliorated by attenuating the uncertainty to near-arbitrary levels, albeit at the cost of
amplifying the uncertainty of the observable’s counterpart. Such an interplay transcends
the familiar position and momentum duality, manifesting itself in other pairs encompassing
the spin components of particles or the polarisations of light, among others.

It is precisely this versatile nature of quantum squeezing that has ignited immense
interest in its exploration, with researchers drawn to its deep-seated ramifications and
promising applications in diverse arenas ranging from quantum information [2] to precision
measurements in quantum metrology [3–9] and quantum teleportation [10]. Even beyond
the confines of our current understanding, advancements are being made to measure
elusive phenomena, such as dark matter [11].

As we embark on a journey to explore quantum squeezing within the context of time-
variant elastic fields, it becomes essential to embrace the Heisenberg picture of quantum
mechanics. In contrast to the Schrödinger picture, which accentuates the evolution of the
state vector, the Heisenberg picture proffers a complementary description, placing emphasis
on the temporal progression of operators, in our case, in the presence of a time-dependent
Hamiltonian. This subtle yet profound shift in perspective permits us to unravel squeezing
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transformations and the mechanisms that underpin them more effectively, which is the
aspiration of our investigation.

Despite the abundance of theoretical frameworks that have emerged to explore the
intricate facets of time-dependent problems [12–19], our approach diverges from the adi-
abatic invariants doctrine. In a prior groundbreaking revelation [20], Mielnik demon-
strated that the time-evolution problem, characterised by quadratic Hamiltonians endowed
with fluctuating elastic forces, admits exact solutions. Intriguingly, these solutions are
rooted in a profound understanding of the symmetries embedded within the problem.
In this work, we shall continue these solutions to inspect their role in shaping squeezing
transformations, and more specifically in fostering the kind of fields that cultivate such
linear transformations.

Furthermore, as we shall show, the exact solutions are intimately entwined with the
character of the elastic field. This association constitutes an aspect of an inverse problem,
in which, upon obtaining an exact solution, the driving field may be meticulously designed.
In a reciprocal manner, when provided with an elastic field, one can integrate the system to
unveil the corresponding exact solution. This versatility inherent in the method permits us
to infuse, with remarkable freedom, any driving elastic force to attain the desired outcome.
Such adaptability ensures that we can manipulate the system under the influence of forces
that desist from unsettling the particles to the point of dismantling their configuration.

Our work unfolds as follows: In Section 2, we introduce the class of quadratic Hamil-
tonians equipped with explicit time dependency that underpin our investigation. Section 3
delves into the exact solutions to the time-dependent problem, shedding light on their
constraints and implications. Sections 4 and 5 offer succinct examples of the engineering
of designing driving pulses, as well as the inventive squeezing operations that can be
fashioned from them. Finally, in Section 6, we present the culminating insights of our work,
exposing the limitations and unresolved problems that have emerged from our endeavours.

2. A Classical–Quantum Dynasty of Hamiltonians

Our exploration commences with the family of dimensionless, non-relativistic, quadratic
Hamiltonians, each graced with a time-dependent elastic field, herein denoted as β(t). This
scenario allows us to express the Hamiltonian for a pair of conjugate variables, q and p, in a
rather elementary form:

H(t) =
1
2
(p2 + β(t)q2), (1)

where the particle’s mass m and the action constant h̄ are henceforth rendered as unity.
While our exposition shall be nestled in a dimensionless framework, the transition

back to physical units can be achieved by adhering to the following relations:

p =
p′√

h̄
= p̂

√
T

h̄m
, q =

q′√
h̄
= q̂

√
m
h̄T

. (2)

In these relations, p̂ and q̂ denote canonical observables, p′ and q′ are both expressed
in square root of action units, and T stands as an arbitrary time scale. Consequently, our
dimensionless time, t, is expressed as t = τ/T, with τ representing the time within the
frame of reference where the system dwells.

The latter Hamiltonian yields the very same equations of motion for both classical
and quantum domains. In the absence of spin, each unitary evolution operator U(t, t0)
in L2(R) generated by the Hamiltonian (1) is wholly determined by the corresponding
canonical transformation H(t) poses [21]. Consequently, the flow generated by H(t)
exhibits striking similarities in both classical and quantum regimes, inspiring further
scrutiny of the quantum counterparts of classical trajectories.

Our exposition, in a sense, is devoted to this last pursuit, albeit with a focus on a family
of unitary quantum operations that induce the amplification (λ) or squeezing (1/λ) of
canonical pairs over time. This approach is analogous to that of squeezed states, but instead
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of directly depicting such states, we study the dynamical operations that give rise to unitary
transformations of the form q→ λq and p→ p/λ. For notable examples in this direction,
the reader may refer to [22,23].

With the dimensionless convention in place, the time evolution of the q, p pair is
governed by the Hamiltonian (1), and follows the equations of motion given below:

dq
dt

=
1
i
[q, H(t)] = p,

dp
dt

=
1
i
[p, H(t)] = −β(t)q, (3)

where i =
√
−1. One immediately notes that these equations of motion bear an obvious

resemblance in their structure to the classical Hamilton equations: dq/dt = ∂H/∂p and
dp/dt = −∂H/∂q.

Letting Q = (q, p)ᵀ, we can express the system of Equation (3) in a concise and
advantageous form:

dQ
dt

= Λ(t)Q, Λ(t) =
(

0 1
−β(t) 0

)
, Q(t0) = Q0 = (q0, p0)

ᵀ, (4)

this notation serves a particular purpose of ours. In the Heisenberg picture, the time
evolution of an observable Q, from an initial time t0 to a given time t, can be expressed as
the unitary conjugation of Q0 by the evolution operator U(t, t0), namely

Q(t) = U†(t, t0)Q0U(t, t0) = u(t, t0)Q0, (5)

here, u(t, t0) denotes a dimensionless evolution matrix which is an element of the symplectic
group, in our case Sp(2,R).

Both Equations (4) and (5) provide insight into how an observable Q evolves from
t0 to t. Consequently, by differentiating (5) with respect to t and substituting into (4), we
derive the evolution equation for u(t, t0):

du(t, t0)

dt
= Λ(t)u(t, t0), u(t0, t0) = I, (6)

Since the matrix u(t, t0) contains complete information about the system’s motion, it is
possible to leverage it for various purposes, such as propagating the wave function or even
expressing it in terms of the entries of u(t, t0). Further details can be found in Section 5.

Moreover, the symplectic structure ingrained in u(t, t0) holds the key to classifying the
motion generated by (1), which has been nicely shown in [24,25]. By denoting Γ = Tr u(t, t0),
it becomes apparent that u(t, t0) possesses three distinct sets of eigenvalues, computed
through the formula κ = 1

2 (Γ±
√

Γ2 − 4). Each set characterises a unique class of motion:

I When |Γ| > 2, the eigenvalues κ become real, thereby causing unstable motion. This
regime is conducive to the squeezing phenomena of canonical operators, a† and a,
defined by the eigenvectors of u(t, t0).

II When |Γ| = 2, the eigenvalues κ are also real. However, unlike in regime I, these
eigenvalues may lead the motion to stable regimes as well.

III When |Γ| < 2, the eigenvalues κ are complex, and the motion is (oscillatory) stable.
For a periodic process of length T, u(t, t0) = u(T + t, t0) will define global operators
a† and a. This regime permits quantum operations for the confinement of particles,
such as Paul traps [26].

The pre-eminent role of Γ in the above classification is a natural consequence of the
symplectic structure inherent in u(t, t0). Therefore, it is reasonable to surmise that Γ and
β(t) are intertwined to some degree. Indeed, the particular form of the pulse dictated by
β(t) is ultimately responsible for the resulting class of motion. To illustrate this point, let us
consider the case where β(t) is a constant value of ω2. In this scenario, the integration of
(6) is straightforward and yields Γ = 2 cos(ωt). Depending on the magnitude of Γ (and of
course of ω), the system demonstrates either the common oscillatory motion associated
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with class III, or, as Γ nears the parametric resonance threshold, motion akin to a free
particle in class II. We will delve into the relationship between Γ and β(t) in greater detail
in Section 3.

3. Time Evolution without Adiabatic Invariants

In 2013, Mielnik [20] made a remarkable mathematical discovery regarding the system
of differential Equation (6). Specifically, he noted that exact solutions can be obtained for
this system, presuming the elastic field β(t) is symmetric over the interval of integration. We
will see that these exact solutions provide us with valuable insight into the simplest cases
of the evolutive problem represented by (6). As well, it is worth noting that these solutions
offer an opportunity to design control operations by smoothly varying the steering fields,
nearly adiabatically, without any requirement for invariant formalism [13,15]. In addition,
these solutions are inherently linked to β(t) itself, allowing one to either evolve u(t, t0)
by means of an elastic pulse or design the elastic pulse required for specific purposes.
The latter strategy, in particular, may have wide-ranging implications in fields such as
quantum computing, quantum sensing, and metrology, where it is necessary to manipulate
particles in order to achieve a desired state.

Suppose we consider a symmetric pulse β(t) with respect to the centre of the opera-
tion interval [−t, t]. We see that in this interval the unitary operators U(t,−t) do satisfy
dU(t,−t)/dt = [H(t)U(t,−t) + U(t,−t)H(t)]/2i, because the quadratic Hamiltonian (1)
satisfies H(t) = H(−t). The system described by (6) then takes the form

du(t,−t)
dt

=
1
2
(Λ(t)u(t,−t) + u(t,−t)Λ(t)) u(−t,−t) = I, (7)

using Λ(t) as defined in (4), we can explicitly write the former equation in terms of β(t)
and the entries of u(t,−t):

d
dt

(
u11 u12
u21 u22

)
=

1
2
(u21 − β(t)u12)I+

Γ
2

Λ(t). (8)

Upon examination, we quickly observe that the diagonal elements on the left-hand side
both share the same differential equation, namely, du11/dt = du22/dt = (u21− β(t)u12)/2.
Consequently, it follows that u11 = u22 = Γ/2. Now, here comes the clever part. If we
insert an almost arbitrary analytical function u12 ≡ θ(t) ∈ R, we can also observe from (8)
that θ̇(t) ≡ dθ(t)/dt = Γ/2.

In turn, we shall deduce the form of u21 based on the aforementioned information,
and recalling that u(t,−t) ∈ Sp(2,R). Because det u(t,−t) = θ̇2(t)− θ(t)u21 = 1, we solve
u21 from here to finally obtain (θ̇2(t)− 1)/θ(t), which implies that the evolution matrix
u(t,−t) has the explicit form

u(t,−t) =

(
θ̇(t) θ(t)

θ̇2(t)−1
θ(t) θ̇(t)

)
. (9)

With the preceding discussion, the reader may be able to anticipate the relationship
that exists between β(t) and the trace Γ of the evolution matrix. For the time-independent
case, as shown in the example at the end of Section 2, this relationship becomes evident.
However, in the time-dependent case, we need to provide a detailed derivation to explicitly
establish this connection. Fortunately, this task is not arduous, and we shall undertake
it now.

The path to unlocking the relation subtended between β(t) and θ(t) lies in the dif-
ferential equation for the entry u21 in (8). Through careful examination, we uncover the
expression du21/dt = −β(t)Γ/2 = −θ̇(t)β(t) = d[(θ̇2(t)− 1)/θ(t)]/dt. A rearrangement
of terms and a simplification of the resulting expression brings the connection between β(t)
and θ(t):
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β(t) = −2θ̈(t)θ(t)− θ̇2(t) + 1
θ2(t)

. (10)

In this way, Mielnik’s discovery entails that θ(t) is indeed an exact solution to the
evolution problem (7), while simultaneously enabling us to tackle an inverse problem of
sorts: should β(t) be known, we may infer θ(t) (cf. Section 4); conversely, given θ(t), we
may deduce β(t). The interplay between these two functions therefore yields a versatile
method for analysing the classes of motion regulated by (7). Yet another avenue to relate
β(t) and θ(t) lies in the differential equations for u11 = u22. By simply substituting
(θ̇2(t)− 1)/θ(t) into u21 and performing some straightforward algebraic manipulation,
(10) is once again obtained.

An interesting detail warrants our consideration. By suitably rearranging the terms of
the expression in (10), we are led to a time-dependent, effective harmonic oscillator, whose
frequency is given by

√
β(t)/2, namely,

θ̈(t) +
β(t)

2
θ(t) = ηeff(θ, θ̇), (11)

where ηeff contains nonlinear terms that we interpret as being part of an effective damping
component:

ηeff(θ, θ̇) ≡ θ̇2(t)− 1
2θ(t)

, (12)

These terms, and of course β(t), shall help in explaining the class of oscillation θ(t) under-
goes. Is there a regime in which such nonlinear terms are of no importance?

From Equation (9), we can observe that whenever θ becomes zero at a certain point t, then
θ̇(t) at the same point must be equal to ±1. Additionally, we notice that a time-dependent
Fourier transform takes place if θ̇(t) becomes zero at t = T, but θT ≡ θ(T) 6= 0, then

u(T) =

(
0 θT
− 1

θT
0

)
,

Following the application of this matrix to a pair of conjugate variables, q and p, a transfor-
mation of the form q→ pθT and p→ −q/θT is obtained. In other words, this transforma-
tion swaps such two variables and rescales each one with respect to θT and its reciprocal.
A second application of the same matrix—i.e., fixing θ(t)—reverts the Fourier transform
effect, restoring the variables to their original values. However, suppose now that a similar
Fourier transform occurs at a different time T′ for a function θ′(t) 6= θ(t). Then, the compo-
sition of two different Fourier transform matrices (or an even number of them) will lead to
squeezing transformations (belonging to the class of motion I):(

0 θT
− 1

θT
0

)(
0 θ′T′
− 1

θ′
T′

0

)
=

(
λ 0
0 1

λ

)
, λ ≡ − θT

θ′T′
, (13)

specifically, this results in linear transformations of the form q→ λq and p→ p/λ, wherein
one variable is amplified at the expense of squeezing the other or vice versa.

3.1. What If β(t) Is Odd?

Squeezing phenomena have been observed to occur in intervals where β(t) is not
symmetric with respect to the centre of the operation interval [27]. Therefore, upon ac-
quiring the elastic field β(t) utilising (10), the integration of Equation (6) is required over
an interval with a non-coinciding centre compared to that of β(t). This analysis prompts
the inquiry of whether a reformation is warranted for a β(t) 6= β(−t) spanning the entire
operational interval.
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This is particularly relevant if we consider the steering force to be a time-dependent,
magnetic induction field, as it is crucial to note that the case where −β(t) = β(−t) cannot
even be considered. If such a condition were to hold, it would lead to imaginary forces,
which are physically impossible. Upon closer examination, let us consider the Hamiltonian
H(t) = (p−A(x, t))2/2, where A(x, t) represents the vector potential—recalling that we
adopt the convention of setting all physical constants to unity. We shall choose a symmetric
gauge in which A(x, t) = [B(x, t) ∧ x]/2. When we assume the magnetic induction field
is oriented along the Oz direction, we have B(x, t) = B(t)ez. Thus, the identification
of β(t) = B2(t) elucidates the requirement for β(t) to be even when the driving force
originates from a magnetic field [28].

However, in the case of a scalar field, such as the electric potential used in Paul
traps [26], the elastic field β(t) is directly proportional to the applied voltage φ(t) on
the surfaces of the trap, see Section 6. In this context, it is possible to consider the case
where −β(t) = β(−t) without impediment. We will explore this case further below.
However, first, to prevent any possible confusion between the distinct exact solutions for
an elastic field of this type and those described in Equation (10), let us introduce some
notation. We shall use the symbol ∗ to differentiate between these solutions.

By assuming that −β∗(t) = β∗(−t), the Hamiltonian (1) shall satisfy −H∗(t) =
H∗(−t), while the unitary evolution operators hold dU∗(t,−t)/dt = [H∗(t)U∗(t,−t)−
U∗(t,−t)H∗(t)]/2i. With these premises, we may proceed to state the initial value problem
(6) as

du∗(t,−t)
dt

=
1
2
(Λ∗(t)u∗(t,−t)− u∗(t,−t)Λ∗(t)) u∗(−t,−t) 6= I, (14)

or explicitly:

d
dt

(
u11 u12
u21 u22

)
∗
=

1
2
(u21 + β(t)u12)∗

(
1 0
0 −1

)
+

(u22 − u11)∗
2

Λ∗(t).

With proper attention, we notice that the diagonal elements on the left-hand side satisfy the
same differential equation, up to a sign. Therefore, it follows that (u11)∗ = −(u22)∗ = −θ̇∗(t),
and as a consequence, the matrix u∗(t,−t) corresponding to a given β∗(t) will be traceless. This,
in turn, assures that the motion will always be of class III, although the even composition
of these matrices does not necessarily follow this pattern.

Furthermore, as previously discussed, we recall that u∗(t,−t) is an element of Sp(2,R),
and thus its determinant is unity. From this condition, we can determine the form that the
entry (u22)∗ will take, leading us to the following expression for u∗(t,−t):

u∗(t,−t) =

(
−θ̇∗(t) θ∗(t)

− θ̇2
∗(t)+1
θ∗(t)

θ̇∗(t)

)
, (15)

Thus, we establish a relation between β∗(t) and the exact solution θ∗(t), namely,

β∗(t) = −
2θ̈∗(t)θ∗(t)− θ̇2

∗(t)− 1
θ2∗(t)

. (16)

Upon comparing Equations (10) and (16) for β(t) and β∗(t), we notice that they differ
solely in the sign of the third term. In fact, similar to our interpretation in (11), the nonlinear
terms can be viewed as constituents of an effective force that propels the time-dependent
harmonic oscillator:

θ̈∗(t) +
β∗(t)

2
θ∗(t) = ηeff*(θ∗, θ̇∗), (17)

where

ηeff*(θ∗, θ̇∗) ≡
θ̇2
∗(t) + 1
2θ∗(t)

. (18)
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In contrast to the exact solutions presented in (10), it is necessary to carefully consider
the conditions that θ∗(t) must satisfy for the initial value problem (14). In order for these
solutions to generate a corresponding well-behaved β∗(t)—or conversely, for any well-
behaved β(t) to have a field θ∗(t) that possesses no singularities—it is essential that θ∗(t)
does not vanish at any time t, even at those times at which θ̇∗(t) becomes zero. In the event
that this latter condition is met, u∗(t,−t) will become a Fourier transform matrix.

However, these solutions would induce a Fourier transform at the very beginning
of the interval of operation, regardless of any prior knowledge of the conjugate variable
trajectories. In such scenarios, the particle would receive streams of energy significant
enough to disrupt it from its original state, with a high probability of losing any control
over it. Yet, since the aim of our discussion is to study quantum operations that exhibit soft
transitions to a given target, we shall limit our discussion to symmetric β(t) fields with
respect to the centre of the interval of manipulation.

4. Shaping Elastic Fields Like a Blacksmith

According to the method we have surveyed in the previous section, the flexibility
of the approach relies, in addition to the specifics, on the freedom to choose a function
θ(t) for designing an elastic driving field β(t). Conversely, given a β(t), one can imagine
the corresponding θ(t), which is the exact solution to the initial value problem described
by Equation (6). In general, the latter presents a formidable challenge, often demanding
numerical efforts, with exact solutions not invariably assuming a closed form. We shall in-
troduce elementary arguments with the intent to streamline the solvability of Equation (10),
whether in its direct or inverse form.

The simplest model to consider is when we set β(t) = ω2, where ω is a real constant.
In this case, Equation (10) has an exact solution given by θ(t) = sin(ωt)/ω. This solution
breaks the nonlinearities in the effective damping terms, resulting in ηeff(θ, θ̇) = −ω2θ(t)/2.
As a result, Equation (11) is reduced to the familiar form θ̈(t) + ω2θ(t) = 0. Therefore,
for this exact solution, the evolution matrix u(t,−t) will become a symplectic rotation matrix:

u(t,−t) =
(

cos(ωt) 1
ω sin(ωt)

−ω sin(ωt) cos(ωt)

)
, (19)

If we allow for the parameter ω to take values of nπ, where n represents an integer,
and restrict our considerations to the interval of operation [−1, 1], then the matrix in
question facilitates a sequence of transitions, in intervals of length 1/2n, between a Fourier
transform and its inverse. Such a process is characterised by a smoothness which can be
observed in the resultant sequences.

Moreover, it should be noted that setting β(t) = −ω2 would lead to a repulsive har-
monic oscillator, with the exact solution given by θ(t) = sinh(ωt)/ω. However, to what
degree of validity might this solution aspire? This choice would also eliminate the nonlin-
earities in the effective damping terms, as ηeff(θ, θ̇) becomes a linear function of θ. For this
solution to hold, one could imagine a scenario in the context of electric potentials, where
the class of operation can depend on the sign of the applied voltage. It could be stated
that the system in question would possess the ability to exhibit either an attractive or
repulsive behaviour depending on the steering voltage. Nevertheless, within the realm
of real numbers, it appears that no single point exists at which this exact solution could
culminate in a Fourier transform matrix for (9). As we commented in Section 3.1, it is not
our intention to scrutinise these particular scenarios within the confines of our present
discussion. Rather, we shall address such a survey in a separate manuscript. In point of
fact, in order to ensure the validity of β(t) for the purposes we seek, we must adhere to the
constraints set forth in the following Lemma [20], which summarises the constraints that
restrict the arbitrariness of θ(t).
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Lemma 1. Given any β(t) exhibiting symmetry with respect to the central point of the interval
t ∈ [−τ, τ], the function θ(t) must maintain continuity and, at a minimum, possess the quality of
being three-times differentiable. To ensure that both functions satisfy the necessary conditions for
proper definition through Equation (10), these criteria must be met:

1. At any time t when θ(t) = 0, then dθ(t)/dt = ±1.
2. At any time t when β(t) 6= 0 and θ(t) 6= 0 but their derivatives with respect to time both

vanish simultaneously, then d3θ(t)/dt3 = 0.
3. At any time t when θ(t) 6= 0 and dθ(t)/dt = 0, the evolution matrix u(t,−t) represents a

Fourier transform of the q, p canonical pair at that point.

Proof. The conditions numbered 1 and 2 are a direct consequence of Equation (8), which un-
derscores the indispensable requirement that u21 must possess a finite value. Moreover, we
see from (10) that in case θ̇(t) vanishes at a given t, we are led to 2θ̈(t)θ(t) = β(t)θ2(t)− 1,
and by differentiating this expression with respect to time the second condition becomes
evident. The condition numbered 3 is fulfilled provided the antidiagonal elements of
u(t,−t) induce a linear transformation that can be expressed in the form of q ∝ p and
p ∝ −q.

The Inverse Problem Unveiled

The task of selecting an appropriate θ(t) that satisfies Lemma 1 necessitates an em-
pirical exploration of functions tailored to the specific control objective. In the subsequent
discussion, we will narrow our focus to a particular class of θ(t) functions that possess the
ability to create vanishing elastic fields at both the beginning and the end of the operating
interval. Hence, we allow θ(t) to be expressed as

θ(t) =
∞

∑
n=0

an sin(ωnt). (20)

With this particular choice, the expression for the elastic field (10) becomes

β(t) =
2(∑∞

n=0 an sin(ωnt))
(
∑∞

n=0 anω2
n sin(ωnt)

)
+ (∑∞

n=0 anωn cos(ωnt))2 − 1

(∑∞
n=0 an sin(ωnt))2 , (21)

we must judiciously determine the coefficients an and the frequencies ωn, basing our search
on the conditions specified in the preceding Lemma. In practice, not all of the unknown
coefficients will be determined by the imposed conditions; instead, we will be required to
have additional free parameters.

Let us examine the first three terms in series (20) and attempt to determine some
of the coefficients. To streamline our inspection, we shall concentrate on the operational
interval t ∈ [−π, π], with the angular frequencies ωn established by the arbitrary choice
of (ω1, ω2, ω3) = (1, 3, 5). According to the initial value problem in (6), at the beginning
of the operation, we have θ̇(−π) = 1 and θ(−π) = 0. By closely scanning, we find
that θ̇(t) attains zero at ±π/2, which implies θ(±π/2) 6= 0. Consequently, we have
θ̈(±π/2) = −[β(π/2)θ(±π/2) + 1/θ(±π/2)]/2. Given these considerations, and by
setting θ(π/2) = α1 and θ̈(π/2) = α2, we derive a linear system of equations involving
the coefficients a1, a2, and a3: 1 3 5

−1 1 −1
1 −9 25

a1
a2
a3

 =

−1
α1
α2

, (22)

As we resolve the linear system, the three coefficients will be expressed in terms of α1 and
α2, which are to be varied such that β(t) adopts the properties of interest. Notably, α1 is
connected to the amplitude of the scaling factor within the Fourier transformation process.
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To illustrate the design of the elastic fields with utmost clarity, we have selected
different values for the parameters α1 and α2. As a result, the β(t) fields take shape as
depicted in the plots of Figure 1, where the corresponding exact solutions are shown as
well. The assortment of values we have selected for α1 and α2 permit the β(t) fields to
vanish softly at the beginning and at the end of the interval [−π, π].

The pulses denoted as β1 and β2 persistently display positive values across the entire
interval. For these pulses, the parameter α1 adopts values of 1 and 6/5, respectively, while
the parameter α2 assumes values of −2/3 and −5/3. Consider a quantum operation con-
structed by the consecutive combination of these two fields; the outcome at the conclusion
of the operational interval would manifest as a squeezing transformation of magnitude
6/5. Contrastingly, the pulse β3 portrayed in the figure exhibits a greater magnitude com-
pared to its counterparts. For this particular pulse, the parameters were set as α1 = 2 and
α2 = −17/3. This suggests that the extent of the squeezing effect is intricately linked to the
magnitude of the elastic field governing the quantum operation.
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Figure 1. The figure illustrates three distinct β(t) fields, derived from (21), all of which vanish at
the initial and final points of the operational interval. Each field is paired with its corresponding
exact solution θ(t), expressed in the format of (20). In each of these θ(t) fields, a Fourier transfor-
mation occurs at −π/2 and π/2, at which points θ̇(t) achieves a value of zero. The hypothetical
sequential realisation of pulses termed β1 and β2 in a solenoid would result in a quantum operation,
characterised by a squeezing effect marked by a |λ| parameter of 6/5.

5. A Soft Squeezing Engine

We have previously remarked that each individual β(t) pulse depicted in Figure 1 has
the attribute to yield a time-dependent Fourier transform at specific instants throughout
the operational interval, particularly at the roots of θ̇(t). Suppose we identify the precise
instances when a Fourier transform occurs for each of these elastic fields. We then construct
a quantum operation using two consecutive, distinct β(t) functions, with one following
immediately after the other has reached a Fourier transform, as outlined in Equation (13).
However, in deviating from this portrayal, the ultimate outcome at the conclusion of the
operational interval will manifest as a seamless squeezing transformation, brought forth by
the driving fields in question.

In order to more effectively explain the manner in which the smooth squeezing process
occurs throughout the operational time interval, we shall first examine the two β(t) > 0
fields depicted in Figure 1. At this point, the reasoning behind the deliberate simplification
in our exposition, by selecting an exact solution θ(t) conforming to the function in (20),
ought to become apparent. Indeed, it is precisely for the three pulses studied in the
preceding section that a Fourier transform arises at odd multiples of π/2.
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Envision a physical realisation involving a cylindrical solenoid, conceived as a lon-
gitudinally aligned coil of wire. In this setup, a time-dependent electric current feeds
into the solenoid, which in turn induces a magnetic induction field that permeates the
cylinder. By subtly modulating this current—and thus the magnetic field—we can generate
the pulses β1 and β2 in a precisely controlled manner, facilitating the desired dynamical
operation. Such an operation initiates with the pulse denoted by β1, immediately succeeded
by the pulse β2, both within the operational interval [−π,−π/2] ∪ [−π/2, 0]. Under the
presumption that the initial conditions at t = −π are q(−π) = 1 and p(−π) = −2, the tem-
poral development of the squeezing effect imposed onto the canonical pair shall display a
characteristic akin to that delineated in Figure 2, achieving a squeezing effect of magnitude
|λ| = 6/5. Specifically, this scenario employs the solenoid’s magnetic field to enact a soft
squeezing operation. The class of quantum operations achievable via this method is termed
soft, due to their nature of introducing small, controlled modifications to the system’s state.
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Figure 2. The figure presents semiclassical trajectories (central curves as per (5)), accompanied by
their corresponding uncertainties (the surrounding curves according to (24)) for a pair of canonical
variables beginning with initial data q(−π) = 1 and p(−π) = −2. The time evolution is triggered
by the integration of the two β(t) > 0 fields depicted in Figure 1 over the interval [−π,−π/2] ∪
[−π/2, 0]. The left panel depicts the temporal progression of the variable q, starting its evolution
within an uncertainty band of width 1/

√
2 and concluding within a moderately expanded uncertainty

band of width 3
√

2/5. In contrast, the variable p in the right panel commences its evolution with
an uncertainty mirroring that of q, ultimately culminating within a squeezed uncertainty band of
width 5/6

√
2.

Moreover, analogous to the process characterised in Equation (13), the intrinsic ma-
chinery governing this continuous landscape shall likewise manifest as the successive
employment of matrices belonging to Sp(2,R):(

θ̇1 θ1
θ̇2

1−1
θ1

θ̇1

)(
q(−π)
p(−π)

)
=

(
q
(
−π

2
)

p
(
−π

2
))→ (

θ̇2 θ2
θ̇2

2−1
θ2

θ̇2

)(
q
(
−π

2
)

p
(
−π

2
)) =

(
q(0)
p(0)

)
,

which shall generate the subtle transition towards a squeezing transformation through the
sequential employment of two elastic fields that smoothly vanish at the commencement
and termination of their respective intervals of influence.

Both q and p shall describe semiclassical trajectories, accompanied by their corre-
sponding uncertainty shadows—which we will discuss shortly—as depicted in Figure 2.
The instance under consideration exemplifies that the uncertainties associated with q and
p undergo, respectively, amplification and squeezing at the operation’s culmination to
a moderate degree—a direct ramification of the applied field’s nuanced strength. It be-
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comes patently clear that each uncertainty belt advances in mutual correspondence with its
associated trajectory, a guarantee conferred by the symplectic structure embodied in the
matrices u(t, t0).

A second example, stemming from the pulses in Figure 1, merits inclusion in our
discussion. We shall proceed as before, but this time our focus will be on a squeezing
operation comprising pulses β1 and β3. A physical realisation involving these elastic forces
would necessitate the absence of a driving magnetic induction field, relying solely on the
application of a time-varying electric potential, as commonly encountered in quadrupole
ion traps of hyperbolic geometry. To facilitate comparison with our previous example,
we shall maintain the same initial conditions and operational interval. The temporal
progression of the squeezing transformation can be discerned in Figure 3, wherein the
extent of the compression of uncertainty ∆p(t) is evident, being reduced by a factor of
2—the value of the parameter α1 being assumed in order to generate pulse β3.
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Figure 3. The temporal progression of canonical variables q and p (in accordance with (5)), coupled
with their associated uncertainty shadows (computed via (24)), is facilitated by a quantum operation
stemming from the composition of pulses β1 and β3 as depicted in Figure 1. This operation can be
actualised through the application of a time-varying electric potential to the walls of a hyperbolic ion
trap, effectuating an augmentation of the uncertainty linked to the variable q, while concurrently con-
tracting the uncertainty related to variable p. Notably, both variables present identical uncertainties
at the operation’s commencement. Initially, the pair of semiclassical trajectories are encapsulated by
an uncertainty band of width 1/

√
2. However, by the operation’s termination, the trajectories for q

and p find themselves ensconced within uncertainty shadows of width
√

2 and 1/2
√

2, respectively.

Evolving Uncertainty Shadows

The matrices u(t, t0) facilitate not solely the evolution of the canonical pair and other
observables, but that of the wave function itself. To elucidate this notion, let us consider
a Gaussian wave function residing in the domain of L2(R). Presume that, in the coordi-
nate representation, the wave function is situated at x = q0 at the initial instant in the
operational time:

Ψ(x, 0) =
(

1
2π(∆q)2

) 1
4

exp(ip0(x− q0)) exp
(
− (x− q0)

2

4(∆q)2

)
, (23)

where (∆q)2 is the uncertainty of the variable q. To determine the value it assumes, we
simply employ the customary Robertson–Schrödinger expression for the uncertainty linked
to an observable O, namely (∆O)2 = 〈O2〉 − 〈O〉2, where 〈·〉 symbolises the expected
value. We see that, at the inception of the operational time, the uncertainties for the
canonical pair under scrutiny satisfy (∆q)2 = (∆p)2 = 1/2. Indeed, in light of the time
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evolution of variables q and p being dictated by the evolution matrix of form (6), it requires
minimal exertion to ascertain the evolved uncertainties:

(∆q(t))2 =
1
2

(
θ̇2(t) + θ2(t)

)
, (∆p(t))2 =

1
2

((
θ̇2(t)− 1

θ(t)

)2

+ θ̇2(t)

)
, (24)

and these uncertainty shadows give rise to the enveloping curves in Figures 2 and 3.
Moreover, this phenomenon may also be construed as evidence that the matrices u(t, t0)
encapsulate every facet relevant to the evolution of the underlying system, highlighting the
influential role the exact solutions θ(t) play in this context.

Unsurprisingly, the structure of the wave function (23) shall not remain unaffected
by the influence the solutions θ(t) exert. Certainly, the time evolution of the probability
density |Ψ(x, t)|2 at a specific instant t can be represented by employing the exact solutions
θ(t). The crux of the matter largely revolves around discerning the uncertainties in (24), yet
once these are computed, it is a direct consequence of (23) that

|Ψ(x, t)|2 =
1√

2π∆q(t)
exp

(
− (x− 〈q〉)2

2(∆q(t))2

)

=
1√

π
(
θ̇2(t) + θ2(t)

) exp

(
− (x− 〈q〉)2(

θ̇2(t) + θ2(t)
)).

(25)

We consider this expression satisfactory, as it serves to underscore the significance
imparted by the exact solutions θ(t) in the evolved quantum quantities. Naturally, one
might question whether this scenario is uniquely confined to Gaussian wave packets,
or whether it should be extended to include the probabilities for states outside of this
special case. Our deduction from these results is cautiously optimistic. While we maintain
a steadfast conviction that the latter admits an affirmative answer, and that the evolution
of non-Gaussian densities can be accurately characterised in terms of evolution matrices
associated with time-dependent elastic fields, we also acknowledge that this is a preliminary
exploration. The apparent universal applicability hinted at by our findings invites further
rigorous testing and detailed examination. Consequently, this might open up intriguing
avenues for studying the time evolution of various quantum states.

Furthermore, the attributes inherent to Gaussian functions grant the ability to examine
other interesting representations with relative ease. A prime example is the Wigner function.
We shall initiate our brief exposition by introducing its well-known definition, taking into
account the wave function in (23) at the beginning of the operational time:

W(x, p, 0) =
1
π

∫
R

dy Ψ∗(x + y, 0)Ψ(x− y, 0) exp(−i2py), (26)

The function, alas, does not find itself among the members of the Hilbert space of quantum
states, and as a consequence, it lacks the property of square integrability. This peculiarity
arises, in part, due to the fact that W2(x, p, 0) will not yield a physically meaningful
quantity, and even the act of integrating it across the entirety of the phase space fails to
produce a value of physical significance. However, one must not overlook the importance
of this function. Apart from offering a representation of quantum states in phase space,
the function in (26) serves as a tool for studying the semiclassical limit, where the Wigner
function gradually approximates a classical probability distribution. Might this function,
then, bear any association with the semiclassical trajectories that have been the subject of
our study?

As one might anticipate, the Wigner function corresponding to our paradigm shall
display a temporal dependence, adeptly assimilating the information imparted by the
evolution matrices u(t, t0). Let us see this further. Considering the integral in (26) simplifies
for the Gaussian wave function in (23), and by employing the uncertainties presented
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in (24), we reach a phase–space representation expressed through the exact solutions
θ(t), specifically

W(x, p, t) =
1
π

exp
(
− (x− 〈q〉)2

θ̇2(t) + θ2(t)

)
exp

− (p− 〈p〉)2(
θ̇2(t)−1

θ(t)

)2
+ θ̇2(t)

, (27)

owing to the conditions that θ(t) must fulfil as prescribed by Lemma 1, at the onset of the
evolution, the conditions θ̇(t0) = ±1 and θ(t0) → 0 shall lead both the momentum and
coordinate to possess the identical Gaussian width. Nevertheless, as the evolution unfolds
and arrives at the Fourier points tF, characterised by θ̇(tF) = 0 and θF ≡ θ(tF) 6= 0, we
discern an expansion of magnitude θ2

F in the Gaussian pulse’s width associated with the
coordinates, while the momentum experiences a contraction of magnitude 1/θ2

F. In the
presence of elastic forces, such behaviour can be consistently replicated throughout the
execution of a gentle operation without encountering much wave packet dispersion during
the control protocol. This holds true even in a class I scenario, where the motion is
unbounded. In contrast, in the case of β(t) forces, akin to those deliberated in Section 3.1,
the Gaussian packet’s widening will unrestrainedly spread as time evolution extends,
attributable to the absence of Fourier points that allow θ̇(tF) to vanish.

6. Conclusions and Perspectives

The exact solutions we examined have unfolded insights and potentialities in the
realm of quantum control operations. These solutions impart a nuanced understanding
of time-dependent quadratic Hamiltonians characterised by elastic forces, diverging from
traditional adiabatic formalism. These solutions, moreover, herald a novel scheme of control
sequence applications for microparticles, thereby establishing fresh avenues to augment the
precision and efficacy of quantum algorithms and quantum sensing procedures [29]. Yet,
this exploration has also uncovered significant challenges requiring further investigation.

Throughout our study, we focused on solutions arising from symmetric β(t) fields with
respect to the centre of the operational interval. However, the pursuit of quantum control
under different pulse forms—such as those outlined in Section 3.1 or even more complex
pulse configurations—remains an open challenge. Our analysis of β∗(t) fields, for instance,
elucidates the intricate interplay between the inherent physical constraints of the quantum
system and operational objectives. A well-behaved θ∗(t)—a crucial prerequisite for a
physical β∗(t)—coupled with the presence of zero velocity points, inherently predisposes
the operation towards a Fourier transformation as it commences. This transformation,
far from being a purely abstract mathematical occurrence, induces a tangible impact by
releasing energy streams powerful enough to divert the particle from its prescribed state.

This seeming inevitability of loss of control serves as a reminder of the often intricate
and demanding terrain of quantum operations. To navigate this landscape effectively, we
advocate for careful planning and control, such as imposing symmetry on the β(t) field in
relation to the interval’s centre. This strategy mitigates potential pitfalls, imbuing quantum
operations with a degree of predictability and control. Thus, while the fundamental
mathematical structure of the quantum world presents a formidable challenge, it also
paradoxically offers a pathway towards its own mastery and manipulation.

In this way, we arrived at a pivotal waypoint: the introduction of a programme that
enables the construction of elastic pulses that completely vanish at the start and end of
an operational interval. This scheme diverts us from the beaten track of conventional
methodologies, offering refuge from the abrupt electric shocks fetched by the Lorentz force
in the event of lingering kicked fields. These shocks, with their propensity for inducing
unwanted state transitions or instigating decoherence, present a perilous hurdle in our
quest to finesse control over quantum systems.

Moreover, in the realm of quantum squeezing, our exact solutions take on a new
guise. We have presented a path for manipulating uncertainties associated with canonical
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observables. This achievement does not only lie in its theoretical grace, but also in its
practical implications. As we peer through the lens of information, we realise that our
method holds the potential to transcend the boundaries of classical approaches anchored
in modified entropies [30]. By efficiently minimising a variable’s uncertainty, we could
dramatically improve the quality of noisy communications, thus benefiting the field of
quantum information.

In addition, we have unravelled expressions for the wave function and the Wigner
function in terms of the exact solutions. This poses a fresh opportunity to evolve other
quantum functionals in terms of the evolution matrices u(t, t0) or their entries. How-
ever, the broad implications intimated by our findings call for a thorough crucible of
meticulous examination for other quantum states and even for Hamiltonians beyond our
reduced model.

However, our journey is far from over. We recognise that questions lie ahead. Notably,
the magnitude of the physical quantities required to realise these transitions remains a
tantalising problem, primed for further scrutiny and research.

Let us recover physical dimensions and furnish a succinct example. Picture a Paul ion
trap with an internal radius r0 whose walls are being energised by a potential Φ(τ). Here,
τ symbolises the local time measured relative to the trap’s frame of reference, while t is a
dimensionless quantity such that t = τ/T, where T = 2π/ω represents an arbitrary time
scale, expressed in terms of the frequency ω of the fluctuating field. In the given scenario,
the elastic field is ascertained as β(t) = eΦ(τ)T2/mr2

0 in Gaussian units. For simplicity’s
sake, we shall assume that the charge e and the mass m of the particle remain constant
throughout the operation, while the potential Φ(τ) may undergo variation. Let us examine
the pulse β1 depicted in Figure 1, which reaches a peak of 9/5 at every odd multiple of π/4.
Consequently, for a proton traversing within a trap of r0 = 1 cm, whose field is oscillating
at a frequency of 100 Hz, a maximal potential of 1/10 V would be requisite to accomplish
the initial segment of the squeezing operation showcased in Figure 2 in approximately
3/200 s. The delicate trajectories arise from the modest orders of magnitude characterising
the operations being executed.

However, one might ponder if a distinct physical setup could jeopardise the gentle
scheme. By augmenting the frequency of the oscillatory field by an order of magnitude,
the voltage would inevitably have to escalate by two orders of magnitude to accomplish
the same transformation, while the operational time would be diminished by an order
of magnitude. Although soft operations could potentially hold true for higher orders of
magnitude, our methodology does not exhibit immunity across the entire energy spectrum.
This vulnerability arises due to the non-relativistic Hamiltonians present in (1), which
confine our examination to a low-energy domain and impose supplementary constraints
on the varieties of fields that may be taken into account.

Significant foundational challenges pervade our understanding, despite the vast
differences in scale. In accordance with the outlined schematic, the potential amplification
of states could provoke unresolved reduction problems reminiscent of the Elitzur–Vaidman
model for interaction-free measurements [31]. The squeezing of the wave packet might
be realised as a unitary evolution operation in L2(R) as Ψ(x) = λ−n/2Ψ(λx) (n = 1, 2, 3),
with |λ| < 1, suggesting that no fundamental limit obstructs the possibility of confining
the particle within an arbitrarily small interval.

Subsequently, the final measured position, represented as q′ = λq, could emerge as
an observable that commutes with its initial counterpart. This leads to the compelling
implication that an observer, executing a less-than-perfect position measurement in the
future, might retroactively glean more accurate information about its prior location. Con-
versely, a sufficiently accurate future measurement could retrospectively degrade an earlier
measurement. This echoes the enigma of quantum nondemolition measurements [32,33],
prompting the crucial question of whether the reduction of the wave packet influences the
particle state from preceding moments—much like Wheeler’s perplexing delayed choice
experiment [34].



Dynamics 2023, 3 313

One could then surmise a situation akin to the quantum eraser experiment by
Kim et al. [35], where information about past states could be inferred—or even erased—
based on future measurements. The implications of such an occurrence are profound,
potentially altering our comprehension of quantum measurements and the very nature of
time itself.

Nevertheless, it is indeed true that localisation must extract some energy [36]. It could
be hypothesised that the energy required to localise the amplified packet in the future is
supplied by the reservoirs in the medium where the particle is eventually absorbed. This
would necessitate an assumption that the relatively low energy deployed in the future
should be transposed into a higher energy requisite for more precise localisation in the past.
This proposition seems impossible due to the violation of causality, casting further doubt
on the potential realisation of such a scenario.
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