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Abstract: Ramsey theory constitutes the dynamics of mechanical systems, which may be described
as abstract complete graphs. We address a mechanical system which is completely interconnected
by two kinds of ideal Hookean springs. The suggested system mechanically corresponds to cyclic
molecules, in which functional groups are interconnected by two kinds of chemical bonds, represented
mechanically with two springs k1 and k2. In this paper, we consider a cyclic system (molecule) built
of six equal masses m and two kinds of springs. We pose the following question: what is the
minimal number of masses in such a system in which three masses are constrained to be connected
cyclically with spring k1 or three masses are constrained to be connected cyclically with spring k2?
The answer to this question is supplied by the Ramsey theory, formally stated as follows: what is the
minimal number R(3, 3)? The result emerging from the Ramsey theory is R(3, 3) = 6. Thus, in the
aforementioned interconnected mechanical system at least one triangle, built of masses and springs,
must be present. This prediction constitutes the vibrational spectrum of the system. Thus, the Ramsey
theory and symmetry considerations supply the selection rules for the vibrational spectra of the cyclic
molecules. A symmetrical system built of six vibrating entities is addressed. The Ramsey approach
works for 2D and 3D molecules, which may be described as abstract complete graphs. The extension
of the proposed Ramsey approach to the systems, partially connected by ideal springs, viscoelastic
systems and systems in which elasticity is of an entropic nature is discussed. “Multi-color systems”
built of three kinds of ideal springs are addressed. The notion of the inverse Ramsey network is
introduced and analyzed.

Keywords: Ramsey theory; complete graph; vibrational spectrum; eigenfrequency; selection rule;
cyclic molecule; viscoelasticity; entropic elasticity

1. Introduction

Ramsey theory is a branch of mathematics/combinatorics that focuses on the appear-
ance of ordered substructures within a structure of a known size. Ramsey theory states that
any structure will necessarily contain an orderly substructure [1]. Ramsey’s theorem, in one
of its graph-theoretic forms, states that one will find monochromatic cliques in any edge
labelling (with colors) of a sufficiently large complete graph [2]. In graph theory, a clique
is a subset of vertices of an undirected graph such that every two distinct vertices in the
clique are adjacent (vertices are considered as adjacent when both endpoints are connected
by the same edge [2,3]).

To demonstrate the theorem for two colors (say, blue and orange), let p and q be any
two positive integers. The Ramsey theorem states that there exists a least-positive integer
R(p, q) for which every blue-orange link of the complete graph on R(p, q) vertices contains
a blue clique on p vertices or an orange clique on q vertices. These integers are known as
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Ramsey numbers. The Schur Theorem, demonstrating that for any r ∈ N there is a natural
number P such that any r-coloring of [1, P] contains x, y, z having the same color such that
x + y = z, exemplifies the Ramsey theorem. One more example is supplied by the van
der Waerden’s theorem: coloring of the integers by a finite number of colors must have
long monochromatic arithmetic progressions [2,3]. Problems in Ramsey theory typically
ask a question of the form: How big must some structure be to guarantee that a particular
property holds? More specifically, Ron Graham described Ramsey theory as a “branch
of combinatorics” [3–6]. A simple, popular introduction to the Ramsey theory is found
in [4]. More advanced, rigorous mathematical approaches are presented in refs. [3,5,6].
Applications of the Ramsey theory for the theory of communication and decision making
were discussed [7]. Interconnection between the Ramsey theory and statistical physics was
also addressed [8]. A classical Hamiltonian system that favors configurations in a way
to establish lower bounds on Ramsey numbers was demonstrated [8]. The application of
the Ramsey theory to classical thermodynamics was demonstrated in [8]. Maps (graphs)
built of distinct thermodynamic states were addressed [9]. The Ramsey theory supplies
the answer to the following question: How large should be a graph describing connections
between discrete thermodynamic states to guarantee the appearance of thermodynamic
cycles [9]? The application of the Ramsey theory to physical systems, in which attraction
and repulsion forces act between the bodies constituting the system, has been discussed [10].
The Ramsey theory explains why nature prefers cubic lattices over hexagonal ones for
systems built of electric or magnetic dipoles [10].

In the present paper, we address the application of the Ramsey theory for the analysis
of mechanical systems, which may be represented as complete graphs. Cyclic molecules
may be seen as complete graphs [11,12]. Chemical bonds are seen on the edges (links)
of the graph, which in a very crude approximation, may be considered as ideal springs.
We demonstrate that the Ramsey theory introduces the “selection rules” for eigenmodes
(eigenfrequencies) of the cyclic molecules, treated as completed graphs. Thus, the Ramsey
approach to the vibrational spectra of the cyclic molecules becomes possible. The proposed
Ramsey approach predicts the Ramsey modes, which are necessarily present in these
spectra. One of the challenges of the Ramsey theory is the calculation of values of the
Ramsey numbers for multiple-vertices systems. It takes an exponential amount of time
to solve a Ramsey number problem with traditional electronic computers. DNA-based
computing of Ramsey numbers was suggested recently [13]. In our paper, we restrict
ourselves to the analysis of relatively small cyclic molecules, for which the Ramsey numbers
are known. Our paper demonstrates that the Ramsey theory defines the kind of “selection
rules” for the vibrational spectra of cyclic systems.

2. Ramsey Theory and Vibrations of Cyclic Molecules
2.1. Ramsey Theory for the System Interconnected by Two Kinds of Ideal Springs

Consider a cyclic mechanical system built of six identical masses m shown in Figure 1.
These masses are connected by two ideal Hookean massless springs k1 and k2 as shown
in Figure 1. The considered mechanical system corresponds to the cyclic chemical com-
pound in which two kinds of chemical bonds are present. These bonds are represented
schematically by the springs k1 and k2. The bonds form the complete graph, i.e., a graph
in which each pair of graph vertices (masses) is connected by an edge (representing the
spring/chemical bond). We demonstrate that the Ramsey theory supplies predictions re-
lated to the eigenvalues of frequencies of vibrations in the system described in Figure 1. In
other words, the Ramsey theory may predict the peculiarities of the vibrational spectrum of
the cyclic chemical compound (molecule) corresponding to the mechanical system [14,15],
shown in Figure 1. For the sake of simplicity, the masses of the vibrating bodies are taken
as equal.
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red lines connect those masses that are interconnected by the spring 𝑘1, ; while the green 

lines connect those masses interconnected by the spring 𝑘2. 

We recognize a number of monochromatic triangles (namely one green and three red 

triangles) in the scheme. The vibrational spectrum of the considered system will crucially 

depend on the presence of triple cyclic chains of masses. Let us pose the following ques-

tion: What is the minimal number of masses in the system in which three masses con-

nected by spring 𝑘1 or three masses connected by spring 𝑘2 form a triangle? The answer 

to this question is supplied by the Ramsey theory, and it is formulated as follows: What is 

the minimal number 𝑅(3,3)? The answer emerging from the Ramsey theory is: 𝑅(3,3) =

6. Indeed, we recognize in the example illustrated in Figure 1, that in a molecule built of 

six point masses, in which the relationships “to be connected by spring 𝑘1” and “to be 

connected by spring 𝑘2” are necessarily present, we find triads of masses connected cy-

clically by the same kinds of springs (at least one triangle-shaped ring chain of masses will 

be necessarily present in the system of masses completely interconnected one to another). 

Of course, the quantitative prediction of the eigenfrequency corresponding to the triangle-

shaped chain of masses for the asymmetric system, shown in Figure 1, presents an ex-

tremely challenging computational problem. This problem becomes solvable for the sym-

metric plane distribution of masses depicted in Figure 2 (the masses form a regular hexa-

gon). 

 

Figure 2. Equal masses m forming a regular hexagon are interconnected by two kinds of ideal 

springs denoted, 𝑘1 (green edges) and 𝑘2 (red edges). Two equilateral triangles “153” and “246” 

are recognized. 

Two equilateral triangles, namely “153” and “246” are present within the cyclic “mol-

ecule” depicted in Figure 2. These triangles built of the masses m and springs 𝑘2  are 

Figure 1. Cyclic chemical compound represented by a mechanical system forming a complete graph.
The system is built of identical masses m interconnected by two kinds of springs k1 (red ones) and
k2 (green ones).

The complete graph depicted in Figure 1 is a graph typical of the Ramsey theory. The
red lines connect those masses that are interconnected by the spring k1, while the green
lines connect those masses interconnected by the spring k2.

We recognize a number of monochromatic triangles (namely one green and three red
triangles) in the scheme. The vibrational spectrum of the considered system will crucially
depend on the presence of triple cyclic chains of masses. Let us pose the following question:
What is the minimal number of masses in the system in which three masses connected
by spring k1 or three masses connected by spring k2 form a triangle? The answer to this
question is supplied by the Ramsey theory, and it is formulated as follows: What is the
minimal number R(3, 3)? The answer emerging from the Ramsey theory is: R(3, 3) = 6.
Indeed, we recognize in the example illustrated in Figure 1, that in a molecule built of six
point masses, in which the relationships “to be connected by spring k1” and “to be connected
by spring k2” are necessarily present, we find triads of masses connected cyclically by the
same kinds of springs (at least one triangle-shaped ring chain of masses will be necessarily
present in the system of masses completely interconnected one to another). Of course,
the quantitative prediction of the eigenfrequency corresponding to the triangle-shaped
chain of masses for the asymmetric system, shown in Figure 1, presents an extremely
challenging computational problem. This problem becomes solvable for the symmetric
plane distribution of masses depicted in Figure 2 (the masses form a regular hexagon).
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Figure 2. Equal masses m forming a regular hexagon are interconnected by two kinds of ideal
springs denoted, k1 (green edges) and k2 (red edges). Two equilateral triangles “153” and “246”
are recognized.

Two equilateral triangles, namely “153” and “246” are present within the cyclic
“molecule” depicted in Figure 2. These triangles built of the masses m and springs k2
are shown with the red dashed lines. If harmonic oscillations of the masses connected by
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the green and red springs are decoupled (this will take place when k1 � k2 is fulfilled), the
eigenvalues of the vibrations occurring within the red dashed triangles are calculated with
the standard methods of classical mechanics [15]. The full spectrum of the eigenfrequencies
ωeigen in this case is given by Equation (1):

ωeigen =

(
0, 0, 0,

√
3k2

2m
;

√
3k2

2m
;

√
3k2

m

)
(1)

Two of aforementioned trivial zero-eigenfrequencies correspond to the x and y transla-
tions of the entire system in the XY-plane, and the third one corresponds to the uniform
rotation of the entire system about its center of mass (see Appendix A). The detailed
treatment of the eigenmodes is supplied in Appendix A. In addition, the modes inherent
for the ring of green springs k1 should be considered [16,17]. We call these modes “the
Ramsey modes”. It turns out that the Ramsey theory imposes restrictions on the vibrational
spectrum of the cyclic mechanical systems, described by complete graphs. In other words,
it supplies the “selection rules” for the vibrational spectra of the cyclic molecules, the
chemical structure of which may be described with the complete graphs [13–17]. It is
noteworthy that R(2, 6) = 6. Thus, if we have a molecule described by a complete graph,
which is built of six functional groups, or two or six interconnected groups will necessarily
be present in its structure; thus explaining the formation of the benzene-like ring structures
(see Figure 2).

At the same time, the eigenfrequencies supplied by Equation (1) will not necessarily
appear in the five-fold symmetrical molecule built of five point masses, shown in Figure 3.
Indeed, the triangles built from the springs are not present in these structures, and this
conclusion immediately follows from the Ramsey approach: R(3, 3) = 6 > 5.
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Figure 3. Five equal masses m forming a regular pentagon are interconnected by two kinds of ideal
springs denoted k1 (green edges) and k2 (red edges). No triangles are formed in the spring network.
The Ramsey number R(3, 3) = 6 > 5.

Again, the Ramsey theorem works as a selection rule for the vibrational spectra of
molecules.

The proposed Ramsey approach is easily extended for 3D vibrating systems/molecules
such as those shown in Figure 4. The molecule shown in Figure 4 is built from two
tetrahedrons, denoted “1234” and “1235”. Triangle “123” is located in the plane (XOY)
(see Figure 4). Masses placed in the vertices of the tetrahedron are connected by two kinds
of springs, the green (k1) and red (k2) ones.

Figure 4 depicts coloring of a 3D system in which no monochrome triangle is present.
Thus, eigenmodes supplied by Equation (1) will not appear in the vibrating system/molecule
built of five point masses, shown in Figure 4. This result conforms with the Ramsey ap-
proach: R(3, 3) = 6 > 5; and it works for 3D systems. It is noteworthy that the springs
connecting the masses may be classic or quantum ones [15].
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Figure 4. 3D systems built of two tetrahedrons “1234” and “1235” are depicted. Masses placed in the
vertices of the tetrahedrons are connected by two kinds of springs. The green (k1) and red (k2) links
denote the springs. Triangle “123” is located in the plane (XOY).

2.2. Direct and Inverse Ramsey Networks of Ideal Springs

It is instructive to introduce the inverse Ramsey networks of ideal springs, i.e., to
replace springs k1 with springs k2, and springs k2 to be replaced correspondingly with
springs k1. We call such a Ramsey network the “inverse graph”; introducing an inverse
Ramsey network is possible for any complete source graph. Construction of the “inverse
graph” results in replacement of the red links depicted in Figure 1 with the green links
and vice versa. Consider the Ramsey structure built of six atoms, as depicted in Figure 1.
Obviously, the total number of triangles in the “direct” (source) and “inverse” Ramsey
graphs is the same, thus giving rise to Equation (2):

tr + tg = t
′
r + t

′
g, (2)

where tr and tg are the numbers of red and green triangles in the source graph; t
′
r and t

′
g

are the numbers of red and green triangles in the inverse graph. Equation (2) represents the
“conservation law” for the Ramsey complete networks built of six elements. It is noteworthy
that direct and inverse graphs form the Abelian (commutative group), when the inversion
of the color of the link is taken as an operation.

2.3. Ramsey Theory for the System of Vibrating Masses Partially Connected by the Ideal Springs

It seems from the first glance that the Ramsey theory will be useful only for systems
completely interconnected by springs. Thus, the complete graphs, built of springs, depicted
in Figures 1–4 emerge.

We demonstrate that the Ramsey approach also works for the systems which are
partially interconnected by the springs, such as those shown in Figure 5. Consider a
two-fold symmetrical system built of six-point masses m connected by ideal springs k as
depicted in Figure 5. It should be emphasized that the pairs of masses labeled “13”, ”14”,
“45”, “35”, “46” and “36” are not connected by springs (see Figure 5).

Let us connect the masses interacting via spring k with black links, and disconnected
masses via red links as shown in Figure 5. Thus, the complete graph built of black and red
links emerges. According to the Ramsey theory, at least one red or black triangle should nec-
essarily appear within the graph. Indeed, black triangles “156” and “234” are present in the

graph. The eigenfrequencies inherent for these triangles are ωeigen =

(√
3k
2m ;
√

3k
2m ;
√

3k
m

)
.

Thus, we come to the important conclusion, namely: vibrating systems partially intercon-
nected with springs may be also described with the Ramsey approach.
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Black triangles “156” and “234” are present in the graph.

2.4. Multi-Color Systems Built of Ideal Springs

The Ramsey approach enables the analysis of more complicated cyclic compounds
interconnected by three kinds of ideal springs, denoted k1, k2 and k3. Thus, the analysis
of the vibration of such a system is reduced to the Ramsey number R(3, 3, 3). It was
established that R(3, 3, 3) = 17. If harmonic oscillations of the masses are decoupled (this
will take place when k1

∼= k2 � k3 is fulfilled), the eigenvalues of the vibrations occurring
within the triangles are calculated by the standard methods of classical mechanics and they

are given by: ωeigen =

(√
3k3
2m ;

√
3k3
2m ;
√

3k3
m

)
.

2.5. Ramsey Model of Viscoelasticity

It is also instructive to consider the Ramsey model of viscoelasticity presented in
Figure 6 [16–19]. In this model point masses m are connected by ideal springs k or by
viscous elements, quantified by viscosity denoted η.
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Figure 6. The Ramsey model of viscoelastic body is presented. Point masses mi (i = 1 . . . 6) are
connected by ideal springs k or with viscous elements, quantified by viscosity η. Viscous joints are
shown in red whereas elastic joints are connected by black links.
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Elastic links are shown in black, whereas viscous connections are shown in red. For the
sake of simplicity, we consider the complete graph, similar to that shown in Figure 5. For the
Ramsey number R(3, 3) = 6, a black (elastic) or red (viscous) triangle will necessarily appear
in the graph. Indeed, elastic triangles labeled “156” and “234” are present in the graph.

The eigenfrequencies inherent for these triangles are ωeigen =

(√
3k
2m ;
√

3k
2m ;
√

3k
m

)
.

Thus, we conclude that the Ramsey approach is applicable for modeling of viscoelastic
media [18–21], namely: vibrating systems partially interconnected by springs and partially
with viscous elements may be described with the Ramsey approach. Of course, there exists
the possibility that no “elastic” triangles will be present in the graph and only viscous ones
will appear. In this case, only eigenvalues of frequencies inherent for pair oscillations of
masses will appear in the vibration spectrum of the viscoelastic body.

2.6. Ramsey Theory for Vibrations of Systems in Which Entropy Elasticity Is Present

The approach presented in Section 2.1 is easily extended to the analysis of systems in
which elasticity of an entropic nature, as it takes place for polymer molecules [22]. Entropic
forces are also responsible for the contraction of cytoskeletal networks [23]. Consider
a cyclic, 6-fold symmetrical interconnected system built of identical masses m, such as
depicted in Figure 1, in which springs k1 and k2 represent elasticity of two kinds of ideal
polymer chains. Assume that the red links correspond to ideal polymer chains built of
N1 Kuhn monomers; the Kuhn length of the monomer is denoted b1. In turn, the green
links correspond to ideal polymer chains built of N2 Kuhn monomers, the Kuhn length
of the monomer is labeled b2. The entropic string constants of the chains are given by
Equation (3) [22]:

k1 =
3kBT
N1b2

1
; k2 =

3kBT
N2b2

2
(3)

where kB and T are the Boltzmann constant and the temperature of the polymer chains,
correspondingly. In the simplest possible configuration of the symmetric polymer molecule,
such as depicted in Figure 2 (again springs k1 and k2 represent entropic elasticity of ideal
polymer chains), in the limiting case of k1 � k2, we obtain for the spectrum of

ωeigen =

(
0, 0, 0,

3
b2

√
kBT

2N2m
;

3
b2

√
kBT

2N2m
;

3
b2

√
kBT
N2m

)
(4)

Remarkably all of the eigenfrequencies scale are: ωeigen ∼ 1
b2

, ωeigen ∼ 1√
N2

, ωeigen ∼√
T, thus, their values grow as square root from the temperature.

3. Conclusions

Our research is motivated by a search for physical applications of the Ramsey theory.
Ramsey theory is a branch of combinatorics that predicts the appearance of ordered sub-
structures within a structure of a known size [1–6]. Ramsey theory states, under addressing
the properties of complete graphs, that any structure will necessarily contain an orderly
substructure [1–6]. We applied the Ramsey theory for the analysis of cyclic mechanical
systems, in which point masses m are connected by two kinds of ideal springs. Such
systems may be seen as complete graphs, in which vertices (point masses) are connected
by the edges colored with two colors (i.e., two kinds of springs). We applied the Ramsey
theory for these kinds of graphs. These graphs also represent cyclic molecules in which
functional groups are connected by two kinds of chemical bonds [11,12]. Two kinds of
springs/chemical bonds in our case are colored with “green” and “red” correspondingly.
The Ramsey number for the aforementioned systems is defined as the smallest value of n
such that in a group of n point masses either a group of j masses forms a complete network
of red springs or i masses form a complete network connected by the green springs. We
formulated the following question: What is the minimal number of masses in the system
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in which three masses connected by spring k1 or three masses connected by spring k2
form a triangle? The answer to this question emerges from the Ramsey theory, and is
mathematically formalized as follows: what is the minimal Ramsey number R(3, 3)? The
Ramsey theory states that it is R(3, 3) = 6. Thus, within the interconnected mechanical
system built of interconnected six point masses, the triangles (triangle), comprising masses
and springs of the same kind will be necessarily present. This prediction constitutes the
vibrational spectrum of the system. Thus, the Ramsey theory supplies selection rules for the
vibrational spectra of the mechanical systems/cyclic molecules, which may be described by
the complete graph. Consider also that R(2, 6) = 6. Thus, if we have a molecule described
by a complete graph, which is built of six functional groups, either two or six interconnected
groups will necessarily be present in its chemical structure; thus explaining the formation
of the benzene-like ring structures.

The cyclic molecule built of five functional groups interconnected by two kinds of
chemical bonds will not be necessarily characterized by the collective modes involving
vibration of three-point entities. This fact is easily explained within the Ramsey approach
R(3, 3) = 6 > 5. The calculation of the eigenfrequencies of these systems in the general
case poses essential mathematical difficulties.

Symmetrical systems/molecules in turn may be analyzed explicitly. A six-fold sym-
metrical system built of six entities is addressed. The eigenfrequencies inherent for the
vibrations of triangles are reported. We call these modes the Ramsey modes of the systems
described by complete graphs [7,8]. The introduced approach is easily extended for 3D
vibrating systems interconnected by classical/quantum springs, which may be described as
abstract complete graphs. The extension of the proposed Ramsey approach to the systems
partially connected by ideal springs, viscoelastic systems, and systems in which elasticity
is of an entropic nature is discussed. Ramsey eigenfrequencies of the oscillations driven
by entropic forces are calculated. “Multi-color systems” built of three kinds of springs are
addressed. The notion of the inverse Ramsey network is introduced and analyzed. The
total number of triangles in the direct (source) and inverse Ramsey graphs is the same. We
emphasize the effectivity of the synthesis of the Ramsey and symmetry-based approaches
for the analysis of complicated dynamic systems. Future work should consider k-partite-
graph extensions of Ramsey theory, which correspond to graphs with k sets of nodes which
cannot self-interact.
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Appendix A

Calculation of eigenmodes of system built of the point masses interconnected by ideal
springs forming an equilateral triangle.

Consider three equal masses connected by ideal springs k2. Springs form an equilateral
triangle (the side of the triangle is a), as shown in Figure A1. Assuming the center of the
masses of the entire system is in rest yields:

x1 + x2 + x3 = 0; y1 + y2 + y3 = 0, (A1)

where xi and yi denote the displacement of i-body from equilibrium.
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Figure A1. Modes of the vibrations occurring within a system built from three equal masses m (a)
and springs k2. (b) Springs form an equilateral triangle. Purple arrows show the displacement of
the masses.

The addressed planar system is characterized by six degrees of freedom; hence it neces-
sarily has six eigenfrequencies; three of these eigenfrequencies equal zero (see Equation (1)).
Two of these trivial eigenfrequencies correspond to the x and y translations of the entire
system in the XY-plane, and the third one corresponds to the uniform rotation of the entire
system about its center of mass. The non-trivial modes are depicted in Figure A1. The
mode shown in inset (a) corresponds to the situation when all of the bodies move along the
bisectors of the triangle. The Lagrange function corresponding to this mode is supplied by
Equation (A2):

L
(

x,
.
x
)
=

3m
.
x2

2
− 9k2x2

2
(A2)

Equation (A2) immediately yields (see Equation (1)):

ω1eigen =

√
3k2

m
(A3)

One more mode, shown in inset (b), is found from the symmetry considerations. One
of the nodes (the upper one in the inset (b)) moves along the bisector of the triangle. The
movements of the remaining nodes in this case will be a mirror image of each other in the
plane of symmetry of the triangle. The Lagrange function corresponding to this mode is
supplied by Equation (A4) (x1, y1 � a is adopted):

L
(
x1, y1,

.
x1
)
= 4m

.
x2

1 −
9
4

k2x2
1 −

27k2y2
1

4
+

3
√

3k2x1y1

2
(A4)

The eigenfrequency emerging from this Lagrange function is given by Equation (A5):

ω2eigen =

√
3k2

2m
(A5)

The symmetry considerations yield (see Equation (1)):

ω3eigen = ω2eigen =

√
3k2

2m
(A6)
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