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Abstract: Dual-rotating retarder polarimeters constitute a family of well-known instruments that are
used today in a great variety of scientific and industrial contexts. In this work, the periodic intensity
signal containing the information of all sixteen Mueller elements of depolarizing or nondepolarizing
samples is determined for different ratios of angular velocities and non-ideal retarders, which are
mathematically modeled with arbitrary retardances and take into account the possible diattenuating
effect exhibited by both retarders. The alternative choices for generating a sufficient number of
Fourier harmonics as well as their discriminating power are discussed. A general self-calibration
procedure, which provides the effective values of the retardances and diattenuations of the retarders,
the relative angles of the retarders and the analyzer, and the overall scale coefficient introduced by
the detection and processing device are also described, leading to the absolute measurement of the
Mueller matrix of the sample.

Keywords: Mueller polarimetry; Mueller matrices; dual-rotating retarder polarimeter

1. Introduction

The transformation of the states of polarization by their interaction with a material
medium exhibiting linear polarimetric behavior is determined by a 4 × 4 real matrix, called
the Mueller matrix [1] (even though it was Soleillet who described such linear transforma-
tions for the first time [2,3]). Mueller matrices depend on the interaction conditions, that is,
given a plane light wave (probe light beam) with specific spectral profile and a material
medium, different Mueller matrices characterize their polarimetric interactions depending
on the relative orientation of the incident light beam and the material sample, the angle of
observation (either by refraction, reflection or scattering), the area and location of the part
of the sample on which the light probe falls on, etc.

Thus, once such interaction conditions are specified, the possible states of polarization
of the incident light probe, which are fully described by the corresponding Stokes vectors s,
are transformed as s

′
= Ms, where M is the Mueller matrix that corresponds to such a kind

of interaction, and s
′

is the Stokes vector of the emerging light (in the observation direction).
Mueller polarimetry can be applied to a great collection of phenomena involving

different types of electromagnetic waves. Beyond polarimeters operating in the optical
range, an interesting and important case is that of synthetic aperture radar polarimetry
(SAR polarimetry) where microwaves are emitted and detected from airborne or satellite
devices [4]. Since Mueller polarimeters operate in a nondestructive manner, they find an
enormous variety of applications in science, industry, and medicine.

The present work is focused on Mueller polarimeters operating in the optical range
and whose structure is determined by a sequence of the following elements (Figure 1):
(1) a collimated light source L; (2) a perfect polarizer P1; a linear retarder R1 (retardation
plate); (3) the material sample X; (4) a second linear retarder R2; (5) a second perfect
polarizer P2; and (6) a detection of light intensity and processing device D.
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plate); (3) the material sample X; (4) a second linear retarder R2; (5) a second perfect po-
larizer P2; and (6) a detection of light intensity and processing device D. 

 
Figure 1. General structure of a dual-rotating retarder Mueller polarimeter. The polarization state 
generator (PSG) is constituted by the light source (L), which provides a collimated beam, a perfect 
linear polarizer (P1), and a rotating linear retarder (R1). After emerging from the PSG, the light 
probe is incident on the sample (X), in general depolarizing, whose Mueller matrix is under meas-
urement (by refraction, reflection, scattering, etc.). The polarization state analyzer (PSA) is consti-
tuted by a second rotating linear retarder (R2), a second perfect linear polarizer (P2), and the detec-
tion and processing device (D), which also controls, through the appropriate electro-mechanical 
gadgets, the relative positions of PSA, X, and PSG, as well as the respective rotations of R1 and R2 
at different angular velocities. 

As shown in Figure 1, the different elements are arranged along the propagation di-
rection of the light probe, in such a manner that the set L, P1, and R1 constitutes the so-
called polarization state generator (PSG), while the set R2, P2, and D composes the so-
called polarization state analyzer (PSA). To produce a periodic intensity signal containing 
complete information of the Mueller matrix M of the sample X under measurement (in 
general depolarizing), both linear retarders rotate with respective constant angular veloc-
ities 1ω  and 2 1Rω ω=  (R being a rational number whose appropriate values will be an-
alyzed). The unknown M determines the shape of the periodic intensity signal and is cal-
culated from the Fourier analysis of said signal. 

Since the signal is processed through a discrete number of intensity values distrib-
uted along a single cycle of the detected signal at equal intervals, the rotation can be pro-
duced either by continuous rotation of R1 and R2 or by step-by-step motion operation. 

Leaving aside possible disturbances (errors), the shape of a cycle of the intensity sig-
nal depends on the following parameters: the relative angle 2θ  of the transmissions axis 
of P2 with respect to that of P1 (taken as the reference for the angles of the components 
and the sample); the relative angles 1α  and 2α , at instant zero (taken as the origin of the 
cycle), of the fast axes of R1 and R2 with respect to the orientation of the transmission axis 
of P1; the retardances, 1Δ  and 2Δ , of the linear retarders R1 and R2; and the ratio R 
(whose feasible values will be discussed from the general framework presented in this 
work). 

Furthermore, according to certain realistic experimental configurations, the linear re-
tarders can be considered imperfect, or non-ideal, in the sense that they exhibit respective 
linear diattenuations, in such a manner that they behave as diattenuating retarders [5,6], 
with respective diattenuations 1D  and 2D . Obviously, there are many other physical 
phenomena causing depolarization and other imperfect aspects of the behavior of the re-
tarders, which are not considered in the parameterization used in this work [7]. The 
Mueller matrices associated with polarizers and retarders will be described in the next 
sections together with the formulation of the detected intensity signal. 

Obviously, the above-indicated parameters are considered fixed (achromatic) for the 
whole spectral profile of the light probe, which should be narrow enough for that purpose. 

Figure 1. General structure of a dual-rotating retarder Mueller polarimeter. The polarization state
generator (PSG) is constituted by the light source (L), which provides a collimated beam, a perfect
linear polarizer (P1), and a rotating linear retarder (R1). After emerging from the PSG, the light probe
is incident on the sample (X), in general depolarizing, whose Mueller matrix is under measurement
(by refraction, reflection, scattering, etc.). The polarization state analyzer (PSA) is constituted by a
second rotating linear retarder (R2), a second perfect linear polarizer (P2), and the detection and
processing device (D), which also controls, through the appropriate electro-mechanical gadgets, the
relative positions of PSA, X, and PSG, as well as the respective rotations of R1 and R2 at different
angular velocities.

As shown in Figure 1, the different elements are arranged along the propagation
direction of the light probe, in such a manner that the set L, P1, and R1 constitutes the
so-called polarization state generator (PSG), while the set R2, P2, and D composes the
so-called polarization state analyzer (PSA). To produce a periodic intensity signal contain-
ing complete information of the Mueller matrix M of the sample X under measurement
(in general depolarizing), both linear retarders rotate with respective constant angular
velocities ω1 and ω2 = R ω1 (R being a rational number whose appropriate values will be
analyzed). The unknown M determines the shape of the periodic intensity signal and is
calculated from the Fourier analysis of said signal.

Since the signal is processed through a discrete number of intensity values distributed
along a single cycle of the detected signal at equal intervals, the rotation can be produced
either by continuous rotation of R1 and R2 or by step-by-step motion operation.

Leaving aside possible disturbances (errors), the shape of a cycle of the intensity signal
depends on the following parameters: the relative angle θ2 of the transmissions axis of P2
with respect to that of P1 (taken as the reference for the angles of the components and the
sample); the relative angles α1 and α2, at instant zero (taken as the origin of the cycle), of
the fast axes of R1 and R2 with respect to the orientation of the transmission axis of P1; the
retardances, ∆1 and ∆2, of the linear retarders R1 and R2; and the ratio R (whose feasible
values will be discussed from the general framework presented in this work).

Furthermore, according to certain realistic experimental configurations, the linear
retarders can be considered imperfect, or non-ideal, in the sense that they exhibit respective
linear diattenuations, in such a manner that they behave as diattenuating retarders [5,6],
with respective diattenuations D1 and D2. Obviously, there are many other physical
phenomena causing depolarization and other imperfect aspects of the behavior of the
retarders, which are not considered in the parameterization used in this work [7]. The
Mueller matrices associated with polarizers and retarders will be described in the next
sections together with the formulation of the detected intensity signal.

Obviously, the above-indicated parameters are considered fixed (achromatic) for the
whole spectral profile of the light probe, which should be narrow enough for that purpose. It
should be stressed that the measured Mueller matrix corresponds to the linear polarimetric
response (either depolarizing or not) of the material sample for each specific spectral profile
of the light probe. In addition, different measurements can be sequentially performed
for different central frequencies of the light probe, leading to spectroscopic polarimetry.
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Moreover, the position and relative orientation of the sample itself can be varied, producing
different measured Mueller matrices. In particular, imaging polarimetry is a very fruitful
technique, which is realized when the spot-size of the light probe maps a spatial area of the
sample, and then different quantities derived from the Mueller matrices are represented,
producing respective images.

Since the present work is focused on general features of dual-rotating retarder Mueller
polarimeters, which despite being currently widely used, have a relatively long history, it
is worth briefly mentioning the most notable successive contributions that have been made
over time.

After a series of valuable contributions where rotating retarders were considered as
components of Stokes or Mueller polarimeters [8–13], a first theoretical description of a
dual-rotating retarder with equal ideal quarter-wave retarders (∆1 = ∆2, D1 = D2 = 0)
was presented by Azzam [14]. Then, Hauge formulated the equations for a dual-rotating
retarder with imperfect retarders affected by certain associated diattenuation and a ratio
of angular velocities R = 5/1 [15], which is the most common choice for this kind of po-
larimeters [16]. Nevertheless, as discussed in further sections, other ratios can alternatively
be used. It should be noted that ratios R = a/b and R = b/a (a, b being appropriate
natural numbers) lead to entirely equivalent results, and therefore, for the sake of simplicity,
without loss of generality we are using the convention R = a/b with a > b (i.e., the rotation
of R2 is faster than that of R1).

An experimental dual-rotating retarder polarimeter was developed by Gil and Bernabéu
in 1979 [17,18], with R = 3/2, leading to fifteen independent Fourier coefficients that allow
for the measurement of Mueller matrices with fewer than sixteen independent elements,
as occurs, for instance, for Mueller matrices containing certain zero elements, or being
symmetric, or being nondepolarizing (also called pure Mueller matrices, defined as those
that do not decrease the degree of polarization of incident totally polarized light in either
forward or reverse direction [1]).

An improved complete and absolute Mueller polarimeter with imperfect retarders,
self-calibration procedure, and R = 5/2 was then built by Gil and Bernabéu in 1983 [19].
Many other experimental versions with R = 5/1 have been developed, starting with the
one due to Goldstein in 1992 [16]. A large number of similar or alternative Mueller and
Stokes dynamic polarimeters, and related matters, were also reported over time [20–50].

A number of interesting approaches for the error analysis in dual-rotating retarder
Mueller polarimeters has also been published [51–62], including some relatively recent
ones, which show the interest provoked by this type of polarimeter despite the time elapsed
since its appearance. It is worth also mentioning the successive contributions to partial
Mueller polarimetry [63–66], which is applicable to some kinds of samples, especially
nondepolarizing ones.

This work deals with a general formulation of dual-rotating retarders with arbitrary
configuration parameters (R, ∆1, ∆2, D1, D2, α1, α2, θ2), which is described and discussed
through the following sequence of sections.

The mathematical formulations and notations used for the Mueller matrices describing
the polarimetric behavior of the polarizers and retarders of the polarimeter are introduced
in Section 2.

Section 3 is devoted to the mathematical description of the Fourier coefficients of
the measurement intensity signal, which can easily be determined, for instance, through
computerized discrete fast Fourier transform of such a periodic signal and that allows for
obtaining the elements of the Mueller matrix of the sample under measurement in terms of
(1) the said Fourier coefficients and (2) the configuration parameters, including ratio R.

Section 4 describes the self-calibration operation mode, together with the correspond-
ing structure of the Fourier coefficients, leading to the general expressions for the effective
values of the configuration parameters (for any given value of R), as well as the overall scale
coefficient introduced by the instrument, which allows for further complete measurements
of the Mueller matrices of the samples (in general depolarizing), including the value of
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the mean intensity coefficient (absolute Mueller polarimetry), whose knowledge is critical
for the physical realizability of possible serial or parallel decompositions of the measured
Mueller matrices [67–70].

Leaving aside the fact that the self-calibration mode provides the effective values for
the configuration parameters of the polarimeter, some advisable procedures to be realized
prior the self-calibration are described in Section 5. The self-calibration for the common
and particularly interesting case where both retarders are equal is described in Section 6.
Section 7 is devoted to the comparative analysis of the most convenient choices for the
ratios of angular velocities, namely, R = 5/2 and R = 5/1. Section 8 deals with an example
of experimental polarimeter designed with speed ratio R = 5/2. Finally, the main results
are summarized and briefly discussed in the Conclusions section.

2. Mueller Matrices of the Polarizers and Retarders of the Polarimeter

As described in the Introduction, the dual-rotating retarder Mueller polarimeter in-
volves a polarization state generator (PSG) containing a fixed linear polarizer and a rotating
retarder, as well as a polarization state analyzer (PSA) containing a second rotating retarder
as well as a second linear polarizer.

Since polarizers with a very high extinction ratio can be easily achieved in the mar-
ket [71,72], both polarizers of the polarimeter can be modeled through perfect linear
polarizers, whose Mueller matrices have the form [1]:

MPi(qi, θi) =
qi
2


1 cos 2θi sin 2θi 0

cos 2θi cos2 2θi sin 2θi cos 2θi 0
sin 2θi sin 2θi cos 2θi sin2 2θi 0

0 0 0 0

, (i = 1, 2) (1)

where q1 and q2 are the respective maximal intensity transmittances associated with the
fast (or slow) transmission axes of P1 and P2, while θ1 and θ2 represent the orientations
of the respective transmission axes with respect to a given laboratory reference axis
X, so that MP1(q1, θ1) and MP2(q2, θ2) are the Mueller matrices associated with P1 and
P2, respectively.

Since q1 and q2 appear as global coefficients in the expression of the intensity signal
reaching the detector, the specific vales for q1 and q2 do not take place in the measurement
of the Mueller matrix M of the sample. Therefore, for the sake of simplicity and without
loss of generality, the Mueller matrices of both polarizers will be taken with q1 = q2 = 2.

Regarding the retarders R1 and R2 contained in the PSG and PSA, respectively, they
will be considered as non-ideal (or imperfect), in the sense that they behave as diattenuating
retarders exhibiting a certain amount of diattenuation associated with the transmission
of intensity for linear polarized states of light that propagate aligned to the fast and slow
axes of each retarder [5,6,73]. Such a behavior is realistic because of the very principle that
is utilized to bring about differential retardation and, in particular, the multiple internal
reflections phenomena producing certain linear diattenuation of retardation plates [74].

The generic matrix of a linear diattenuating retarder whose fast axis is oriented at
angle ϕ with respect to the reference laboratory X axis, with retardance ∆ and principal
transmittance coefficients p2

1 and p2
2, has the form [19]:

MRL(ϕ, ∆, m00R, D) =

m00R


1 Dc2ϕ Ds2ϕ 0

Dc2ϕ c2
2ϕ + Kc∆s2

2ϕ (1− Kc∆)s2ϕc2ϕ −K s∆s2ϕ

Ds2ϕ (1− Kc∆)s2ϕc2ϕ s2
2ϕ + Kc∆c2

2ϕ K s∆c2ϕ

0 K s∆s2ϕ −K s∆c2ϕ Kc∆

,

[
m00R =

p2
1+p2

2
2 , D =

p2
1−p2

2
p2

1+p2
2
, K = 2p1 p2

p2
1+p2

2
=
√

1− D2, p1 ≥ p2

]
(2)
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where the abbreviated notations cε ≡ cos ε, sε ≡ sin ε have been used for the angles
appearing in the above expression, while D and K are the diattenuation and the counterdiat-
tenuation [1] of the linear retarder, respectively. As with the Mueller matrices of polarizers
P1 and P2, the MICs m00R1 and m00R2 of retarders R1 and R2 can be taken to be equal to
1 without loss of generality (as we will see in Section 4, the effective overall coefficient, or
scale, affecting the intensity signal can be calculated through the calibration procedure and
therefore it does not take place in the calculation of the unknown M).

According to the usual convention in other related works, Mueller matrices normalized
to have m00 = 1 will be denoted as M̂, so that the non-ideal retarders R1 and R2 will be
represented by respective Mueller matrices denoted as M̂RLi(ϕi, ∆i, Di)(i = 1, 2), where
ϕi = αi + ωit; ωi are the respective angular velocities of the retarders, while αi are the
respective angles at the time reference, t = 0.

3. Fourier Structure of the Measurement Intensity Signal

The Mueller matrix MI of the serial combination of the components of the PSG (P1
and R2), the material sample (X), and the polarization devices of the PSA (R2 and P2) is
given by:

MI = M̂P2(θ2)M̂RL2(α2 + Rω1t, ∆2, D2)M M̂RL1(α1 + ω1t, ∆1, D1)M̂P1(θ1), (3)

where a generic ratio R = ω2/ω1 between both angular velocities of the retarders
has been introduced. The angular reference convention θ1 = 0 will be taken for the
subsequent calculations.

After passing through the first polarizer, P1 (with θ1 = 0), and regardless of the state of
polarization of the light beam emerging form the light source (with associated Stokes vector
denoted as sL), the state of polarization of the light probe is fixed as linearly polarized
oriented at 0o, with the associated Stokes vector:

sI = M̂P1(0)sL = v(1, 1, 0, 0)T [v ≡ sL0 + sL1]. (4)

Again, since the scale coefficient v will not take place in the final results, we will take
the normalized Stokes vector ŝI = (1, 1, 0, 0)T, so that the Stokes vector s of the light probe,
just before falling on the detector, is given by:

s = MI ŝI , (5)

and, therefore, the detected intensity signal I(t) = s0(t) is determined by the first compo-
nent, s0, of s.

By using the general expressions for the Mueller matrices involved in Equation (5) as
well as some trigonometric relations, the explicit form of I(t) can be obtained as a function
of the unknown elements mij of M (in general depolarizing) and the set of parameters
(R, ∆1, ∆2, D1, D2, α1, α2, θ2, l), l being the overall scale coefficient to be calculated through
the self-calibration process described in Section 4.

To do so, and due to the complexity of the algebraic expressions, the abbreviated notations
ci ≡ cos τi, si ≡ sin τi are used for the following angles appearing in further expressions:

τ2 ≡ 2θ2, τ3 ≡ 2α1, τ4 ≡ 4α1,
τ5 ≡ 2α2, τ6 ≡ 2(α2 − θ2), τ7 ≡ 2(2α2 − θ2),
τ8 ≡ 2(α1 + α2), τ9 ≡ 2(α1 + α2 − θ2), τ10 ≡ 2(α1 − α2),
τ11 ≡ 2(α1 − α2 + θ2), τ12 ≡ 2(2α1 + α2), τ13 ≡ 2(2α1 − α2),
τ14 ≡ 2(2α1 + α2 − θ2), τ15 ≡ 2(2α1 − α2 + θ2), τ16 ≡ 2(2α1 + 2α2 − θ2),
τ17 ≡ 2(2α1 − 2α2 + θ2), τ18 ≡ 2(α1 + 2α2 − θ2), τ19 ≡ 2(α1 − 2α2 + θ2),
τ20 ≡ 2(−2α1 + θ2), τ21 ≡ 2(−α1 + θ2),

(6)
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while the following set of auxiliary parameters is also defined:

t1 ≡ 1/2 + K1 cos ∆1, t2 ≡ 1/2 + K2 cos ∆2,

d1 ≡ 1/2− K1 cos ∆1, d2 ≡ 1/2− K2 cos ∆2,

v1 ≡ K1 sin ∆1, v2 ≡ K2 sin ∆2.
(7)

In addition, by considering the scale l affecting the measured intensity signal and de-
noting the scaled Mueller elements as m′ij = l mij, the following set of auxiliary parameters
is defined:

h1 = D1
[
m′00 + m′01 + t2c2m′10 + t2c2m′11 + t2s2m′20 + t2s2m′21

]
,

h2 = D1m′02 + v1m′03 + t2D1c2m′12 + t2v1c2m′13 + t2D1s2m′22 ++t2v1s2m′23,

h3 = d1m′01 + t2d1c2m′11 + t2d1s2m′21, h4 = d1m′02 + t2d1c2m′12 + t2d1s2m′22,

h5 = D2
(
m′10 + t1m′11

)
, h6 = D2

(
m′20 + t1m′21

)
,

h7 = D2
(
m′00 + t1m′01

)
, h8 = −v2

(
m′30 + t1m′31

)
,

h9 = D1D2
(
m′10 + m′11

)
, h10 = D2

(
D1m′12 + v1m′13

)
,

h11 = D1D2
(
m′20 + m′21

)
, h12 = D2(D1m′22 + v1m′23),

h13 = D1D2
(
m′00 + m′01

)
, h14 = D2(D1m′02 + v1m′03),

h15 = −D1v2
(
m′30 + m′31

)
, h16 = −v2(D1m′32 + v1v2m′33),

h17 = d1D2m′11, h18 = d1D2m′12, h19 = d1D2m′21, h20 = d1D2m′22,

h21 = d1D2m′01, h22 = d1D2m′02, h23 = −d1v2m′31, h24 = −d1v2m′32,

h25 = d2
(
m′10 + t1m′11

)
, h26 = d2

(
m′20 + t1m′21

)
,

h27 = d1d2m′11, h28 = d1d2m′12, h29 = d1d2m′21, h30 = d1d2m′22,

h31 = DR1d2
(
m′10 + m′11

)
, h32 = d2

(
DR1m′12 + v1m′13

)
,

h33 = D1d2
(
m′20 + m′21

)
, h34 = d2(DR1m′22 + v1m′23).

(8)

Then, by applying trigonometric relations and grouping terms at different frequencies,
the measured intensity signal can then be expressed as:

I(t) = A0 + B2 sin 2ω1t + A2 cos 2ω1t + B4 sin 4ω1t + A4 cos 4ω1t

+B2R−4 sin(2R− 4)ω1t + A2R−4 cos(2R− 4)ω1t

+B2R−2 sin(2R− 2)ω1t + A2R−2 cos(2R− 2)ω1t

+B2R sin 2Rω1t + A2R cos 2Rω1t

+B2R+2 sin(2R + 2)ω1t + A2R+2 cos(2R + 2)ω1t

+B2R+4 sin(2R + 4)ω1t + A2R+4 cos(2R + 4)ω1t

+B4R−4 sin(4R− 4)ω1t + A4R−4 cos(4R− 4)ω1t

+B4R−2 sin(4R− 2)ω1t + A4R−2 cos(4R− 2)ω1t

+B4R sin 4Rω1t + A4R cos 4Rω1t

+B4R+2 sin(4R + 2)ω1t + A4R+2 cos(4R + 2)ω1t

+B4R+4 sin(4R + 4)ω1t + A4R+4 cos(4R + 4)ω1t

(9)
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(R representing the speed ratio) so that the Fourier coefficients can be expressed as follows
in terms of the above defined auxiliary parameters:

A0 = m′00 + t1m′01 + t2c2m′10 + t1t2c2m′11 + t2s2m′20 + t1t2s2m′21,

B2 = h2c3 − h1s3,

A2 = h1c3 + h2s3,

B4 = h4c4 − h3s4,

A4 = h3c4 + h4s4,

B2R−4 = 1
2 [(h17 + h20)s13 + (h19 − h18)c13 + (h21 + h24)s15 + (h23 + h22)c15],

A2R−4 = 1
2 [(h18 − h19)s13 + (h17 + h20)c13 + (h22 − h23)s15 + (h21 + h24)c15],

B2R−2 = 1
2 [(h13 + h16)s11 + (h15 − h14)c11 + (h9 + h12)s10 + (h11 − h22)c10],

A2R−2 = 1
2 [(h14 − h15)s11 + (h13 + h16)c11 + (h10 − h11)s10 + (h9 − h12)c10],

B2R = h6c5 − h5s5 + h8c6 − h7s6,

A2R = h5c + h6s5 + h7c6 + h8s6,

B2R+2 = 1
2 [(h16 − h13)s9 + (h14 + h15)c9 + (h12 − h9)s8 + (h10 + h11)c8],

A2R+2 = 1
2 [(h14 + h15)s9 + (h13 − h16)c9 + (h10 + h11)s8 + (h9 − h12)c8],

B2R+4 = 1
2 [(h20 − h17)s12 + (h18 + h19)c12 + (h24 − h21)s14 + (h22 + h23)c14]

A2R+4 = 1
2 [(h18 + h19)s12 + (h17 − h20)c12 + (h22 + h23)s14 + (h21 − h24)c14]

B4R−4 = 1
2 [(h27 + h30)s17 + (h29 − h28)c17],

A4R−4 = 1
2 [(h28 − h29)s17 + (h27 + h30)c17],

B4R−2 = 1
2 [(h31 + h34)s19 + (h33 − h32)c19],

A4R−2 = 1
2 [(h32 − h33)s19 + (h31 + h34)c19],

B4R = h26c7 − h25s7,

A4R = h25c7 + h26s7,

B4R+2 = 1
2 [(h34 − h31)s18 + (h32 + h33)c18],

A4R+2 = 1
2 [(h32 + h33)s18 + (h31 − h34)c18],

B4R+4 = 1
2 [(h30 − h27)s16 + (h28 + h29)c16],

A4R+4 = 1
2 [(h30 − h27)s16 + (h28 + h29)c16].

(10)

As indicated above, the polarimeter can equivalently operate either with ω2 > ω1
(R > 1) or ω1 > ω2 (R < 1), and the convention R > 1 can be adopted without loss of gen-
erality. Thus, for the indices of the Fourier coefficients of the measurement intensity signal
to be natural numbers (as required for the consistency of the approach presented) the speed
ratio R must satisfy the necessary condition that 2R is a natural number (2R = 2, 3, 4, 5 . . .),
which ensures that the Fourier spectrum of the measurement intensity signal is composed
of characteristic discrete and finite frequency lines [14]. Equation (10) shows that the cor-
responding shape of the intensity signal depends on the sample, the ratio R, and the rest
of configuration parameters (∆1, ∆2, D1, D2, α1, α2, θ2, l), but in practice it is also affected
by different types of systematic and random sources of errors (a brief comment on certain
practical aspects of errors is included below).

Moreover, by accounting the number of Fourier coefficients in Equation (10), it follows
that the maximal number of them (nonzero-valued) is 25 (12 harmonics in sines and cosines,
plus A0), while for certain values of R (for instance R = 5/1 and R = 5/1) the number of
effective Fourier coefficients is smaller than 25.

In general, complete Mueller polarimetry requires that the number of nonzero Fourier
coefficients exceeds 16, which is the number of independent elements of a generic depo-
larizing Mueller matrix to be calculated. By combining the above-indicated requirements,
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it is straightforward to find that the values of R should be taken from one of the series
R = 5/1, 6/1, 7/1, 8/1, 9/1 . . . R = 5/2, 7/2, 8/2, 9/2 . . ..

As described in Refs. [17,18], the case R = 3/2 is amenable to particular but consistent
analysis, giving up to 15 nonzero Fourier coefficients, which in general is not sufficient for
complete and absolute Mueller polarimetry of arbitrary depolarizing samples.

The calculation of the 2N + 1 Fourier coefficients, N being the number of harmonics
taking place in the Fourier structure of the measured intensity signal, can be performed,
for instance, by means of computerized discrete fast Fourier transform (DFT). Thus, in
general, a minimum number of 2N + 1 data points uniformly distributed along a registered
cycle of the intensity signal is required to recover the complete set of Fourier coefficients.
As shown in [17], for a well-conditioned polarimeter, the use of a number of data points
2M + 1, with M � N, does not necessarily lead to substantial improvements in the
measurement accuracy.

While random errors can be strongly reduced through isolation of the polarimeter
from mechanical, thermal, and optical perturbations, along with appropriate configuration
of the stability of the light source and detection system, the systematic errors are usually
more critical from the point of view of the accuracy of the instrument.

By inverting Equation (10), the Mueller elements mij can be calculated as follows from
the measured Fourier coefficients and in terms of arbitrary values for the configuration
parameters R, θ2, α1, α2, ∆1, ∆2, D1, D2, l:

m11 = 1
ld1d2

(B4R−4 s17 + A4R−4 c17 − B4R+4 s16 + A4R+4 c16),

m22 = 1
ld1d2

(B4R−4 s17 + A4R−4 c17 + B4R+4 s16 − A4R+4 c16),

m21 = 1
ld1d2

(B4R−4 c17 − A4R−4 s17 + B4R+4 c16 + A4R+4 s16),

m12 = 1
ld1d2

(−B4R−4 c17 + A4R−4 s17 + B4R+4 c16 + A4R+4 s16),

m10 = 1
d2
[(−B4R s7 + A4R c7)/l − t1d2m11],

m20 = 1
d2
[(B4R c7 + A4R s7)/l − t1d2m21],

m01 = 1
d1
[(−B4 s4 + A4 c4)/l − t2d1(c2m11 + s2m21)],

m02 = 1
d1
[(B4 c4 + A4 s4)/l − t2d1(c2m12 + s2m22)],

m13 = 1
v1d2

[2(−B4R−2 c19 + A4R−2 s19)/l + D1d2(m20 + m21 −m12)]

= 1
v1d2

[2(B4R+2 c18 + A4R+2 s18)/l − D1d2(m20 + m21 + m12)],

m23 = 1
v1d2

[2(B4R−2 s19 + A4R−2 c19)/l − D1d2(m10 + m11 + m22)]

= 1
v1d2

[2(B4R+2 s18 − A4R+2 c18)/l − D1d2(−m10 −m11 + m22)],

m31 = 1
d1v2
{2(−B2R+4 c14 − A2R+4 s14)/l − D2d1[(m22 −m11)s2 + (m21 + m12)c2 + m02]}

= 1
d1v2
{2(−B2R−4 c15 + A2R−4 s15)/l − D2d1[(m11 + m22)s2 + (m12 −m21)c2 + m02]},

m32 = 1
d1v2
{2(−B2R+4 s14 + A2R+4 c14)/l − D2d1[(m11 −m22)c2 + (m21 + m12)s2 + m01]}

= 1
d1v2
{2(−B2R−4 s15 − A2R−4 c15)/l + D2d1[(m11 + m22)c2 + (m21 −m12)s2 + m01]},

m30 = 1
v2
{(−B2R c6 − A2R s6)/l + D2[(c2m20 − s2m10) + t1(c2m21 − s2m11)]− t1v2m31},

m03 = 1
v1
[(B2 c3 + A2 s3)/l − D1m02 − t2v1(c2m13 + s2m23)− t2D1(c2m12 + s2m22)],

m00 = A0/l − t1m01 − t2(c2m10 + s2m20)− t1t2(c2m11 + s2m21),

m33 = 1
v1v2

{
2(−B2R+2 s9 + A2R+2 c9)/l − D1v2m32 + D2v1(c2m23 − s2m13)
−D1D2[m00 + m01 + s2(m20 + m21 + m12) + c2(m10 + m11 −m22)]

}
= 1

v1v2

{
2(−B2R−2 s11 − A2R−2 c11)/l − D1v2m32 + D2v1(c2m23 − s2m13)
+D1D2[m00 + m01 + s2(m20 + m21 −m12) + c2(m10 + m11 + m22)]

}
.

(11)
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Note that, provided that the retardances of the rotating retarders are far enough
from conditions sin ∆1 = 0 and sin ∆2 = 0, the quotients in the above equations are far
enough from zero (values close to ∆1 = ∆2 = π/2 constitute an appropriate choice, for
instance). Moreover, due to redundancy of the available equations to isolate mij (25 Fourier
coefficients versus 16 unknown Mueller elements mij), the elements m13, m23, m31, m32, and
m33 have been calculated from two alternative expressions. Some other choices are also
possible, but they do not give any advantage over Equation (11).

The above equations solve the problem of determining the elements mij = m′ij/l of
the Mueller matrix under measurement from the measurable Fourier coefficients of the
detected intensity signal, provided the configuration parameters of the polarimeter are
previously known.

Despite the fact that the configuration parameters correspond to the specific design of
the polarimeter and that they are under the control of the operator of the instrument, for any
given appropriate value of the speed ratio R, the effective values for ∆1, ∆2, D1, D2, α1, α2, θ2,
and l can be measured through a self-calibration procedure described in Section 4.

Obviously, simpler equations for the above isolated Mueller elements and for the
self-calibration general procedure described in the next section, can straightforwardly be
obtained for different specific values of R and for certain particular cases as, for instance,
when both retarders are equal (∆1 = ∆2, D1 = D2), or when the retarders behave as perfect
(D1 = D2 = 0), etc. (see Section 6).

4. Self-Calibration Procedure

For any given specific value of the ratio R, self-calibration refers to the procedure to
determine the effective values of (1) the orientation angles α1, α2, θ2; (2) the scale coefficient,
l, affecting the detected and processed intensity signal, and (3) the retardances ∆1, ∆2 and
diattenuations D1, D2 of both rotating retarders. This can easily be performed by arranging
the polarimeter in direct transmission (Figure 2) with no sample under measurement, so
that then the Mueller matrix M corresponds to the air covering the volume between both
rotating retarders, which corresponds exactly to the identity matrix, M = I [15,16,19].
Consequently, the Mueller elements mij can be considered as known data in the equations
describing the polarimeter intensity signal, and therefore the configuration parameters can
be obtained from the Fourier analysis of the said signal.
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Figure 2. Self-calibration operation mode of the dual-rotating retarder absolute Mueller polarimeter.
PSG and PSA are arranged in direct transmission, while no sample is located in the intermediate
position. Through the Fourier analysis of a cycle (or an entire number of cycles) of the calibration
intensity signal, the configuration parameters of the polarimeter, including the overall scale coefficient
introduced by the detection and processing system, are obtained.

It is remarkable that, since this procedure provides the scale parameter l, the Mueller
matrices obtained through the measurement mode are determined completely, including
the MIC m00, so that all the sixteen Mueller elements of M are measured, free of any
scale factor.

Thus, in contrast to certain polarimeters that provide the normalized Mueller matrix M̂
of the sample (with the MIC fixed at m00 = 1 regardless of its real value), this kind
instrument is called absolute Mueller polarimeter. Note also that, beyond its intrinsic
significance, the importance of the obtainment of m00 comes from the fact that it is critical to
explore the physical realizability of serial and parallel decompositions of M, so that certain
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equivalent systems should be consequently discarded because of the impossibility that they
match the real parallel or serial constituents of the sample [67–70,75–77].

The first step to formulate mathematically the self-calibration of the polarimeter is to
set M

′
= l I in Equation (10), which leads to:

A0 = l(1 + t1t2c2),
B2 = lD1(−s3 + t2s21), A2 = lD1(c3 + t2c21),
B4 = lt2d1s20, A4 = lt2d1c20,
B2R−4 = lD2d1s13, A2R−4 = lD2d1c13,
B2R−2 = 1

2 l(D1DR2 − v1v2)s11 + lD1D2s10, A2R−2 = 1
2 l(D1D2 − v1v2)c11 + lD1D2c10,

B2R = −lD2(t1s5 + s6), A2R = lD2(t1c5 + c6),
B2R+2 = − 1

2 l(D1D2 + v1v2)s9, A2R+2 = 1
2 l(D1D2 + v1v2)c9,

B2R+4 = 0, A2R+4 = 0,
B4R−4 = ld1d2s17, A4R−4 = ld1d2c17,
B4R−2 = lD1d2s19, A4R−2 = lD1d2c19,
B4R = −lt1d2s7, A4R = lt1d2c7,
B4R+2 = A4R+2 = B4R+4 = A4R+4 = 0.

(12)

From the above algebraic expressions of the Fourier coefficients of the self-calibration
intensity signal, the following set of auxiliary angles is determined:

x1 ≡ 2(α1 + α2 − θ2) = arc cot(−A2R+2/B2R+2),
x2 ≡ 2α1 − 2α2 + θ2 = arc cot(A4R−4/B4R−4),
x3 ≡ 2(2α2 − θ2) = arc cot(−A4R/B4R),

(13)

where the numerical calculation of the ratios between Fourier coefficients is not critical
because, on the one hand, the algebraic expressions of numerators and denominators are
free of global factors close to zero (i.e., free of coefficients such as D1 or D2), and, on the
other hand, the denominators are far enough from zero when the initial configuration of
the polarimeter (prior to the self-calibration procedure) is arranged with typical values
α1 ≈ 0, α2 ≈ 0 and θ2 ≈ π/4.

Since the parameters l, t1, t2, d1, d2, D1 and D2 are nonnegative, the angles xi are then
placed in their respective quadrants in accordance with the signs of the Fourier coefficients
from which they are determined. The set of orientation angles is then obtained as:

α1 = x2/2 + x3/4, α2 = −x1/2 + x2/2 + 3x3/4, θ2 = −x1 + x2 + x3. (14)

Note that all angular parameters τi in Equation (6) are determined from the above equations.
Then, for the sake of simplicity of further expressions, the following additional set of

auxiliary parameters is introduced (again, free from the criticality derived from the use of
Fourier coefficients affected by factors close to zero such as D1 or D2):

F ≡
√

B2
4R−4 + A2

4R−4, E ≡
√

B2
4 + A2

4, G ≡
√

B2
4R + A2

4R, (15)

so that the instrument scale coefficient is given by:

l = A0 −
GE
F

cos 2θ2. (16)

When the intensity of the calibration signal is zero, the electronic device may introduce
certain signal threshold, in such a manner that a constant level, C, affects the whole signal.
In such a case, this constant should be subtracted from A0 in Equation (16).
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The effective diattenuations and retardances exhibited by the retarders can finally be
calculated as follows:

D1 = −B2 cos 2 (−α1+θ2)+A2 sin 2 (−α1+θ2)
l sin 2θ2

D2 = B2R cos 2α2 +A2R sin 2α2
l sin 2θ2


 θ2 6= 0, π/2

with
0 ≤ θ2 < π

,

cos ∆1 = 1√
1−D2

1

G−F
G+F ,

cos ∆2 = 1√
1−D2

2

E−F
E+F .

(17)

As indicated, the above equations exclude the values θ2 = 0, π/2, and, to avoid critical
denominators, it is advisable to use the intermediate values of θ2 that are far from 0 and
π/2 (for instance, θ2 = π/4). For the sake of simplicity and control of the instrument, it is
also generally advisable that the orientations (at time t = 0) of the retarders be taken so
as to satisfy α1 ≈ 0 and α2 ≈ 0. This is particularly easy to do through a pre-calibration
method described in Section 5.

Once the calibration has been performed, the configuration parameters can be in-
troduced in the Expressions (11) for the elements mij of the measured Mueller matrix M.
Obviously, it is recommended to perform the calibration procedure from time to time
(to check the effective values for the angles α1, α2, θ2) and especially if the retarders are
replaced. An interesting quality test can be realized by inserting into Equation (11) the
values of the Fourier coefficients as well as those of (∆1, ∆2, D1, D2, α1, α2, θ2, l) obtained
through the calibration, and then comparing the Mueller matrix given by Equation (11) to
the identity matrix. The distance between both matrices (experimental and theoretical) can
be calculated, for instance, as the Frobenius norm ‖M− I‖F, which provides an appropriate
overall measure of the precision of the instrument.

5. Pre-Calibration Procedures

Leaving aside the fact that the self-calibration provides the effective values for the
configuration parameters of the instrument, it is obviously advisable an appropriate (at
least approximate) previous adjustment of the orientation angles α1, α2, θ2 as well as the
independent measurement of the diattenuations D1 and D2.

The determination of D1 and D2 can be performed through the following steps:

1. Taking the orientation angle of P1 as the angular reference (θ1 = 0), remove both
retarders and rotate P2 until the intensity reaching the detector is closest to zero
(provided a proper arrangement of the polarizers, orthogonal to the direction of the
light probe, the extinction coefficient should be extremely low).

2. Insert R1 and rotate it until the extinction arranged in the previous step is preserved.
This ensures that either the fast or the slow axis of R1 is aligned to the transmission
axis of P1, i.e., α1 = 0, π/2.

3. Rotate P2 and put it at θ2 = 0.
4. Measure the intensity, I1, reaching the detector.
5. Apply a rotation of ±π/2 to R1.
6. Measure the intensity, I2, reaching the detector.
7. In accordance to the expressions for the transmittances associated with the fast and

slow axes of waveplates (see Equations 3.1 and 3.2 of Ref. [74],), if I2 > I1 the fast axis
of R1 is now oriented at π/2 with respect to θ1 = 0 (α1 = π/2). Otherwise (I1 > I2),
R1 is actually aligned to θ1 = 0 (α1 = 0).

8. Calculate D1 by means of D1 = (1 − r1)/(1 + r1), where r1 = Imin/Imax, with
Imax ≡ max (I1, I2) and Imin ≡ min (I1, I2).

9. Apply to the second retarder, R2, the procedure described above, so that the ori-
entations of the fast axes of R1 and R2 as well as their diattenuations have been
determined.
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Despite the fact that, for ideal or high-quality retardation plates, the equality I1 = I2
(D = 0) is satisfied with good approximation, in general the measurement of D1 (D2) can
also be easily realized by analyzing the extremal values of the intensity signal obtained
though continuous rotation of R1 (R2).

Once the polarimetric behaviors of R1 and R2 (for the given central frequency and
bandwidth of the light probe used) have been determined, the polarimeter can be arranged
through a procedure such as, for instance:

1. Taking the orientation angle of P1 as the angular reference θ1 = 0, remove both
retarders and rotate P2 until the intensity reaching the detector is minimal (zero), i.e.,
θ2 = π/2.

2. Insert R1 with its fast axis oriented approximately at α1 ≈ 0; then slightly rotate it
until the extinction of the intensity signal is preserved, so that α1 = 0.

3. Insert R2 with its fast axis oriented approximately at α2 ≈ 0; then slightly rotate it
until the extinction of the intensity signal is preserved, so that α2 = 0.

4. Rotate P2 and put it at θ2 ≈ π/4. Thus, the orientations arranged ensure the stability of
the equations for both the self-calibration and Mueller measurement operation modes.

Another important aspect regarding the pre-calibration stage is that small tilts of the
planes containing the retardation plates, producing undesirable lack of perpendicularity
with respect to the direction of propagation of the collimated light probe beam [60] lead
to slight differences between consecutive cycles of the self-calibration intensity signal.
Therefore, the analysis of such possible differences is useful to identify the indicated source
of systematic errors and to address the corresponding adjustments in the polarimeter in
order to optimize its accuracy.

6. Self-Calibration of a Polarimeter with Equal Retarders

Since it is in general advisable to use retarders whose effective retardance for the light
probe is not far from π/2 (with achromatic behavior for the entire spectrum of the light
probe), and there is no advantage of using different retarders, a common and natural choice
is to take equal retarders (in general non-ideal), in which case the Fourier coefficients take
the forms:

A0 = l
(
1 + t2c2

)
,

B2 = lD(−s3 + ts21), A2 = lD(c3 + tc21),
B4 = ltds20, A4 = ltdc20,
B2R−4 = lDds13, A2R−4 = lDdc13,
B2R−2 = l

(
D2 − v2)s11/2 + lD2s10, A2R−2 = l

(
D2 − v2)c11/2 + lD2c10,

B2R = −lD(ts5 + s6), A2R = lD(tc5 + c6),
B2R+2 = −l

(
D2 + v2)s9/2, A2R+2 = l

(
D2 + v2)c9/2,

B2R+4 = 0, A2R+4 = 0,
B4R−4 = ld2s17, A4R−4 = ld2c17,
B4R−2 = lDds19, A4R−2 = lDdc19,
B4R = −ltds7, A4R = ltdc7,
B4R+2 = A4R+2 = B4R+4 = A4R+4 = 0.

(18)

Equations (13)–(17) become redundant, which does not prevent their use for the self-
calibration. Moreover, the Mueller elements of the material sample (measurement mode)
are given by Equation (11), but applying the equalities:

t ≡ t1 = t2 = (1 + K cos ∆)/2, d ≡ d1 = d2 = (1− K cos ∆)/2,

v ≡ v1 = v2 = K sin ∆,

[K ≡ K1 = K2, ∆ ≡ ∆1 = ∆2].

(19)
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For certain theoretical comparisons and analyses, it is useful to have at hand the simple
mathematical expressions corresponding to the limiting case where both retarders behave
as perfect quarter-wave retarders, i.e., D1 = D2 = 0 with ∆ ≡ ∆1 = ∆2 = π/2. Then,

t1 = t2 = d1 = d2 = 1/2, v1 = v2 = 1, (20)

so that the Fourier coefficients take the simplified forms:

A0 = l(1 + c2/4),
B4 = ls20/4, A4 = lc20/4,

B2R−2 = −ls11/2, A2R−2 = −lc11/2,
B2R+2 = −ls9/2, A2R+2 = lc9/2,
B4R−4 = ls17/4, A4R−4 = lc17/4,
B4R = −ls7/4, A4R = lc7/4,

B2 = A2 = B2R−4 = A2R−4 = B2R = A2R = B2R+4 = A2R+4 = B4R−2 = A4R−2

= B4R+2 = A4R+2 = B4R+4 = A4R+4 = 0,

(21)

while the effective orientations α1, α2, θ2 can be calculated through Equations (13) and (14).
If, in addition, α1 = α2 = 0, θ2 = π/4. Then,

c2 = c7 = c9 = c11 = c17 = c20 = 0, s2 = −s7 = −s9 = s11 = s17 = s20 = 1, (22)

and consequently,

A0 = l, B4 = l/4, B2R−2 = −l/2, B2R+2 = l/2, B4R−4 = l/4, B4R = l/4,
0 = B2 = B2R−4 = B2R = B2R+4 = B4R−2 = B4R+2 = B4R+4 =

A2 = A2R−2 = A2R−4 = A2R = A2R+2 = A2R+4 = A4R−4 = A4R−2 =

A4R = A4R+2 = A4R+4.

(23)

7. Polarimeters with R = 5/1 and R = 5/2. Comparative Analysis

The number of nonzero Fourier coefficients of the measurement intensity signal I(t)
in Equation (9) (for arbitrary Mueller matrices under measurement) depends on the ratio
R = ω 2/ω 1 of the angular velocities of the retarders R2 and R1. In particular, the choice
R = 3/2 provides fifteen nonzero Fourier coefficients, which are sufficient to retrieve the
Mueller matrix of a nondepolarizing sample [17,18] (nine independent parameters) or
certain specific kinds of samples (those having symmetric Mueller matrices, for instance),
but are insufficient to obtain the sixteen independent elements of the Mueller matrix of
an arbitrary depolarizing sample under measurement. Thus, values such as R = 5/2
or R = 5/1 (with the convention taken ω2 ≥ ω1) are required for a general complete
Mueller polarimetry, in which case the number of Fourier coefficients exceeds 16, and some
redundancy of information is produced (which does not imply any practical problem).

Moreover, the use of different retarders for R1 and R2 is not worth it, in general,
and therefore retarders with equal nominal retardance are commonly adopted for the
configuration of the polarimeter.

Prior to the analyses of the cycles of the intensity signals for different values of
R, it should be recalled that a rotation of an angle π of a retarder leaves its Mueller
matrix unchanged.

The particular choices R = 5/2, 5/1 require special attention because they are the
lower values leading to complete Mueller polarimetry. Regarding the speed of the measure-
ments, both ratios can be considered equivalent because the period of the intensity signal is
determined by two and half turns of R2 (ω2t : 0→ 5π) regardless of whether R = 5/2 or
R = 5/1, so that the cycle involves a half turn of R1 (ω1t : 0→ π) when R = 5/1, or a
full turn of R1 (ω1t : 0→ 2π) when R = 5/2. Thus, the period of a cycle is in both cases
T = 5π/ω2.
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As for the self-calibration signals, the expressions for the Fourier coefficients for
R = 5/2 and R = 5/1 are shown below (equal retarders are considered in both cases).

Fourier coefficients for the calibration signal with R = 5/2:

A0 = l
(
1 + t2c2

)
,

B1 = lD d s13, A1 = lD d c13,
B2 = lD(−s3 + ts21), A2 = lD(c3 + tc21),
B3 = l

(
D2 − v2)s11/2 + lD2s10, A3 = l

(
D2 − v2)c11/2 + lD2c10,

B4 = l t d s20, A4 = l t d c20,
B5 = −lD(ts5 + s6), A5 = lD(tc5 + c6),
B6 = l d2s17, A6 = l d2c17,
B7 = −l

(
D2 + v2)s9/2, A7 = l

(
D2 + v2)c9/2,

B8 = l D d s19, A8 = l D d c19,
B9 = 0, A9 = 0,
B10 = −l t1 d2 s7, A10 = l t1 d2 c7,
B12 = A14 = B14 = A14 = 0.

(24)

Fourier coefficients for the calibration signal with R = 5/1:

A0 = l
(
1 + t2c2

)
,

B2 = lD(−s3 + ts21), A2 = lD(c3 + tc21),
B4 = l t d s20, A4 = l t d c20,
B6 = l D d s13, A6 = l D d c13,
B8 = l

(
D2 − v2)s11/2 + lD2s10, A8 = l

(
D2 − v2)c11/2 + lD2c10,

B10 = −lD(ts5 + s6), A10 = lD(tc5 + c6),
B12 = −l

(
D2 + v2)s9/2, A12 = l

(
D2 + v2)c9/2,

B14 = 0, A14 = 0,
B16 = l d2s17, A16 = l d2c17,
B18 = l D d s19, A18 = l D d c19,
B20 = −l t d s7, A20 = l t d c7,
B22 = A22 = B24 = A24 = 0.

(25)

As indicated above, a complete measurement cycle is produced through a rotation
from α2 to α2 + 5π of R2, which corresponds to a half turn of R1, (from α1 to α1 + π when
R = 5/1), or a full turn (from α1 to α1 + 2π when R = 5/2). As a consequence, the
odd Fourier coefficients of the calibration signal corresponding to R = 5/1 are zero, and
the replacement of ω1 by 2ω1 allows for re-labeling the indexes of the nonzero Fourier
coefficients, which then run until 10 instead of 20.

To illustrate the peculiarities and differences between the polarimeters configured with
R = 5/2 and R = 5/1, the respective shapes of simulated single cycles of the calibration
signals are represented in Figures 3 and 4.
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Figure 3. Simulated single cycle of the self-calibration signal of a dual-rotating retarder Mueller 
polarimeter with 5/ 2R =  and configuration 1 2 / 2πΔ = Δ = , 2 / 4θ π=  and 1 2 1/ 9D D= = . 1ω  
represents the angular velocity of the slower rotating retarder. 

 
Figure 4. Simulated single cycle of the self-calibration signal of a dual-rotating retarder Mueller 
polarimeter with 5/1R =  and configuration 1 2 / 2πΔ = Δ = , 2 / 4θ π= , 1 2 1/ 9D D= = . 

Figure 3. Simulated single cycle of the self-calibration signal of a dual-rotating retarder Mueller
polarimeter with R = 5/2 and configuration ∆1 = ∆2 = π/2, θ2 = π/4 and D1 = D2 = 1/9.
ω1 represents the angular velocity of the slower rotating retarder.
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Figure 4. Simulated single cycle of the self-calibration signal of a dual-rotating retarder Mueller 
polarimeter with 5/1R =  and configuration 1 2 / 2πΔ = Δ = , 2 / 4θ π= , 1 2 1/ 9D D= = . 

Figure 4. Simulated single cycle of the self-calibration signal of a dual-rotating retarder Mueller
polarimeter with R = 5/1 and configuration ∆1 = ∆2 = π/2, θ2 = π/4, D1 = D2 = 1/9.

It is remarkable that, contrary to what happens for R = 5/2, when R = 5/1 the shape
of an entire cycle of the calibration signal (0 ≤ ω1t ≤ π) exhibits two semi-cycles whose
slight difference depends exclusively on the value of the small diattenuation D of the equal
retarders R1 and R2. In fact, when D = 0, such a double periodicity is exact, while, as
shown in Figure 5, for relatively large values of D the calibration signal is far from such an
apparent double periodicity. This peculiar behavior of the calibration signal for R = 5/1
suggests certain criticality of the calibration process that is not featured in the case R = 5/2.
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Figure 5. Simulated single cycle of the self-calibration signal of a dual-rotating retarder Mueller
polarimeter with R = 5/1 and configuration ∆1 = ∆2 = π/2, θ2 = π/4, D1 = D2 = 1/4.
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A complementary and useful view of the above self-calibration signals is provided
by their respective Fourier structures, i.e., the representation of the relative values of the
Fourier coefficients involved.

In both cases under analysis (R = 5/2, in Figure 6, and R = 5/1, in Figure 7) a
number of 13 nonzero Fourier coefficients arise, six of them being significant (far from zero).
Coefficients A1, A2, B2, A3, A5, B5, B8 (when R = 5/2) and A1, B1, A3, A4, A5, B5, B9 (when
R = 5/1) are close to zero due to the small value of the diattenuation D of the retarders, and
they become zero for the ideal case when D = 0. In accordance to the calibration algebraic
expressions in Equations (13)–(16), such spectra are sufficient to calculate consistently the
entire set of configuration parameters ∆1, ∆2, D1, D2, α1, α2, θ2, l.
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Figure 6. Fourier spectrum of the simulated self−calibration signal of a dual-rotating retarder Mueller
polarimeter with R = 5/2 and configuration ∆1 = ∆2 = π/2, θ2 = π/4, D1 = D2 = 1/9 (the labels
of the Fourier coefficients correspond to multiples of the angular frequency ω1).
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Figure 7. Fourier spectrum of the simulated self−calibration signal of a dual-rotating retarder Mueller
polarimeter with R = 5/1 and configuration ∆1 = ∆2 = π/2, θ2 = π/4, D1 = D2 = 1/9. (The labels
of the Fourier coefficients correspond to multiples of the angular frequency 2ω1).
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The general Equation (11), giving the elements of the Mueller matrix M of the sample
under measurement, adopts the forms shown below when R = 5/2 and R = 5/1, respec-
tively, where the simple and practical condition that both retarders are equal is assumed
(∆1 = ∆2 ≡ ∆ and D1 = D2 ≡ D).

Mueller elements for a polarimeter with R = 5/2 and equal retarders (the labels of the
Fourier coefficients correspond to multiples of the angular frequency ω1):

m11 = 1
ld2 (B6 s17 + A6 c17 − B14 s16 + A14 c16),

m22 = 1
ld2 (B6 s17 + A6 c17 + B14 s16 − A14 c16),

m21 = 1
ld2 (B6 c17 − A6 s17 + B14 c16 + A14 s16),

m12 = 1
ld2 (−B6 c17 + A6 s17 + B14 c16 + A14 s16),

m10 = 1
d [(−B10 s7 + A10 c7)/l − tdm21],

m20 = 1
d [(B10 c7 + A10 s7)/l − tdm21],

m01 = 1
d [−B4 s4 + A4 c4/l − td(c2m11 + s2m21)],

m02 = 1
d [(B4 c4 + A4 s4)/l − td(c2m12 + s2m22)],

m13 = 1
vd [2(−B8 c19 + A8 s19)/l + Dd(m20 + m21 −m12)]

= 1
vd [2(B12 c18 + A12 s18)/l − Dd(m20 + m21 + m12)],

m23 = 1
vd [2(B8 s19 + A8 c19)/l − Dd(m10 + m11 + m22)]

= 1
vd [2(B12 s18 − A12 c18)/l − Dd(−m10 −m11 + m22)],

m31 = 1
dv{2(−B14 c14 − A14 s14)/l − Dd[(m22 −m11)s2 + (m21 + m12)c2 + m02]}

= 1
dv{2(−B6 c15 + A6 s15)/l − Dd[(m11 + m22)s2 + (m12 −m21)c2 + m02]},

m32 = 1
dv{2(−B14 s14 + A14 c14)/l − Dd[(m11 −m22)c2 + (m21 + m12)s2 + m01]}

= 1
dv{2(−B6 s15 − A6 c15)/l + Dd[(m11 + m22)c2 + (m21 −m12)s2 + m01]},

m30 = 1
v{(−B5 c6 − A5 s6)/l + D[c2m20 − s2m10 + t(c2m21 − s2m11)]− tvm31},

m03 = 1
v [(B2 c3 + A2 s3)/l − DR1m02 − tv(c2m13 + s2m23)− tD(c2m12 + s2m22)],

m00 =
[
A0/l − tm01 − t(c2m10 + s2m20)− t2(c2m11 + s2m21)

]
,

m33 = 1
v2

{
2(−B7 s9 + A7 c9)/l + Dv(−m32 + c2m23 − s2m13)

−D2[m00 + m01 + s2(m20 + m21 + m12) + c2(m10 + m11 −m22)]

}

= 1
v2

{
2(−B3 s11 − A3 c11)/l + Dv(−m32 + c2m23 − s2m13)

+D2[m00 + m01 + s2(m20 + m21 −m12) + c2(m10 + m11 + m22)]

}
.

(26)

Mueller elements for a polarimeter with R = 5/1 and equal retarders (the labels of the
Fourier coefficients correspond to multiples of the angular frequency 2ω1 instead of ω1):
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m11 = 1
ld2 (B8 s17 + A8 c17 − B12 s16 + A12 c16),

m22 = 1
ld2 (B8 s17 + A8 c17 + B12 s16 − A12 c16),

m21 = 1
ld2 (B8 c17 − A8 s17 + B12 c16 + A12 s16),

m12 = 1
ld2 (−B8 c17 + A8 s17 + B12 c16 + A12 s16),

m10 = 1
d [(−B10 s7 + A10 c7)/l − tdm21],

m20 = 1
d [(B10 c7 + A10 s7)/l − tdm21],

m01 = 1
d [−B4 s4 + A4 c4/l − td(c2m11 + s2m21)],

m02 = 1
d [(B4 c4 + A4 s4)/l − td(c2m12 + s2m22)],

m13 = 1
vd [2(−B9 c19 + A9 s19)/l + Dd(m20 + m21 −m12)]

= 1
vd [2(B11 c18 + A11 s18)/l − Dd(m20 + m21 + m12)],

m23 = 1
vd [2(B9 s19 + A9 c19)/l − Dd(m10 + m11 + m22)]

= 1
vd [2(B11 s18 − A11 c18)/l − Dd(−m10 −m11 + m22)],

m31 = 1
dv{2(−B7 c14 − A7 s14)/l − Dd[(m22 −m11)s2 + (m21 + m12)c2 + m02]}

= 1
dv{2(−B3 c15 + A3 s15)/l − Dd[(m11 + m22)s2 + (m12 −m21)c2 + m02]},

m32 = 1
dv{2(−B7 s14 + A7 c14)/l − Dd[(m11 −m22)c2 + (m21 + m12)s2 + m01]}

= 1
dv{2(−B3 s15 − A3 c15)/l + Dd[(m11 + m22)c2 + (m21 −m12)s2 + m01]},

m30 = 1
v{(−B5 c6 − A5 s6)/l + D[c2m20 − s2m10 + t(c2m21 − s2m11)]− tvm31},

m03 = 1
v [(B2 c3 + A2 s3)/l − DR1m02 − tv(c2m13 + s2m23)− tD(c2m12 + s2m22)],

m00 =
[
A0/l − tm01 − t(c2m10 + s2m20)− t2(c2m11 + s2m21)

]
,

m33 = 1
v2

{
2(−B6 s9 + A6 c9)/l + Dv(−m32 + c2m23 − s2m13)
−D2[m00 + m01 + s2(m20 + m21 + m12) + c2(m10 + m11 −m22)]

}
= 1

v2

{
2(−B4 s11 − A4 c11)/l + Dv(−m32 + c2m23 − s2m13)
+D2[m00 + m01 + s2(m20 + m21 −m12) + c2(m10 + m11 + m22)]

}
.

(27)

8. An Experimental Example of Absolute Mueller Polarimeter with R = 5/2

Since dual-rotation retarder Mueller polarimeters are usually realized with R = 5/1,
it is worth to briefly describe experimental results obtained through the less common
choice R = 5/2. Figure 8 reproduces an example of the experimental calibration signal of
the polarimeter designed by Gil and Bernabéu [19] and its comparison to the ideal signal
corresponding to the measured configuration parameters.
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Figure 8. Experimental (dashed line) and ideal (solid line) single cycle of the self-calibration signal of
the Gil and Bernabéu’s absolute dual-rotating retarder Mueller polarimeter with R = 5/2 correspond-
ing to the measured configuration parameters, ∆1 = 88.1◦, ∆2 = 91.5◦, D1 = 0.015, D2 = 0.010, and
relative angles α1 = −28.5◦, α2 = −48.2◦, θ2 = 17.0◦ [19].
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Even though both retarders and polarizers used where made from simple commercial
Polaroid sheets, while the optical benches and other mechanical systems were somewhat
rudimentary, the theory-experiment adjustment was really good, which stresses the suit-
ability of the choice R = 5/2 and the use of non-ideal retarders.

As described in Ref. [19], each of the retarders R1 and R2 were synthesized from
respective serial combinations of two commercial waveplates [78] whose relative angles
were fitted to get ∆1 = ∆2 = π/2 (note that the effects of both, mutually inverse, extra
rotators of such combinations were directly compensated leading to a neutral overall
effect in the calibration signal and an apparent rotation of the sample in the measurement
mode operation).

Many experimental results as well as technical details of this experimental setup can
be found in Refs. [17–19], including the continuous mode operation of the rotation of the
retarders; the light source; the calculation of the Fourier coefficients from the detected
intensity signal through a DFT algorithm based on standard procedures [79]; etc.

9. Conclusions

A general formulation for dual-rotating retarder absolute Mueller polarimeters with
imperfect retarders and arbitrary ratio of angular velocities of the retarders has been devel-
oped, including explicit expressions for the Fourier coefficients of the cyclic measurement
intensity signal as well as for the elements of the Mueller matrix of the sample under
measurement (in general depolarizing).

The self-calibration mode, based on direct transmission without sample, allowing
for the measurement of the effective configuration parameters of the polarimeter, namely
the retardances, diattenuations, and angles (at time zero) of both retarders; the angle of
the transmission axis of the second polarizer; and the scale coefficient introduced by the
detection and processing subsystem, is described for arbitrary values of the ratio between
the angular velocities of the rotating retarders.

The said calculation of the scale coefficient is a requirement for the absolute measure-
ments of the Mueller matrices of the samples; that is, instead of a normalized Mueller
matrix, all the sixteen Mueller elements, including the mean intensity coefficient (i.e., the
mean transmittance or reflectance) are determined. The absolute measurements are im-
portant because they provide criteria to check the physical realizability of serial or parallel
combinations of simple and passive components whose overall polarimetric behavior is
equivalent to that of the sample.

Some pre-calibration procedures have also been described, including the comparison
of pairs of consecutive calibration cycles as a way to check the perpendicularity of the
retardation plates with respect to the axis defined by the collimated light probe.

A comparative analysis of polarimeters working with the smaller ratios (5/2 and 5/1)
compatible with the measurement of the complete Mueller matrix of the sample has been
performed. A peculiarity of the ratio 5/1 is that, contrary to what happens for 5/2, a single
cycle of the calibration intensity signal contains two semi-cycles whose difference depends
exclusively on the diattenuations exhibited by the retarders.

Expressions for the most common case where both retarders exhibit equal retardances
and diattenuations, as well as some examples for the calibration signals obtained in different
configurations, are also included.

In summary, since rotating retarders are extensively used as the functioning principle
of many Mueller polarimeters, the results presented in this work provide a deeper insight
for the better configuration and use of dual-rotating retarder absolute Mueller polarimeters.
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