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Abstract: The behavior of the network and its stability are governed by both dynamics of the
individual nodes, as well as their topological interconnections. The attention mechanism as an
integral part of neural network models was initially designed for natural language processing (NLP)
and, so far, has shown excellent performance in combining the dynamics of individual nodes and the
coupling strengths between them within a network. Despite the undoubted impact of the attention
mechanism, it is not yet clear why some nodes of a network obtain higher attention weights. To
come up with more explainable solutions, we tried to look at the problem from a stability perspective.
Based on stability theory, negative connections in a network can create feedback loops or other
complex structures by allowing information to flow in the opposite direction. These structures play a
critical role in the dynamics of a complex system and can contribute to abnormal synchronization,
amplification, or suppression. We hypothesized that those nodes that are involved in organizing
such structures could push the entire network into instability modes and therefore need more
attention during analysis. To test this hypothesis, the attention mechanism, along with spectral
and topological stability analyses, was performed on a real-world numerical problem, i.e., a linear
Multi-Input Multi-Output state-space model of a piezoelectric tube actuator. The findings of our
study suggest that the attention should be directed toward the collective behavior of imbalanced
structures and polarity-driven structural instabilities within the network. The results demonstrated
that the nodes receiving more attention cause more instability in the system. Our study provides
a proof of concept to understand why perturbing some nodes of a network may cause dramatic
changes in the network dynamics.

Keywords: attention mechanism; dynamical system; stability analysis; graph convolutional neural
network; unstable nodes

1. Introduction

In many networks, specific nodes at critical positions within the network act as drivers
that push the system into particular modes of action [1]. Observing large-scale network
catastrophes in sociological and biological systems, such as the widespread effects of
epilepsy in brain networks, poses a few questions—How does a chaotic regime start
in complex networks? Where should we look for spreading origins or initiators in the
network? Which nodes are most influential in driving changes in the network’s dynamics?
Why do these particular nodes have the potential ability to facilitate changes in the state of a
system? Can imminent shifts be predicted within the network’s dynamics prior to the onset
and to enhance preparedness? Answering these questions motivated us to explore how the
local structures within a network cause deteriorating stability and push the network into a
catastrophic regime. This study tried to leverage principles in stability theory and connect
them to attention mechanisms in neural networks.
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The attention mechanism is one of the widely used techniques in natural language
processing and computer vision that focuses on the most informative parts of the data
and significantly improves many processing tasks, such as image classification, object
detection, etc. [2]. The attention mechanism can also help graph convolutional networks
to focus on nodes with key contributions to the information processing of the graph [3].
In graph neural networks, it has been argued that instead of considering the entire local
neighborhood, only nodes with higher attention values should be propagated. According
to this assumption, the robustness of the network can be improved by only considering
important nodes and ignoring misleading points [4]. Despite the tremendous success of
this effective technique, the one thing that still lacks and has not been addressed much
is an explanation of why the attention mechanism works for network analysis and what
attention coefficients exactly reflect.

Seeking an explanation, this study tried to look at this problem from the stability
analysis perspective. The stability concept in graph theory looks at how changes in a
particular node can affect the rest of the network and how the connectivity of that particular
node depends on other nodes in the network [5,6]. Some studies have tried to check
the stability properties of graph neural networks to see how changes in the underlying
topology can affect the output of the network [7]. In terms of model optimization, it has
been discussed that unstable nodes in sparse regions of the network require to be pulled
apart to improve the classification decision [8].

Focusing on the stability properties of the networks, the detection of spreading path-
ways within the network has been the focus of many recent studies. In cases where
abnormalities, chaos, or instability can spread rapidly across the network, early spotting
of the spreading origins is essential to hinder widespread harm. One example of such a
condition is when a small perturbation within the brain network of an epileptic patient
leads to seizure propagation at a life-threatening level [9].

A large body of literature has tried to rank the spreading ability of nodes in the network.
It has been assumed that the nodes with either high nodal centrality or high betweenness
centrality are influential in large-scale spreading [10,11]. However, this assumption turned
out to not work for all the real-world networks, and there were cases in which the highly
connected nodes or the nodes with the highest betweenness had little effect on the spreading
process [12,13]. One study has argued that the topology of the network organization plays
a key role in widespread phenomena. This study has also claimed that the spreading
process may not necessarily originate in just a single node, but it can start from many nodes
simultaneously [14]. There are some reported cases, including localized attacks on networks
where spreading can happen locally by only covering a specific group of nodes [15–19].
Considering all of this different reported evidence, the question of how the spreading
ability of nodes in the network should be ranked still remains under investigation.

The fact that the topological properties of a network affect the dynamical process [20]
can suggest that spreading dynamics are rooted in some hidden structures in the network. It
has been reported that complex temporal dynamics in real-world networks may be induced
by the spatial dimension [21]. Looking at spatial aspects of chaotic dynamics, one study
has argued that the dynamics of the system become chaotic because of homogeneity
breaking [22]. There is also strong evidence that symmetry breaking can cause instabilities
in networks [23]. Considering these claims and our initial assumption, we further assumed
that the existence of hidden symmetry-breaking structures within the network might also
cause the emergence of spreading dynamics.

Considering the fact that both the attention mechanism and stability analysis focus on
influential nodes, the final question here is whether unstable nodes are the nodes that need
more attention. We address this question in the following sections. The first subsection
of the Method Section describes the case study, which is a real-world numerical problem.
This problem is mapped from the state-space model into a graph representation for further
analysis. The states of the model are considered individual nodes within the network.
In Section 2.2 from the section “Materials and Methods”, an attention-enhanced graph
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convolutional network (AGCN) is used to classify the nodes of this network. After the
learning process of the AGCN, an attention coefficient for each pair of nodes is extracted
and nodes with higher attention coefficients are identified. To check our hypothesis, which
stated that those nodes that have the potential to move the entire network into the unstable
mode are the nodes that have higher attention coefficients, three different stability analyses
are performed. Finally, the nodes with higher instability risk are identified and compared
to those with higher attention coefficients.

2. Materials and Methods
2.1. Simulated Dynamical System

Dynamical systems can be stabilized by state feedback, which involves using the
state vector for controlling system dynamics. This feedback mechanism can be applied to
controllable states. Identifying the most important states can be very helpful in designing
an optimum closed-loop control system. This study tried to identify important states using
the attention mechanism, and it proves that these important nodes are the ones that show
more tendency toward instability.

One of the dynamical systems that require a feedback mechanism to reach stability is
Piezoelectric tube actuators. The problem modeling of these actuators has been considered
a real-world numerical example in this study. These actuators are frequently used in
micro/nano-scale applications, and they are highly sensitive to uncertainties, including
environmental variations. The piezoelectric tube actuator can be expressed by a linear
Multi-Input Multi-Output state-space model using the following equations [24]:{ .

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(1)

where A, B, C, and D are, respectively, the state matrix, input matrix, output matrix, and
feedforward matrix. Variables x and y are, respectively, state and output vectors.

A =



0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

−2.7480× 108 −1.3083× 108 −4.2614× 106 −517.0544 0 0 −2.6331× 103 −0.9492× 103

0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 −49.4899 −191.8224 −5.2346× 108 −3.6549× 108 −1.7819× 107 −239.0092


Figure 1 shows a graph that was created from the dynamical system (1), considering A

as an adjacency matrix representing the topology of a network. The random feature set in
Table 1 was also assigned to each node as attributes. It should be noted that the coefficient
matrices of B, C, and D in the dynamical system (1) were not utilized to construct the graph.
Instead, the adjacency matrix representing the topology of a network was created based
on the coefficient matrix of A. The A matrix in the state-space representation does play
a central role in determining the dynamics of the system, as it describes how the system
evolves over time. The other matrices, such as the input, output, and feedforward matrices,
often describe the relationships between the inputs, outputs, and states of the system but
may not directly determine its dynamics.

2.2. Attention Mechanism

In this study, an attention-enhanced graph convolutional network (AGCN), including
different modules, was used for node classification. These modules are explained in the
Sections 2.2.1–2.2.4.
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no impact on the graph shown in this figure. (Note: two decimal numbers and the self-loops were 
removed from the graph to make it visually easier to explore). 

Table 1. The random feature set assigned to each node as attributes. 

Node Id Feature Set 
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1 0.2 0.1 0.7 
2 −0.5 0.7 −0.1 
3 −0.1 −0.6 0.4 
4 0.3 −0.5 −0.2 
5 0.1 −0.1 −0.4 
6 0.3 0.8 −0.1 
7 0.1 −0.2 0.2 
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dot product (multiplying the node features matrix by its transpose) that helps us to rep-
resent the relationship among features. The intuition behind the self-attention operator is 
to express how two feature vectors are related in the input space. In this operation, a 
weighted average over all the input vectors is taken. A visual illustration of this weighted 
average is shown in Figure 2. The dot product over each pair of feature vectors gives their 
corresponding weights. If the sign of a feature matches with the other one, this weight 
receives a positive term, and if the sign does not match, the corresponding weight is neg-
ative. The magnitude of the weight indicates how much the feature should contribute to 
the total score. As the weight value produced by this self-attention operator lies anywhere 
between negative and positive infinity, both Leaky ReLU and SoftMax operators need to 
be applied to map all the weight values between zero and one and for their summation to 
be one. 

Figure 1. Graph representation of dynamical system in (1) by considering A as the adjacency matrix.
Matrix A represents dynamics of hidden states in the piezoelectric tube actuator model, and each
node corresponds to one state. In this study, the output vector, y, as well as variables C and D, have
no impact on the graph shown in this figure. (Note: two decimal numbers and the self-loops were
removed from the graph to make it visually easier to explore).

Table 1. The random feature set assigned to each node as attributes.

Node Id Feature Set

0 0.5 −0.1 0.3
1 0.2 0.1 0.7
2 −0.5 0.7 −0.1
3 −0.1 −0.6 0.4
4 0.3 −0.5 −0.2
5 0.1 −0.1 −0.4
6 0.3 0.8 −0.1
7 0.1 −0.2 0.2

2.2.1. First Module: Initial Node Feature Embedding

The first module performs a self-attention operator on the nodes, which is a simple dot
product (multiplying the node features matrix by its transpose) that helps us to represent the
relationship among features. The intuition behind the self-attention operator is to express
how two feature vectors are related in the input space. In this operation, a weighted average
over all the input vectors is taken. A visual illustration of this weighted average is shown
in Figure 2. The dot product over each pair of feature vectors gives their corresponding
weights. If the sign of a feature matches with the other one, this weight receives a positive
term, and if the sign does not match, the corresponding weight is negative. The magnitude
of the weight indicates how much the feature should contribute to the total score. As the
weight value produced by this self-attention operator lies anywhere between negative and
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positive infinity, both Leaky ReLU and SoftMax operators need to be applied to map all the
weight values between zero and one and for their summation to be one.

X =
{→

x1,
→
x2, . . .

}
,
→
xi ∈ RN

ωsel f = X · XT

ωsel f = {ω11, ω12, . . .}
Y = ωsel f X

Y =
{→

y1,
→
y2, . . .

}
,
→
yi ∈ RN

Y′ = So f tmax(LeakyRelu(Y))

Y′ =
{ →

y1
′,
→
y2
′, . . .

}
(2)

where X is the matrix of the nodes’ features. ωself indicates the self-attention weights. Y is
the weighted average of the node features. Y′ is the weighted average of features passed
through activation functions.
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Figure 2. Self-attention operator for four sample nodes (figure adjusted from [25]). The outputs of
{y1, . . . , yi} are aggregates of interactions between inputs of {x1, . . . , xi} and their attention scores of{

ω11, ω12 . . . , ωij

}
.

This weighted average of the node features produces a new set of node features as the
output of the self-attention operator, which forms the inputs for the next module.

2.2.2. Second Module: Learnable Attention Mechanism

The second module is a single-layer feedforward neural network parameterized by
the attention weight vector (ωAtt). In this module, the feature vectors of each pair in a
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new set of nodes (produced in the previous module) are concatenated and passed through
Leaky ReLU and SoftMax operators. The goal here is to extract the attention coefficient for
each pair of nodes, which represents the importance of one node’s feature to the feature of
another one [26].

αij = So f tmax
(

LeakyRelu
(

ωAtt ·
(→

y′ i ‖
→
y′ j

)))
ωAtt = {ωAtt1, ωAtt2, . . .}, →

ωAtti ∈ R2N

ωα = {α12, α13, . . .} ,
→
αij ∈ (RN ×RN

) (3)

where ωAtt is the attention weight vector. y′ is the weighted average of features passed
through activation functions. ωα is the attention coefficient matrix.

2.2.3. Third Module: Graph Convolution

The third module performs features aggregation from the neighbors of each node.
This can be calculated by the multiplication of adjacency and feature matrices. It should be
considered that the features of the node itself are as important as its neighbors. To consider
the features of the node itself, an identity matrix needs to be added to the adjacency
matrix (A) to obtain a new adjacency matrix (Ã). To prevent exploding/vanishing gradients
because of high-degree/low-degree nodes and to reduce the sensitivity of the network to
the scale of input data, the matrix multiplication needs to be scaled according to the node
degrees (scaling by both rows and columns). This scaling places more weight on the low-
degree nodes and reduces the impact of nodes with high degrees. The motivation behind
this scaling is that nodes with low degrees have greater influences on their neighbors,
whereas nodes with high degrees have lower effects as they spread their influence on too
many neighbors. As scaling is performed twice (once across rows and once across columns),
the square root of the node degree is taken into account. The influence of one node feature
on the other nodes can also be reflected by the dot product of the new adjacency matrix
with the attention coefficient’s matrix. Finally, graph convolution can be completed by
putting all these modules together and forming a forward model with a learnable weight
matrix of W. ∼

A = A + I
∼
D = ∑j

∼
Aij

Â =
∼
D
−1/2∼

A
∼
D
−1/2

Y′′ = So f tmax
(

LeakyRelu
((

Â ·ωα

)
X W

))
(4)

where D is the degree matrix. Ã is the normalized adjacency matrix with added self-loops.

2.2.4. Final Module: Backpropagation and Training

The goal here with using backpropagation is to update each weight in the attention
layer (matrix of ωAtt) and convolution layer (matrix of W) so that the actual output gets
closer to the target output. To do this, the partial derivative of error (gradient) with respect
to these weights is calculated. It should be considered that the partial derivative of the
SoftMax function is the output × (1 − output), where W is a learnable weight matrix.
Ã is the new adjacency matrix, and ωAtt is the attention weight vector in a single-layer
feedforward neural network. ωα is the attention coefficient matrix for each pair of nodes,
ytarget is the target output, and y′′ is the actual output.

2.3. Spectral Stability Analysis

The spectral stability of a network is governed by the largest negative eigenvalue of its
adjacency matrix [27]. Our hypothesis is that nodes that need more attention are the ones
that can push the entire network into unstable mode. To test our hypothesis and to check
the effect of each node on the stability of the network, we looked at how the perturbation in
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one column of the adjacency matrix [9] reflected in its largest eigenvalue. The perturbation
level was initially set to 0.5 and gradually increased to 3. The following matrix shows
the resulting adjacency matrix after perturbing node 1 by ∆. Those nodes for which the
largest negative eigenvalue of matrix Â2 moves towards zero while their perturbation level
increases have the potential to push the entire network into the unstable mode.

Â2 =



0 1 + ∆ 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

−2.7480× 108 −1.3083× 108 + ∆ −4.2614× 106 −517.0544 0 0 −2.6331× 103 −0.9492× 103

0 1 + ∆ 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 −49.4899 −191.8224 −5.2346× 108 −3.6549× 108 −1.7819× 107 −239.0092


where ∆ is the perturbation level.

2.4. Topological Stability Analysis

How are the connections with positive and negative signs arranged within the net-
work? And how do such arrangements affect network stability? Positive and negative
signs are, respectively, referred to as the synchronous and anti-synchronous correlation.
According to structural balance theory [28], the stability of a three-entity system can be
investigated by a signed association between two entities in the presence of a third party.
This could be generalized to any signed network by considering the associations between
its motifs/subgraphs and the signed links within the motifs. A motif is a recurring pattern
of interconnections within the graph, formed by a subset of nodes with a path between
each pair of nodes. The collective behavior of the imbalanced motifs may push the network
toward an unstable state. Considering all possible ways to connect, a motif is structurally
imbalanced when the multiplication of the signs on its edges turns negative. In a signed
graph, counting the number of imbalanced motifs can tell us about the stability of the
network. Figure 3 shows some examples of imbalanced arrangements.
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Figure 3. Examples of imbalanced motifs with different orders. According to the structural balance
theory, loss of balance can occur when the multiplication of the signs of one cycle becomes negative.

The influence of each node on the stability of the network can be determined by the
number of times that a node appears in the imbalanced motifs. To better quantify this
influence, a measure is defined that not only considers the imbalanced motifs with different
orders but also considers the weights of paths which form a cycle within these motifs. For
each node and for each imbalanced motif of size 3 that includes that node, the weights of
the paths are multiplied and then added together. The same procedure is repeated for the
imbalanced motifs of sizes 4, 5, and 6. The cube root of absolute value for the multiplication
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of these three calculations is then calculated, and the total cost associated with that node is
obtained as follows:

CTN = 3

√√√√√√√
∣∣∣∣∣∣∣∣W

(
GN
3

)

×W
(
GN
4

)

×W
(
GN
5

)

×W
(
GN
6

)

∣∣∣∣∣∣∣∣
W

(
GN
3

)

=
(

∑{i,j,k} ωijωjkωki

D2

)
W

(
GN
4

)

=
(

∑{i,j,k,m} ωijωjkωkmωmi

D2

)
W

(
GN
5

)

=
(

∑{i,j,k,m,n} ωijωjkωkmωmnωni

D2

)
W

(
GN
6

)

=
(

∑{i,j,k,m,n,h} ωijωjkωkmωmnωnhωhi
D2

)

(5)

where ω is the weight of the path between each pair of nodes within an imbalanced motif.

The terms
(

GN
3

)
,
(

GN
4

)
,
(

GN
5

)
, and

(
GN
6

)
, respectively, refer to the subset of all possible

imbalanced motifs of sizes 3, 4, 5, and 6 that include one specific node. D is the degree of
the corresponding node. W corresponds to the normalized sum over the products of motif
paths calculated for each node.

2.5. Symmetry-Breaking Stability Analysis

In complex networks, symmetry breaking means that some nodes attract or transmit
the flow of information more than other nodes due to the network dynamics or the
presence of external stimuli. This can lead to the emergence of instability within a network.
This phenomenon can occur through the process of self-organization when the nodes
in a network interact in a way that they form specific patterns or structures [29]. If a
network experiences symmetry breaking, some nodes may begin to differentiate from
other nodes and form distinct sub-networks. This process of differentiation can be thought
of as a bifurcation, as it represents a sudden and significant change in the structure
and behavior of the network. Occurrences of symmetry breaking can be seen in nature,
for example, when vascular systems, such as river basins, evolve [30]. This process of
differentiation can trigger a cascade of further differentiations within those sub-networks.
As the differentiations continue to cascade through the network, they can lead to the
emergence of a chaotic regime.

As network dysfunction can be a function of microscale structures and flow distribu-
tions [31], and spatial symmetry breaking is one way of studying patterns of information
flow, this subsection aimed at identifying spreaders of instability in the network by explor-
ing spatial symmetry-breaking behavior in local flow structures.

Inspired by Flabellate [32], more than two paths can be branched off from each
bifurcation point. They are called flabellate-shaped bifurcation in this study. Depending
on the polarity and strength of individual connections within this symmetry-breaking
structure, a polarity transition can occur to form a fractal dipole (Figure 4). This topo-
logical polarity transition breaks the balance and has the potential to spread instability
across the network.
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To find bifurcation nodes in a network where symmetry breaking along with polarity
transition occurs, firstly, the hidden structure of information flow needs to be extracted.
As topological properties of a system affect its dynamics, extracting hidden information
flow structures in the network provides a useful tool for understanding the dynamical
behavior of the network. A graph-based random walk is one of the well-known algorithms
inspired by natural language processing that can reveal these local structures of information
flow [33]. Walking on the graph means moving from one node to another in the direction
of the edge, and the flow of information within the network corresponds to the walker
stepping between nodes. In addition to information flow, activity dynamics on networks
can also be modeled by a graph-based random walk [34]. Considering that the random walk
on a network can model information spreading and capture network dynamics [35], we
leveraged a graph-based random walk algorithm to investigate the existence of symmetry-
breaking structures that are not visible in the network and ranked the nodes of the network
based on their ability in pushing the network into unstable modes. These random walks
represent the local structure of information flow distribution and show how information
from one node spreads to the other neighboring nodes.

Our goal is to understand whether hidden local structures of information flow can
push the network into unstable modes. We hypothesized that the emergence of local
polarized flabellate-shaped bifurcation in the information flow pathway causes symmetry
breaking and identifies the initiator of instability within the network.

Each division of bifurcation can branch off in the form of nested projections accompa-
nied by a polarity transition. These polarized structures of information flow with fractal-like
geometry tend to propagate perturbation faster across the network.

Inspired by the formula for an electric dipole moment for a pair of charges that is
computed based on the magnitude of charges multiplied by the distance between them,
a measure was introduced to represent the overall moment generated by the potential
symmetric fractal dipole. The individual nodes within the graph are considered charges
with a unit magnitude, and the edge weight represents the distance between two charges.
In this study, this measure was called the normalized summation of transition cost (NSTC).
Given an array of weights of traversed edges in each two-step random walk starting from
node k, the product of edge weights corresponding to each path is computed. All the
products of the path’s weights traversed from each node are then summed up together
and normalized by dividing by Nk, where k is the index of the starting node, and N is the
total number of paths traversed from the starting node. The normalized summation of the
transition cost as a measure of the overall moment generated by the potential symmetric
fractal dipole is:

NSTCk =
∑ ∏Nk

ωk
Nk

, ωk =
{

ωki, ωij
}

NSTCk =
∑n

k=0(ωki×ωij)
Nk

(6)

where k is the starting node, i is the visited node in the first step, and j is the visited node in
the second step.
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The more the NSTCk is negative, the stronger the topological polarity transition is.
Nodes become more unstable, given a stronger topological polarity transition. Unstable
nodes have a higher potential to spread the instability across the network. The spreading
ability of nodes is ranked based on the negativity of NSTCk.

2.6. Theoretical Justification for Analysis Approaches

Various theories have been developed that provide mathematical and conceptual
tools for comprehending complex systems across different domains. Drawing inspiration
from these theories, we aim to assess the stability of our complex system from multiple
perspectives, including spectral, topological stability, and symmetry-breaking viewpoints.
For example, theoretical justification for polarity-driven structural instabilities within a
network can be explained by the bipolar fuzzy set theory, which captures the bipolar nature
of real-world systems and allows for more accurate representation [36,37]. According to
the Equilibrium energy and stability measures for bipolar dynamics [38–40], networks
can attain a stable equilibrium state by balancing opposing interactions, such as attraction
and repulsion, positive and negative feedback, or excitation and inhibition. When this
balance is disrupted due to a change in the strength, sign, or topology of the interactions
between network components caused by external stimuli, the network may experience
structural instability that results in a new equilibrium state or even a bifurcation to an
entirely different regime.

3. Results

Our hypothesis was tested on the state-space model of the actuator, represented
by equation (1). First, the attention coefficients were extracted for all the nodes using an
AGCN. Then, three different stability analyses were performed, and the nodes with a higher
instability risk were identified in each analysis. These three stability analyses included:
1—spectral stability analysis, 2—topological stability analysis, and 3—symmetry-breaking
stability analysis.

3.1. Attention Mechanism

Considering the connections between the nodes in Figure 1, the nodes of 0, 3, 4, and
7 form one cluster (4-degree nodes), and the nodes of 1, 2, 5, and 6 form another cluster
(2-degree nodes). Two different scenarios were tested. In the first scenario, an AGCN
model was trained to classify these two clusters. In the second scenario, the perturbation
on the feature set of node 0 was applied, and an AGCN model was trained to classify
these two clusters in the presence of the node feature perturbation. The perturbation of the
feature set was performed by multiplying a factor of 2. The labels of 0.01 and 0.2 for the
first and second clusters were, respectively, assigned.

Figures 5 and 6 show the training loss as a function of iteration numbers for two scenarios,
namely, without and with perturbation. In both scenarios, the training loss approximately
converged to a loss value of 0.0028 after 500 iterations, confirming the robustness of an AGCN
model to feature perturbation.

Table 2 compares the model predictions against truth labels for the above-mentioned
scenarios. The model predictions summarized in Table 2 were not affected by the feature
perturbation of node 1, indicating the robustness of an AGCN model with respect to
feature perturbation.

Figure 7 shows that nodes #2 and #6 have the highest attention coefficients.



Dynamics 2023, 3 224
Dynamics 2023, 3, FOR PEER REVIEW 11 
 

 

 
Figure 5. Training loss for the scenario without perturbation. 

 
Figure 6. Training loss for the scenario with perturbation. 

Table 2 compares the model predictions against truth labels for the above-mentioned 
scenarios. The model predictions summarized in Table 2 were not affected by the feature 
perturbation of node 1, indicating the robustness of an AGCN model with respect to fea-
ture perturbation. 

Figure 7 shows that nodes #2 and #6 have the highest attention coefficients. 

Table 2. Model prediction of node labels. 

Node Id Actual Label 
Predicted Output 

Without Perturbation With Perturbation 
0 0.01 0.083 0 
1 0.20 0.189 1 
2 0.20 0.163 2 
3 0.01 0.082 3 
4 0.01 0.083 4 
5 0.20 0.149 5 

Figure 5. Training loss for the scenario without perturbation.

Dynamics 2023, 3, FOR PEER REVIEW 11 
 

 

 
Figure 5. Training loss for the scenario without perturbation. 

 
Figure 6. Training loss for the scenario with perturbation. 

Table 2 compares the model predictions against truth labels for the above-mentioned 
scenarios. The model predictions summarized in Table 2 were not affected by the feature 
perturbation of node 1, indicating the robustness of an AGCN model with respect to fea-
ture perturbation. 

Figure 7 shows that nodes #2 and #6 have the highest attention coefficients. 

Table 2. Model prediction of node labels. 

Node Id Actual Label 
Predicted Output 

Without Perturbation With Perturbation 
0 0.01 0.083 0 
1 0.20 0.189 1 
2 0.20 0.163 2 
3 0.01 0.082 3 
4 0.01 0.083 4 
5 0.20 0.149 5 

Figure 6. Training loss for the scenario with perturbation.

Table 2. Model prediction of node labels.

Node Id Actual Label
Predicted Output

Without Perturbation With Perturbation

0 0.01 0.083 0
1 0.20 0.189 1
2 0.20 0.163 2
3 0.01 0.082 3
4 0.01 0.083 4
5 0.20 0.149 5
6 0.20 0.164 6
7 0.01 0.083 7



Dynamics 2023, 3 225

Dynamics 2023, 3, FOR PEER REVIEW 12 
 

 

6 0.20 0.164 6 
7 0.01 0.083 7 

 
Figure 7. Comparing attention coefficients of each node for the scenario with and without pertur-
bation on node 0. Nodes 2 and 6 are the ones that need more attention. 

3.2. Spectral Stability Analysis 
To test our hypothesis and check the effect of each node on the stability of the net-

work, we looked at how the perturbation in one column of the adjacency matrix [9] re-
flected in its largest eigenvalue. To verify the need for unstable nodes for more attention, 
we performed spectral stability analysis and calculated the change in the largest eigen-
value of the adjacency matrix by increasing the perturbation level. Figure 8 shows how 
different nodes in the graph responded to an increase in the perturbation level. As seen in 
Figure 8, nodes 2 and 6 are those that may move the system towards instability because 
the largest eigenvalue gets closer to zero as the perturbation level on these nodes in-
creases. 

  

Figure 7. Comparing attention coefficients of each node for the scenario with and without perturba-
tion on node 0. Nodes 2 and 6 are the ones that need more attention.

3.2. Spectral Stability Analysis

To test our hypothesis and check the effect of each node on the stability of the network,
we looked at how the perturbation in one column of the adjacency matrix [9] reflected
in its largest eigenvalue. To verify the need for unstable nodes for more attention, we
performed spectral stability analysis and calculated the change in the largest eigenvalue of
the adjacency matrix by increasing the perturbation level. Figure 8 shows how different
nodes in the graph responded to an increase in the perturbation level. As seen in Figure 8,
nodes 2 and 6 are those that may move the system towards instability because the largest
eigenvalue gets closer to zero as the perturbation level on these nodes increases.

3.3. Topological Stability Analysis

To check to what extent unstable nodes are involved in imbalanced motifs within the
networks, a topological stability analysis was performed. The goal was to detect those
nodes that lie within the path of imbalanced motifs of different orders. Figure 9 shows the
trajectory starts at node 2 and traverses within three sample motifs of a different order.
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The perturbation level was initially set to 0.5 and gradually increased by step 3. Driving to zero by
increasing the perturbation level only occurred for the largest eigenvalues of nodes 2 and 6.
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Figure 9. N-node motif within the network under study.

In the network under study, all the imbalanced motifs of size 3 that passed a specific
node were first extracted. The product of the weights of the paths within each motif was
then performed and stored as a single score. Similar scores were computed for other motifs
that passed the same node, and all these scores were summed up to obtain the total score
for each node. The total score of each node was normalized based on the square of the
node’s degree. A similar procedure was repeated for imbalanced motifs of sizes 4, 5, and 6.
Table 3 summarizes the total scores for each individual node and for each order of motif.
The last column of Table 3 shows the total cost obtained from the multiplication of these
three scores and takes the cube root of the absolute value of it. Figure 10 provides a visual
representation of the total cost for each node and reflects the potential role of nodes 2 and
6 in moving the network into unstable mode.

3.4. Symmetry-Breaking Stability Analysis

To confirm whether the unstable nodes contribute to some polarized structures within
the network, a symmetry-breaking stability analysis was performed. To do this, the local
structure of the information flow distribution was extracted for each node. The process of
extracting these information flow distributions for two single nodes has been plotted in
Figures 11 and 12. Figure 11 shows all the paths that start at node 0 and traverse within a
two-step random walk. A similar figure has been plotted for random walks starting from
node 2 (Figure 12).
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Table 3. Score associated with imbalanced motif paths traversed from each node.

Node Three-Node Motif Four-Node Motif Five-Node Motif Six-Node Motif Total Cost

0 0.00 −1.22 × 108 0.00 0.00 0.00
1 0.00 −2.07 × 109 −9.32 × 1013 −3.82 × 1015 0.00
2 −10,152,500 −7.41 × 108 −6.47 × 1013 −2.65 × 1015 1.089 × 1015

3 0.00 −5.12 × 108 −2.33 × 1013 −9.56 × 1014 0.00
4 0.00 −2.32 × 108 0.00 0.00 0.00
5 −29,239,200 −6.38 × 107 0.00 −3.82 × 1015 0.00
6 −10,152,500 −7.41 × 108 −6.47 × 1013 −2.65 × 1015 1.089 × 1015

7 −7,309,800 −5.22 × 108 −2.33 × 1013 −9.56 × 1014 4.400 × 1014
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Figure 12. Visualization of a random walk starting from node 2.

By simultaneously plotting all the random walks corresponding to each node (Figure 13),
a clear pattern of flabellate-shaped bifurcation appeared on nodes 2 and 6.
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attention mechanism, instability, and structural dynamics in the network. We showed that 
the mechanism that enables a machine learning model to focus on relevant nodes could 
be explained from the perspective of structural dynamics with its inherent instability. 
Here, we studied such triangle relationships in a linear dynamical system whose out-
comes helped to compensate for the lack of explainability in the attention mechanism. In 
future studies, we aim to expand our investigations for nonlinear and nonstationary dy-
namical systems. 
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should be checked.

As shown in Figure 14, nodes 2 and 6 are those influential spreaders able to push the
network into unstable mode.
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Figure 14. NSTC as the measure of spreading ability of each node. The negative score of the NSTC
corresponds to the node where topological polarity transition occurs. Those nodes with more negative
values of the NSTC have a higher ability to spread the instability across the network. A detailed
explanation of the computation process for determining the spreading ability of nodes can be found
in Appendix A.

4. Discussion and Conclusions

This study provided a proof of concept for the triangular relationships between the
attention mechanism, instability, and structural dynamics in the network. We showed that
the mechanism that enables a machine learning model to focus on relevant nodes could be
explained from the perspective of structural dynamics with its inherent instability. Here, we
studied such triangle relationships in a linear dynamical system whose outcomes helped to
compensate for the lack of explainability in the attention mechanism. In future studies, we
aim to expand our investigations for nonlinear and nonstationary dynamical systems.

The contributions of this study bring several interesting insights: First, this study
provided evidence for the relationship between the attention mechanism, dynamics, and
unstable nodes. It was found that the most relevant parts of the input data in graph neural
networks are those that have the ability to change the network dynamics. This study tried
to explain the attention mechanism through the lens of instability analysis. Second, it
was found that the collective behavior of the imbalanced motifs in the network is also
determinative in changing network dynamics, and this gave evidence that we need to
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pay more attention to. Third, we observed polarity-driven instabilities in hidden fractal
patterns in the network, and this shifted the analytic strategy to paying more attention to
hidden structures of polarity transition.

We showed that the stability analysis offers a promising solution for performing the
attention mechanism in a graph convolutional network faster and more efficiently by
reducing the computational complexity, increasing the interpretability, and eliminating
sensitivity to hyperparameters. Ranking the stability properties of nodes makes attention
models more transparent and explainable and can be applied to a wide range of tasks,
including weight pruning [41], sparsification, and reducing the number of non-zero weights
in the network [42], making structural bias [43], etc.

The intent of these contributions is to open doors for finding explainable tools that
are able to speed up the process of training in graph machine learning. We want to know
if we can make the process of graph machine learning more adaptive by incorporating
knowledge from stability analysis. Can prior knowledge be incorporated into the graph
attention network through stability analysis? How can this help to improve the accuracy of
graph attention networks? If we already know from stability analysis which nodes need
attention before conducting any learning process, how can this speed up the process of
aggregating information in node embedding? Can the attention mechanism be replaced
with stability analysis? Can we get rid of hyperparameter tuning in mechanisms such as
biased random walks by determining the transition probability based on their spreading
ability and stability analysis? These are the kinds of questions that we will be answering in
our upcoming works.

An important aspect to consider for any future work is to apply bipolar fuzzy set the-
ory as a theoretical framework to better understand polarity-driven structural instabilities
within networks. By capturing the bipolar nature of real-world systems, this approach
allows for a more accurate representation of complex network dynamics [36,37]. Further-
more, stability measures for bipolar dynamics provide a means to study how networks
achieve a stable equilibrium state by balancing positive and negative interactions [38–40].
These measures can help us investigate how external stimuli that change the strength, sign,
or topology of the interactions between network components can disrupt this balance,
leading to structural instabilities. We believe that applying these theories can enhance
our understanding of the underlying mechanisms behind the emergence of structural
instabilities in networks.
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Appendix A

In symmetry-breaking stability analysis, the following calculations are the process of
computing the spreading ability of each node based on Equation (7). Figure A1 shows one
example of the path’s weights traversed during a single random walk.
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NSTC0 =
((ω01×ω12)+(ω01×ω16)+(ω05×ω52)+(ω05×ω56))

N0
= ((1×1)+(1×1)+(1×1)+(1×1))

4 = 1

NSTC1 =
((ω12×ω23)+(ω12×ω27)+(ω16×ω63)+(ω16×ω67))

N1
= ((1×1)+(1×1)+(1×1)+(1×1))

4 = 1

NSTC2 =
((ω23×ω30)+(ω23×ω31)+(ω23×ω36)+(ω23×ω37)+(ω27×ω73)+(ω27×ω74)+(ω27×ω75)+(ω27×ω76))

N2

=

(
(1×−274800000) + (1× 130830000) + (1×−2633.1) + (1×−949.2)+

(1×−191.8224) + (1×−523460000) + (1×−365490000) + (1×−17819000)

)
8 = −1.3134× 108

NSTC3 =(
(ω30 ×ω01) + (ω30 ×ω05) + (ω31 ×ω12) + (ω31 ×ω16) + (ω32 ×ω27) + (ω36 ×ω67)+

(ω37 ×ω72) + (ω37 ×ω74) + (ω37 ×ω75) + (ω37 ×ω76)

)
N3

=(
(−274800000× 1) + (−274800000× 1) + (130830000× 1) + (130830000× 1) + (−4261400× 1) + (−2633.1× 1)+

(−949.2×−49.4899) + (−949.2×−523460000) + (−949.2×−365490000) + (−949.2×−17819000)

)
10

= 8.6041× 1010

NSTC4 =
((ω41×ω12)+(ω41×ω16)+(ω45×ω52)+(ω45×ω56))

N4
= ((1×1)+(1×1)+(1×1)+(1×1))

4 = 1

NSTC5 =
((ω52×ω23)+(ω52×ω27)+(ω56×ω63)+(ω56×ω67))

N5
= ((1×1)+(1×1)+(1×1)+(1×1))

4 = 1

NSTC6 =
((ω63×ω30)+(ω63×ω31)+(ω63×ω32)+(ω63×ω37)+(ω67×ω72)+(ω67×ω73)+(ω67×ω74)+(ω67×ω75))

N2

=

(
(1×−274800000) + (1× 130830000) + (1×−4261400) + (1×−949.2)+

(1×−49.4899) + (1×−191.8224) + (1×−523460000) + (1×−365490000)

)
8 = −1.0372× 108
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NSTC7 =(
(ω72 ×ω23) + (ω73 ×ω30) + (ω73 ×ω31) + (ω73 ×ω32) + (ω73 ×ω36) + (ω74 ×ω41)+

(ω74 ×ω45) + (ω75 ×ω52) + (ω75 ×ω56) + (ω76 ×ω63)

)
N7

=
(−49.4899× 1) + (−191.8224×−274800000) + (−191.8224× 130830000) + (−191.8224×−4261400)+

(−191.8224×−2633.1) + (−523460000× 1) + (−523460000× 1) + (−365490000× 1)+
(−365490000× 1) + (−17819000× 1)


10

= 2.6639× 109
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