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Abstract: A conventional approach to the dark energy (DE) concept is reviewed and discussed.
According to it, there is absolutely no need for a novel DE component in the universe, provided that
its matter–energy content is represented by a perfect fluid whose volume elements perform polytropic
flows. When the (thermodynamic) energy of the associated internal motions is taken into account as
an additional source of the universal gravitational field, it compensates the DE needed to compromise
spatial flatness in an accelerating universe. The unified model which is driven by a polytropic fluid
not only interprets the observations associated with universe expansion but successfully confronts
all the current issues of cosmological significance, thus arising as a viable alternative to the ΛCDM
model.
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1. Introduction

According to a considerable amount of observational data accumulated in the last
25 years, it became evident that a uniformly distributed energy component, so-called
DE, is present in the universe (see, e.g., [1,2]). First, it was the high-precision distance
measurements, performed with the aid of distant supernova type Ia (SNe Ia) events, which
revealed that, in a dust universe (i.e., under the assumption that the constituents of the
universe matter content do not interact with each other, so that their world lines remain
eternally parallel), these standard candles look fainter (i.e., they are located farther) than
what was theoretically predicted [3–31]. To interpret this result, Perlmutter et al. [2] and
Riess et al. [9], following Carroll et al. [32], admitted that the long sought cosmological
constant, Λ, differs from zero; hence, apart from matter, the universe also contains a
uniformly distributed amount of energy [33]. The need for an energy component that does
not cluster at any scale was subsequently verified by observations of galaxy clusters [34],
the integrated Sachs–Wolfe effect [35], baryon acoustic oscillations (BAOs) [36,37], weak
gravitational lensing [38,39], and the Lyman-α forest [40]. If this energy component is
due to the cosmological constant, it would necessarily introduce a repulsive gravitational
force [41]; hence, the unexpected dimming of the SNe Ia standard candles was accordingly
attributed to a recent acceleration of universe expansion (see, e.g., [42–44]).

At the same time, high precision cosmic microwave background (CMB) observations
suggested that our universe is, in fact, a spatially flat Robertson–Walker (RW) cosmological
model [45–56]. This means that the overall energy density, ε, of the universe matter–energy
content, in units of the critical energy density, εc = ρcc2 (the equivalent to the critical

rest-mass density, ρc =
3H2

0
8πG , where H0 is the Hubble parameter at the present epoch, G

is Newton’s gravitational constant, and c is the velocity of light), must be equal to unity,
Ω = ε

εc
= 1, i.e., much larger than the measured value of the mass-density parameter,
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ΩM = ρ
ρc

= 0.302± 0.006, where ρ is the rest-mass density [57]. Therefore, an extra amount
of energy was also needed, to justify spatial flatness.

Quantum vacuum could serve as such an energy basin, attributing an effective cosmo-
logical constant to the universe, which would justify both spatial flatness and accelerated
expansion [33,41,58]. Unfortunately, vacuum energy is 10123 times larger than the asso-
ciated measured quantity in curved spacetime [58]. Clearly, an approach other than the
cosmological constant (namely, the DE) was needed to incorporate spatial flatness in an
accelerating universe; hence, (too) many models were proposed. An (only) indicative list
would involve quintessence [59], k-essence [60], and other (more exotic) scalar fields [61],
tachyons [62], brane cosmology [63,64], scalar–tensor gravity [65], f (R)-theory [66,67],
holographic principle [68–70], Chaplygin gas [71–74], Cardassian cosmology [75–77], mul-
tidimensional cosmology [78–81], mass-varying neutrinos [82,83], cosmological principle
deviations [84–87], and many other models (see, e.g., [88]), not to mention the associated
cosmographic results [89–108]. In an effort to illuminate darkness, we point out that, long
before the necessity of DE’s invention, another dark component was (and still is) present in
the composition of the universe matter content, the long sought dark matter (DM).

Today, there is absolutely no doubt as regards the existence of a non-luminous mass
component in the universe. The associated observational data involve high-precision
measurements of the flattened galactic rotation curves [109,110], weak gravitational lens-
ing [111], and modulation of the strong lensing effects due to massive elliptical galax-
ies [112]. On a galactic scale, it was found that their dark haloes extend almost half
the distance to the neighboring cosmic structures [113,114], while, at even larger scales,
the total mass of galaxy clusters is proved to be tenfold as compared to their baryonic
mass [115–117]. The same is also true at the universe level, as it is inferred from the combi-
nation of CMB observations [53] and light chemicals’ abundances [118]. In view of all the
above, it is now well established that 85% of the universe mass content is non-luminous
and, most probably, non-baryonic [119].

The precise nature of DM constituents is still unknown. There are many candidates,
from ordinary stellar-size black holes, to Bose–Einstein condensates and ultralight ax-
ions [120]. Another interesting candidate is the weakly interacting massive particles
(WIMPs) [121–123], which can be relevant to a potential detection of DM, because they
annihilate through standard-model channels [124,125]. However, regarding WIMPs, only
weak-scale physics is involved and, therefore, we argued that, practically, they do not
interact with each other. Nevertheless, a few years ago, particle detectors [126,127] and
the Wilkinson Microwave Anisotropy Probe (WMAP) [128] have revealed an unexpected
excess of cosmic positrons, which might be due to WIMP collisions (see, e.g., [129–139]). In
other words, WIMPs can be slightly collisional [140–144].

A cosmological model of self-interacting matter content could in fact unify DM and
DE between them [145–158]). In this framework, Kleidis and Spyrou [159–163] admitted
that the potential collisions of WIMPs maintain a tight coupling between them and their
kinetic energy is re-distributed. On this assumption, DM itself acquires fluid-like properties
and, hence, universe evolution is now driven by a fluid whose volume elements perform
hydrodynamic flows (and not by dust). In our defense, the same assumption has also been
used in modeling dark galactic haloes, significantly improving the corresponding velocity
dispersion profiles [164–170]. If this is the case, the thermodynamic energy of the DM fluid
internal motions should also be considered as a component of the universe matter energy
content that drives cosmic expansion. We cannot help but wonder whether it could also
compensate for the extra DE needed to compromise spatial flatness or not.

This review article is organized as follows: In Section 2, we consider a spatially flat
cosmological model whose evolution is driven by a (perfect) fluid of DM, the volume
elements of which perform polytropic flows [160–163]. Accordingly, an extra energy
amount—the energy of internal motions—arises naturally and compensates the extra
DE needed to compromise spatial flatness. Such a cosmological model involves a free
parameter, the associated polytropic exponent, Γ. In the case where Γ < 1 the cosmic
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pressure becomes negative and the universe accelerates its expansion below a particular
value of the cosmological redshift parameter, z, the so-called transition redshift,ztr. In
Section 3, we demonstrate that the polytropic DM model so assumed can confront all the
major issues of cosmological significance, since, in the constant pressure (i.e., Γ = 0) limit,
it fully reproduces all the predictions and the associated observational results concerning
the infernous ΛCDM model [160–162]. Finally, we conclude in Section 4.

2. Polytropic Flows in a Cosmological DM Fluid

CMB has been proved a most valuable tool for reliable cosmological observations
(see, e.g., [45–56]). At the present epoch, data arriving from various CMB probes strongly
suggest that the universe can be described by a spatially flat RW model, i.e.,

ds2 = c2dt2 − S2(t)
(

dx2 + dy2 + dz2
)

, (1)

where S(t) is the scale factor as a function of cosmic time, t. The evolution of the cosmo-
logical model given by Equation (1) depends on the exact form and the properties of its
matter–energy content.

According to Kleidis and Spyrou [159–163], in a universe filled with interactive DM
there is absolutely no need for an extra DE component. Indeed, provided that the collisions
of the DM constituents are frequent enough, they can maintain a tight coupling between
them so that their kinetic energy is re-distributed. In this case, the universe matter content
acquires thermodynamic properties and the curved spacetime evolution is driven by a
perfect (DM) fluid instead of pressureless dust [159]. Due to the cosmological principle,
this fluid is practically homogeneous and isotropic at large scale and, therefore, its pressure,
p, obeys an EoS of the form p = f (ρ) [160]. Now, the fundamental units of the universe
matter content are the volume elements of this (DM) fluid, i.e., closed thermodynamical
systems with conserved number of particles [171]. Their motion in the interior of the cosmic
fluid under consideration is determined by the conservation law

Tµν
;ν = 0 , (2)

where Greek indices refer to four-dimensional spacetime, Latin indices refer to three-
dimensional space, the semicolon denotes covariant derivative, and Tµν is the energy-
momentum tensor of the source that drives universe evolution. In the particular case of a
perfect fluid, Tµν reads

Tµν = (ε + p)uµuν − pgµν , (3)

where uµ is the four-velocity
(
uµuµ = 1

)
, gµν is the universe metric tensor, and ε is the total

energy density of the fluid, which, now, is decomposed to

ε = ε(ρ, T) + ρ U(T) (4)

(see, e.g., [172], pp. 81–84 and 90–94). In Equation (4), T is the absolute temperature, U(T) is
the energy of this fluid’s internal motions, and ε(ρ, T) represents all forms of energy besides
that of internal motions. In view of Equation (4), Equation (2) represent the hydrodynamic
flows of volume elements in the interior of a perfect-fluid source as they are traced by
an observer comoving with cosmic expansion in a maximally symmetric cosmological
model (see, e.g., [173], p. 91). The evolution of such a model (see, e.g., [173] pp. 61, 62) can
be determined by the Friedmann equation of the classical Friedmann–Robertson–Walker
(FRW) cosmology

H2 =
8πG
3c2 ε , (5)

where

H =
Ṡ
S

(6)
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is the Hubble parameter in terms of S(t) and the dot denotes differentiation with respect to
cosmic time. To solve Equation (5), first we need to determine ε, in other words ε and U. To
do so, we use the first law of thermodynamics in curved spacetime,

dU + pd
(

1
ρ

)
= CdT (7)

(see, e.g., [172], p. 83), where C is the specific heat of the cosmic fluid, in connection with
the zeroth component of Equation (2), i.e., the continuity Equation

ε̇ + 3
Ṡ
S
(ε + p) = 0 . (8)

Finally, we need to decide on the form of the function p = f (ρ). Accordingly, we admit
that the volume elements of the universe matter content perform polytropic flows [160–163].

Polytropic process is a reversible thermodynamic process in which the specific heat of
a closed system evolves in a well-defined manner (see, e.g., [174], p. 2). For C = constant,
the system possesses only one independent state variable, the rest-mass density, and the
EoS for a perfect fluid, p ∝ ρT , results in

p = p0

(
ρ

ρ0

)Γ
(9)

T = T0

(
ρ

ρ0

)Γ−1
(10)

(see, e.g., [160]), where p0, ρ0, and T0 denote the present-time values of pressure, rest-mass
density, and temperature, respectively, and Γ is the polytropic exponent. In such a model,
Equation (7) yields

U = U0

(
ρ

ρ0

)Γ−1
, (11)

where
U0 = CT0 +

1
Γ− 1

p0

ρ0
(12)

is the present-time value of the cosmic fluid internal energy. In view of
Equations (4) and (11), Equation (8) is written in the form

ΓU0

(
ρ̇ + 3

Ṡ
S

ρ

)
+ ε̇ + 3

Ṡ
S

ε− 3(Γ− 1)ρ0CT0
Ṡ
S

(
ρ

ρ0

)Γ
= 0 . (13)

Since the total number of particles in a closed system (volume element) is conserved,
we furthermore have

ρ̇ + 3
Ṡ
S

ρ = 0⇒ ρ = ρ0

(
S0

S

)3
(14)

and, therefore, Equation (13) results in

ε = ρ0c2
(

S0

S

)3
− ρ0CT0

(
S0

S

)3Γ
. (15)

By virtue of Equations (11)–(15), the total energy density (4) of the polytropic DM
model under consideration is written in the form

ε = ρ0c2
(

S0

S

)3
+

p0

Γ− 1

(
S0

S

)3Γ
= ρc2 +

1
Γ− 1

p (16)
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and the Friedmann Equation (5) results in(
H
H0

)2
= ΩM

(
S0

S

)3
[

1 +
1

Γ− 1
p0

ρ0c2

(
S0

S

)3(Γ−1)
]

. (17)

Extrapolation of Equation (17) to the present epoch yields the corresponding value of
the polytropic DM fluid pressure, i.e.,

p0 = ρ0c2(Γ− 1)
1−ΩM

ΩM
. (18)

In view of Equation (18), for Γ < 1, the pressure (9) is negative and so might be the
quantity ε + 3p, as well, something that would lead to S̈ > 0 (see, e.g., [43]). In other words,
for Γ < 1, the polytropic DM model under consideration can accelerate its expansion. At
the same time, Equation (16) reads

ε = ρcc2

[
ΩM

(
S0

S

)3
+ (1−ΩM)

(
S0

S

)3Γ
]

, (19)

the extrapolation of which to the present epoch suggests that the total energy density
parameter of the polytropic DM model under consideration is exactly unity, i.e.,

Ω0 =
ε0

εc
=

ρcc2

ρcc2 [ΩM + (1−ΩM)] = 1 . (20)

We see that the polytropic DM model with Γ < 1 might be an excellent conventional
solution to the DE issue, by comprising both spatial flatness (Ω0 = 1) and accelerated
expansion (ε + 3p < 0) of the universe in a unique theoretical framework.

3. Predictions and Outcomes of the Polytropic DM Model

In this Section, we explore the properties of a polytropic DM model with Γ < 1, in
association with all the major issues of cosmological significance. To do so, unless otherwise
stated, in what follows we admit that ΩM = 0.274, as suggested by the nine years WMAP
survey [54]. This value differs from the corresponding Planck result, ΩM = 0.308 [55,56],
and/or the most recent observational one, ΩM = 0.302, of the Dark Energy Survey (DES)
consortium [57], while resting quite far also from its Pantheon Compilation counterpart,
ΩM = 0.306 [30]. It is evident that the exact value of ΩM, as also of many other parameters
of cosmological significance (see, e.g., [175]), is still a matter of debate.

3.1. The Accelerated Expansion of the Universe

Upon consideration of Equation (18), Equation (17) is written in the form(
H
H0

)2
=

(
S0

S

)3
[

ΩM + (1−ΩM)

(
S
S0

)3(1−Γ)
]

(21)

or, in terms of the cosmic scale factor, in the more convenient form[
d
dt

(
S
S0

)3/2
]2

=
1

t2
EdS

ΩM + (1−ΩM)

[(
S
S0

)3/2
]2(1−Γ)

 , (22)
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where tEdS = 2
3H0

is the age of the universe in the Einstein–de Sitter (EdS) model.
Equation (22) can be solved in terms of hypergeometric functions, as follows

(
S
S0

) 3
2

2F1

(
1

2(1− Γ)
,

1
2

;
3− 2Γ

2(1− Γ)
;−
(

1−ΩM
ΩM

)[
S
S0

]3(1−Γ)
)

=
√

ΩM

(
t

tEdS

)
(23)

(cf. [176], pp. 1005–1008). For Γ < 1, the resulting hypergeometric series converges
absolutely within the circle of (unit) radius

∣∣∣ S
S0

∣∣∣ ≤ 1 (cf. [177], p. 556). There are two limiting

cases of Equation (23) of particular interest: (i) For ΩM = 1, it yields S = S0

(
t

tEdS

)2/3
,

i.e., the scale factor of the EdS model. (ii) For Γ = 0 (i.e., in the ΛCDM-like limit),
Equation (23) is written in the form

(
S
S0

) 3
2

2F1

(
1
2

,
1
2

;
3
2

; −
(

1−ΩM
ΩM

)[
S
S0

]3
)

=
√

ΩM

(
t

tEdS

)
, (24)

which, upon consideration of the identity

2F1

(
1
2

,
1
2

;
3
2

; −x2
)
=

1
x

sinh−1(x) (25)

(cf. [176], Equation (9.121.28), p. 1007, [177], Equation (15.1.7), p. 556), where in our case,

x =

√(
1−ΩM

ΩM

)[
S
S0

]3
, results in

S(t) = S0

(
ΩM

1−ΩM

)1/3
sinh2/3

(√
1−ΩM

t
tEdS

)
. (26)

For 1−ΩM = ΩΛ, Equation (26) represents the scale factor of the ΛCDM model (cf.
Equation (5) of [178]), as it should. On the other hand, at the present epoch, i.e., when t = t0
and S = S0, Equation (23) reads

t0

tEdS
=

1√
ΩM

2F1

(
1

2(1− Γ)
,

1
2

; 1 +
1

2(1− Γ)
; −1−ΩM

ΩM

)
. (27)

With the aid of Equation (27) we can eliminate tEdS from Equation (23), to obtain the
scale factor of the polytropic DM model (in units of S0) as a function of cosmic time (in
units of t0), i.e.,

(
S
S0

)3/2 2F1

(
1

2(1−Γ) , 1
2 ; 3−2Γ

2(1−Γ) ; −
(

1−ΩM
ΩM

)[
S
S0

]3(1−Γ)
)

2F1

(
1

2(1−Γ) , 1
2 ; 3−2Γ

2(1−Γ) ; − 1−ΩM
ΩM

) =
t
t0

. (28)

The evolution of S(t) (in units of S0) parameterized by Γ < 1, is given in Figure 1.
We observe that, in all cases, there is a value of t < t0 (somewhere around t ' 0.75 t0),
above which the function S(t) becomes concave, i.e., S̈ > 0. This is a very important result,
indicating that the polytropic DM model with Γ < 1 definitely transits from deceleration to
acceleration at a certain time, (quite) close to the present epoch, t0.
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Figure 1. The scale factor, S, of the polytropic DM model in units of its present-time value, S0, as
a function of cosmic time t (in units of t0), for Γ = 0.5 (orange), Γ = 0 (dashed), Γ = −0.5 (blue),
Γ = −1 (red), and Γ = −2 (green). For each and every curve, there is a value of t < t0 above which
S(t) becomes concave, i.e., the polytropic DM universe accelerates its expansion.

3.2. The Age of the Universe

By construction, Equation (27) represents the age, t0, of the polytropic DM universe in
units of tEdS. The behavior of t0, as a function of the polytropic exponent Γ < 1, is presented
in Figure 2. In the ΛCDM-like (Γ = 0) limit, Equation (27) yields

t0 = tEdS
1√

1−ΩM
sinh−1

√
1−ΩM

ΩM
. (29)

For ΩM = 0.274, Equation (29) results in t0 = 1.483 tEdS, which, adopting that
H0 ' 67.5 km/s/Mpc (see, e.g., [54,57]), yields t0 = 13.79 Gys. This theoretically predicted
value of t0 is in excellent agreement with the corresponding observational result [54–57]
for the age of the ΛCDM universe. In fact, from Figure 2 we see that, for every Γ < 1, the
age of the polytropic DM model is always larger than that of its EdS counterpart; in other
words, the polytropic DM model so assumed no longer suffers from what is referred to as
the age problem.
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Figure 2. The age of the polytropic DM model, t0, in units of tEdS, as a function of the polytropic
exponent Γ < 1 (red solid line). Notice that, for every Γ < 1, we have t0 > tEdS, with t0 approaching
tEdS only in the isothermal (Γ→ 1) limit. The horizontal solid line denotes the age of the universe in
the ΛCDM-like (Γ = 0) limit of the polytropic DM model, i.e., t0 = 1.483 tEdS.

3.3. Transition to Acceleration

In the polytropic DM model under consideration the Hubble parameter (21) in terms
of the cosmological redshift, 1 + z = S0

S , is written in the form

H = H0(1 + z)
3
2

[
ΩM +

1−ΩM

(1 + z)3(1−Γ)

]1/2
. (30)

In view of Equation (30), the deceleration parameter

q(z) =
dH/dz
H(z)

(1 + z)− 1 (31)

reads

q(z) =
1
2

[
1− 3(1− Γ)(1−ΩM)

ΩM(1 + z)3(1−Γ) + (1−ΩM)

]
. (32)

For z = 0 (i.e., at the present epoch), we obtain

q0 =
1
2
[1− 3(1− Γ)(1−ΩM)] , (33)

which, in the ΛCDM-like (i.e., Γ = 0) limit, yields q0 = −0.54. This result lies well within
the associated observationally determined range of q0, i.e., q0 = −0.53+0.15

−0.13 [179], and,
in fact, reproduces the corresponding (i.e., theoretically derived) ΛCDM result, that is,
q0 = −0.55± 0.01 [180]. However, what is more important is that the condition q(z) ≤ 0
reveals a particular value of z, the so-called transition redshift,

ztr =

[
(2− 3Γ)

1−ΩM
ΩM

] 1
3(1−Γ)

− 1 , (34)
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below which q(z) becomes negative, i.e., the universe accelerates its expansion. In the
ΛCDM-like (Γ = 0) limit, Equation (34) yields ztr = 0.744, which (i) lies well within
range of the corresponding ΛCDM result, namely, ztr = 0.752± 0.041 [29] and (ii) actually
reproduces the associated result of Muccino et al. [181], i.e., ztr = 0.739+0.065

−0.089, obtained
by applying a model-independent method to a number of SNeIa, BAOs, and GRB data.
Furthermore, by virtue of Equation (34), the condition ztr ≥ 0 imposes a more stringent
constraint on the potential values of Γ, namely,

Γ ≤ 1
3

[
2− ΩM

1−ΩM

]
. (35)

For ΩM = 0.274, Equation (35) yields Γ ≤ 0.541. Apparently, the polytropic DM model
with Γ ≤ 0.541 accelerates its expansion at cosmological redshifts lower than a transition
value, without the need of any novel DE component. The behavior of ztr, as a function of
the parameter Γ ≤ 0.541, is presented in Figure 3.
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Figure 3. The transition redshift, ztr, in the polytropic DM model in terms of the associated exponent,
Γ (blue solid curve). For Γ ≤ −0.38 (red dashed curve), the universe enters into the phantom
realm [160].

3.4. The Total EoS Parameter

In the ΛCDM-like (Γ = 0) limit, our model actually reproduces the behavior of the
(so-called) total EoS parameter,

wtot ≡
p
ε

, (36)

as a function of z [88]. For Γ = 0, upon consideration of Equations (14), (16), and (18),
Equation (36) yields

wtot ≡
p
ε
= − 1−ΩM

1−ΩM + ΩM(1 + z)3 , (37)

the behavior of which, in terms of the cosmological redshift parameter, is depicted in
Figure 4. Today, i.e., for z = 0, we have wtot = −(1−ΩM) = −ΩΛ, in complete correspon-
dence to the associated ΛCDM result,

wtot =
ptot

ρtot
=

pΛ

ρM + ρΛ
=

−ρΛ

ρM + ρΛ
=

−ΩΛ

ΩM + ΩΛ
= −ΩΛ (38)
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(in connection, see, e.g., [88]).
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Figure 4. The total EoS parameter, wtot, in terms of z, in the context of the ΛCDM-like (i.e., Γ = 0)
limit of the polytropic DM model. Notice that, today (i.e., at z = 0), wtot ≈ −0.7, while, for larger
values of z, it approaches zero, in absolute agreement with ΛCDM cosmology [88].

3.5. The Range of Values of the Polytropic Exponent

The isentropic velocity of sound is defined as

c2
s = c2

(
∂p
∂ε

)
S

(39)

(see, e.g., [182] p. 52), where
(

∂p
∂ε

)
S
≤ 1, in order to avoid violation of causality [183]. In

the polytropic DM model, the total energy density of the universe matter–energy content
is related to pressure by Equation (16), whose partial differentiation yields the associated
velocity of sound as a function of z,

( cs

c

)2
= −

Γ(1− Γ) 1−ΩM
ΩM

(1 + z)3(1−Γ) + Γ 1−ΩM
ΩM

. (40)

Now, the condition for a positive (or zero) velocity-of-sound square imposes a major
constraint on Γ, i.e., ( cs

c

)2
≥ 0⇔ Γ ≤ 0 , (41)

while, admitting that, today, DM is cold, i.e., at z = 0,( cs

c

)2
<

1
3

, (42)

we obtain

Γ > −2
3

[√
1 +

3
4

ΩM
1−ΩM

− 1

]
= −0.1 . (43)
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Equations (41) and (43) significantly narrow the potential range of values of the
polytropic exponent, which, from now on, rests in

− 0.1 < Γ ≤ 0 . (44)

Hence, in the polytropic DM model under consideration, the associated polytropic
exponent, if not zero, is definitely negative and very close to zero. Notice that, in view
of Equation (44), Equation (9) is in excellent agreement with the associated result for
a generalized Chaplygin gas, p ∼ −ρα, arising from the combination of X-ray and
SNe Ia measurements with data from Fanaroff–Riley type IIb radio-galaxies, namely,
α = −0.09+0.54

−0.33 [184].

3.6. The Jerk Parameter

A dimensionless third (time-)derivative of the scale factor, S(t), the so-called
jerk parameter,

j(S) =
1

SH3
d3S
dt3 (45)

(see, e.g., [185,186]), can be used to demonstrate the departure of the polytropic DM model
under consideration from its ΛCDM counterpart. The reason is that, for the ΛCDM model
j = 1, for every z. Hence, any deviation of j from unity enables us to constrain the departure
of the model so assumed from the ΛCDM model in an effective manner [186].

In terms of the deceleration parameter, j is written in the form

j(q) = q(2q + 1) + (1 + z)
dq
dz

(46)

(see, e.g., [187]), which, in the polytropic DM model, i.e., upon consideration of
Equation (32), yields

j(z) = 1− 9
2

Γ
(1− Γ)

1 + ΩM
1−ΩM

(1 + z)3(1−Γ)
. (47)

Notice that, for Γ = 0, j = 1; hence, once again, the Γ = 0 limit of the polytropic
DM model under consideration does reproduce the ΛCDM model. Now, by virtue of
Equation (41), the jerk parameter (47) reads

j(z) = 1 +
9
2
|Γ| (1 + |Γ|)

1 + ΩM
1−ΩM

(1 + z)3(1+|Γ|)
, (48)

i.e., it is always positive. This is a very important result, since it guarantees that, at ztr, a
(phase) transition of the universe expansion from deceleration to acceleration actually takes
place (in connection, see [186,188]).

Two values of j(z) are of particular interest: (i) its present-time (z = 0) value, given by

j0 ≡ j(z = 0) = 1 +
9
2
|Γ|(1 + |Γ|) , (49)

which, in view of Equation (44), results in

1 ≤ j0 < 1.495 , (50)

clearly discriminating the Γ 6= 0 polytropic DM model from its ΛCDM counterpart; and
(ii) the value of the jerk parameter at transition (z = ztr), which, upon consideration of
Equation (34), it is given by

jtr ≡ j(ztr) = 1 +
3
2
|Γ| . (51)
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In this case, we return (once again) to Muccino et al. [181] to use the corresponding
model-independent constraints on jtr, in order to estimate the value of the polytropic index,
|Γ|, in a model-independent way. Accordingly, adopting the best-fit value jtr = 1.028
of [181], obtained by means of the DHE method (see [188]), Equation (51) yields

|Γ| = 0.02 ,

while, adopting the corresponding DDPE value [188], jtr = 1.041, Equation (51) results in

|Γ| = 0.03 .

Both values not only favor a Γ 6= 0 polytropic DM model but also are well within
range of Equation (44), i.e., once again, compatibility of the polytropic DM model with
observation is well established.

In view of [186], we cannot help but wondering whether the polytropic DM model with
a jerk parameter given by Equation (48) is also compatible with the Union 2.1 Compilation
of the SNe Ia data or not.

3.7. The Hubble Diagram of the SNe Ia Data

Today, (too) many samples of SNe Ia data are used to scrutinize the viability of the DE
models proposed. One of the most extended is the Union 2.1 Compilation [29], consisting
of 580 SNe Ia events, being inferior only to the (so-called) Pantheon Compilation [30]. We
shall use the former sample to demonstrate compatibilty of the theoretically derived (in the
context of the polytropic DM model) formula for the distance modulus,

µ(z) = 5 log
(

dL
Mpc

)
+ 25 (52)

(see, e.g., [173], Equations (13.10) and (13.12), p. 359), where

dL(z) = c(1 + z)
∫ z

0

dz′

H(z′)
(53)

is the luminosity distance of a light source measured in megaparsecs (see, e.g., [189], p. 76),
with the observationally determined Hubble diagram of the SNe Ia standard candles [29].

Upon consideration of Equation (30), Equation (53) results in (see, e.g., [176], pp. 1005–1008)

dL(z) =
2c
H0

1√
1−ΩM

1 + z
2− 3Γ

[
(1 + z)

2−3Γ
2 ×

2F1

(
2− 3Γ

6(1− Γ)
,

1
2

;
8− 9Γ

6(1− Γ)
; −
[

ΩM
1−ΩM

]
(1 + z)3(1−Γ)

)
−

2F1

(
2− 3Γ

6(1− Γ)
,

1
2

;
8− 9Γ

6(1− Γ)
; −
[

ΩM
1−ΩM

])]
, (54)

where, once again 2F1 is the Gauss hypergeometric function. Using Equation (54), we
overplot µ(z) on the Hubble diagram of the Union 2.1 Compilation [29] to obtain Figure 5.
We see that, in the polytropic DM model under consideration, the various theoretical curves
representing the distance modulus fit the entire Union 2.1 dataset quite accurately. In other
words, there is absolutely no disagreement between the theoretical prediction of the SNe Ia
distribution in the polytropic DM model so assumed and the corresponding observational
result.
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Figure 5. Hubble diagram of the Union 2.1 Compilation SNeIa data. Overplotted are three theo-
retically determined curves representing the distance modulus in the polytropic DM model, i.e.,
Equation (54).

3.8. The CMB Shift Parameter

The CMB shift parameter, R, is widely used as a probe of DE due to the fact that
different cosmological models can result in an almost identical CMB power spectrum if
they have identical values of R [190]. For a spatially flat cosmological model, the CMB
shift parameter is given by

R =
√

ΩM

∫ z∗

0

dz
H(z)/H0

, (55)

where z∗ is the value of the cosmological redshift at photon decoupling. In the polytropic
DM model under consideration, i.e., by virtue of Equation (30), Equation (55) is written in
the form

R =
∫ z∗

0

(1 + z′)
3
2 |Γ|dz′[

(1−ΩM) + ΩM(1 + z′)3(1+|Γ|)
]1/2 , (56)

which, in terms of hypergeometric functions (see, e.g., [176], pp. 1005–1008), results in

R =
2

(2 + 3|Γ|)
√

1−ΩM

[
(1 + z∗)

2+3|Γ|
2 ×

2F1

(
2 + 3|Γ|

6(1 + |Γ|) ,
1
2

;
8 + 9|Γ|

6(1 + |Γ|) ; −
[

ΩM
1−ΩM

]
(1 + z∗)3(1+|Γ|)

)
−

2F1

(
2 + 3|Γ|

6(1 + |Γ|) ,
1
2

;
8 + 9|Γ|

6(1 + |Γ|) ; −
[

ΩM
1−ΩM

])]
. (57)

To determine the value ofR, we adopt the nine-year WMAP survey result [191], that
z∗ = 1091.64± 0.47. Accordingly, for Γ = 0, Equation (57) yields

R = 1.7342 , (58)
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while, according to the nine-year WMAP survey [191], the value of the shift parameter in the
standard ΛCDM cosmology is given by

R = 1.7329± 0.0058 . (59)

In other words, the theoretical value of the shift parameter in the ΛCDM-like limit of
the polytropic DM model actually reproduces the corresponding result obtained by fitting
the CMB data to the standard ΛCDM model; hence, in the limit of Γ = 0, the polytropic
DM model under consideration may very well also reproduce the observed CMB spectrum.

3.9. The Spectral Index of Cosmological Perturbations

The dimensionless power spectrum of rest-mass density perturbations in an isotropic
universe is defined as

∆2(δ) =
1

2π2 k3|δ(k)|2, (60)

where δ = δρ
ρ is the density contrast and k is the associated wavenumber

(see, e.g., [189], pp. 464–469). In a similar fashion, the metric counterpart of Equation (60) is
given by

∆2(φ) =
1

2π2 k3|φ(k)|2, (61)

where φ denotes the perturbation around a spatially flat metric [162]. Usually, ∆2(δ) is
parameterized as

∆2(δ) ∼ k3+ns (62)

(see, e.g., [192], pp. 291, 292), where ns is the scalar spectral index [193]. Once again, we
can test the validity of the polytropic DM model by reproducing the spectrum of rest-mass
density perturbations in the associated ΛCDM-like limit. The reason is that most of the
observational data accumulated so far are model dependent [175] and, currently, the most
popular model is the so-called concordance, i.e., ΛCDM model [13]. Accordingly, as regards
the dimensionless power spectrum of cosmological perturbations in the ΛCDM-like limit
of the polytropic DM model under consideration, we have

∆2(δ)

∆2(φ)
= 4

[
1 +

1
3

( kph

H

)2
]2

, (63)

where kph = k/S(t) is the associated physical wavenumber [162]. The behavior of
Equation (63) as a function of kph (in units of H) is depicted in Figure 6 (red solid line).

Accordingly, we observe that for
( kph

H

)
≥ 5, i.e., for every physical wavelength less than

the horizon length (dashed verical line), the quantity ∆2(δ)/∆2(φ) exhibits a prominent
power-law dependence on kph, of the form

∆2(δ)

∆2(φ)
∼
( kph

H

)3.970

(64)

and, therefore,

∆2(φ) ∼ ∆2(δ)( kph
H

)3.970 =

( kph
H

)ns+3

( kph
H

)3.970 =

( kph

H

)ns−0.970

. (65)

CMB anisotropy measurements (see, e.g., [52,53]) and several physical arguments
(see, e.g., [189], p. 466, [192], p. 292) suggest that the power spectrum of metric perturba-
tions is scale invariant, i.e., ∆2(φ) ∼ k0. In this case, Equation (65) yields

ns = 0.970 . (66)
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In view of Equations (62) and (66), we see that, although in principle there is no reason
why the rest-mass density spectrum should exhibit a power-law behavior, in the context of
the polytropic DM model it effectively does so, i.e.,

∆2(δ) ∼ k3+ne f f
s

ph , with ne f f
s = 0.970 . (67)

What is more important is that the theoretically derived value (67) for the effective
scalar spectral index of rest-mass density perturbations in the ΛCDM-like limit of the
polytropic DM model actually reproduces the corresponding observational (i.e., Planck)
result, nobs

s = 0.968± 0.006 [55,56]. In short, matter perturbations of linear dimensions
smaller than the Hubble radius, when considered in the ΛCDM-like (i.e., Γ = 0) limit of
the polytropic DM model under consideration, effectively exhibit a power-law behavior of

the form |δ|2 ∼ kne f f
s , with the associated scalar spectral index being equal to ne f f

s = 0.970,
i.e., very close to observation.
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Figure 6. Small-scale perturbations, i.e., Equation (63), in the Γ = 0 limit of the polytropic DM model
(red solid line). The straight dashed line of slope α = 3.970 represents Equation (64). We conclude
that, in the polytropic DM model under consideration, rest-mass density perturbations of physical
wavelength smaller than the Hubble radius exhibit an effective power-law behavior with a scalar
spectral index equal to ne f f

s = 0.970.

3.10. Rest-Mass Energy–DE Equality

In view of Equation (19), the rest-mass energy density, εmat = ρc2, and the internal
(dark) energy density, εint = ε− εmat, of the polytropic DM model under consideration
satisfy the relation

εint
εmat

=
1−ΩM

ΩM

1
(1 + z)3(1−Γ)

. (68)

Equation (68) suggests that, for Γ = 0, DE becomes equal to its rest-mass counterpart,
not at transition (ztr = 0.744) but quite later, at zeq = 0.384, which is very close to the
corresponding observationally determined value zeq = 0.391± 0.033 [29], associated (once
again) with the ΛCDM model.
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3.11. It Is Not a Coincidence

The evolution of a spatially flat FRW model is governed by Equations (5), (6), and (8).
The combination of them results in

S̈
S
= −4πG

3c2 (ε + 3p) (69)

(see, e.g., [43,44]); hence, the condition for accelerated expansion, S̈ > 0, yields

ε + 3p < 0 . (70)

In the context of the polytropic DM model, condition (70) is written in the form

ρ0c2(1 + z)3
[

1− (2 + 3|Γ|)1−ΩM
ΩM

1
(1 + z)3(1+|Γ|)

]
< 0 , (71)

in view of which such a model accelerates its expansion at cosmological redshifts lower
than a particular value, namely,

z <

[
(2 + 3|Γ|)1−ΩM

ΩM

] 1
3(1+|Γ|)

− 1 ≡ ztr , (72)

in complete correspondence with Equation (34). According to Equations (70) and (72), the
assumption that the cosmological evolution can be driven by a polytropic DM fluid could
most definitely explain why the universe transits from deceleration to acceleration at ztr,
without the need for any novel DE component or the cosmological constant. Instead, it
would reveal a conventional form of DE, i.e., the one due to this fluid’s internal motions,
which, so far, has been disregarded [113].

4. Discussion and Conclusions

The possibility that the extra DE needed to compromise both spatial flatness and
the accelerated expansion of the universe actually corresponds to the thermodynamic
internal energy of the cosmic fluid itself is reviewed and scrutinized. In this approach,
the universe is filled with a perfect fluid of collisional DM, the volume elements of which
perform polytropic flows [160–163]. In the distant past (z� 1) the polytropic DM model
so assumed behaves as an EdS model, filled with dust (cf. Equation (32)), while, on the
approach to the present epoch (t ' 0.75 t0), the internal physical characteristics of the
cosmic fluid take over its dynamics (cf. Equation 68). Their energy can compensate the
DE needed to compromise spatial flatness (cf. Equation (20)), while the associated cosmic
pressure is negative (cf. Equation (18)). As a consequence, the polytropic DM model under
consideration accelerates its expansion at cosmological redshifts lower than a transition
value (cf. Equation (34)), in consistency with condition ε + 3p < 0 (cf. Equation (72)).
This model is characterized by a free parameter, the associated polytropic exponent Γ. In
fact, several physical arguments can impose successive constraints on Γ, which, eventually,
settles down to the range −0.1 < Γ ≤ 0 (cf. Equation (44)); namely, if it is not zero (i.e., a
ΛCDM-like model), it is definitely negative and very close to zero.

The polytropic DM model under consideration can reproduce all the major observa-
tional results of conventional (i.e., ΛCDM) cosmology, simply by means of a single fluid,
i.e., without a priori assuming the existence of any DE component and/or the cosmological
constant. This model actually belongs to the broad class of the unified DE models, in which
the DE effects are due to the particular properties of the (unique) cosmic fluid (in connection,
see, e.g., [194,195]).

We can test the validity of the polytropic DM model so assumed, by reproducing all
the current cosmological issues in the associated ΛCDM-like limit. The reason is that, most
of the observational data accumulated so far are model dependent [175] and, currently, the
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most popular model is the ΛCDM model. In this context, our polytropic DM model can
confront all major issues of cosmological significance, such as, e.g.:

• The nature of the universal (dark) energy deficit needed to compromise spatial flatness:
In the polytropic DM model under consideration it can be attributed to thermodynamic
energy of the associated fluid internal motions (cf. Equations (19) and (20)).

• The accelerated expansion of the universe: For t > 0.75 t0 (i.e., quite close to the
present epoch), the solution of the Friedmann equation that governs the evolution
of the scale factor, S(t), in the polytropic DM model, becomes concave, i.e., S̈ > 0
resulting in the acceleration of the universe expansion (see, e.g., Figure 1).

• The age problem: For every −0.1 < Γ ≤ 0, the age of the polytropic DM model,
t0, is always larger than that of its EdS counterpart, tEdS = 2

3H0
. In the ΛCDM-like

(Γ = 0) limit, we obtain t0 = 1.483 tEdS = 13.79 Gys, in complete agreement with
the corresponding observational result [55–57] for the age of the ΛCDM universe
(see, e.g., Figure 2).

• The value of the cosmological redshift parameter at which transition from deceleration
to acceleration takes place, ztr: In the ΛCDM-like limit (i.e., Γ = 0) of the polytropic
DM model so assumed, we obtain ztr = 0.744 (cf. Figure 3), which lies well within
range of the corresponding ΛCDM result, namely, ztr = 0.752± 0.041 [29], as well as
in the associated model-independent range ztr = 0.739+0.065

−0.089 [181].
• The long-sought theoretical value of the deceleration parameter, q, at the present epoch:

In the ΛCDM-like limit of the polytropic DM model under consideration, q0 = −0.54
(cf. Equation (33), for Γ = 0), that is fully compatible with the observational result,
q0 = −0.53+0.17

−0.13 [179], associated with the ΛCDM model.
• The behavior of the total EoS parameter, w: In the ΛCDM-like (i.e., Γ = 0) limit of the

polytropic DM model, today, wtot ≈ −0.7 (cf. Figure 4), while, as z grows, wtot → 0, as
suggested by ΛCDM cosmology [88].

• The resulting range of values of the polytropic index, −0.1 < Γ ≤ 0: It is in excellent
agreement with the associated result for a generalized Chaplygin gas, p ∼ −ρα,
arising from the combination of X-ray and SNe Ia measurements with data from
Fanaroff–Riley type IIb radio-galaxies, namely, α = −0.09+0.54

−0.33 [184].
• The behavior of the associated jerk parameter, j(z): The polytropic DM model pos-

sesses a positive jerk parameter, with the aid of which (at transition) we can also
estimate the value of the polytropic index, |Γ|, in a model-independent manner [181],
namely, |Γ| ∈ (0.02, 0.03).

• The Hubble diagram of the SNe Ia standard candles: In the polytropic DM model
under consideration, the theoretically derived distance modulus fits the entire Union
2.1 dataset [29] with accuracy. In other words, there is absolutely no disagreement
between the theoretical prediction of our model and the observed distribution of the
distant SNe Ia events (cf. Figure 5).

• The CMB shift parameter: In the ΛCDM-like limit of the polytropic DM model,
R = 1.7342, while, according to the nine-year WMAP survey, the value of the CMB shift
parameter in the standard ΛCDM model isR = 1.7329± 0.0058 [191]. In other words,
the value of the CMB shift parameter in the ΛCDM-like limit of the polytropic DM
model actually reproduces the corresponding result obtained by fitting the CMB data
to the standard ΛCDM model. It is, therefore, expected that, in the limit Γ = 0, the
polytropic DM model under consideration may very well also reproduce the observed
CMB spectrum.

• Furthermore, in fact, it actually does so (cf. Equation (67)), since the theoretically
derived value for the effective scalar spectral index of rest-mass density perturbations
in the ΛCDM-like limit of the polytropic DM model, ne f f

s = 0.970, actually reproduces
the corresponding observational Planck result, nobs

s = 0.968± 0.006 [55,56]. In other
words, matter perturbations of linear dimensions smaller than the horizon length,
when considered in the ΛCDM-like (i.e., Γ = 0) limit of a polytropic DM model,
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effectively exhibit a power-law behavior of the form |δ|2 ∼ kne f f
s , with the associated

scalar spectral index being equal to ne f f
s = 0.970, i.e., very close to observation.

• The rest-mass energy–DE equality: In the ΛCDM-like limit of the polytropic DM
model under consideration (cf. Equation (68)), DE becomes equal to its rest-mass coun-
terpart at zeq = 0.384, which is remarkably close to the corresponding observationally
determined value zeq = 0.391± 0.033 [29], associated with the ΛCDM model.

• Finally, the polytropic DM model can, most definitely, explain why the universe
transits to acceleration at ztr, without the need for any novel DE component or the
cosmological constant, solely being consistent with the general relativistic condition
that ε + 3p < 0 (cf. Equations (70) and (72)).

Compatibility of the polytropic DM model with the observational constraints on all
the parameters of cosmological significance needs to be further explored and scrutinized,
in order to decide on the likelihood of this model over all other alternatives and, especially,
the ΛCDM model. Clearly, the ultimate verification of any (unified or not) DE model would
be the reproduction of the observed DM halo distributions and the associated galactic
evolution. In this context, preliminary results regarding the evolution of small-scale density
perturbations at low redshift values suggest that, in the c2

s 6= 0 case of the polytropic
DM model, the density-contrast profile, δ(z), consists of peaks and troughs that resemble
the observed galaxy distribution (in terms of z). Therefore, as regards the evolution of
small-scale density perturbations in a polytropic DM model with c2

s 6= 0, a more elaborated
study is necessary and it will be the scope of a future work.

Finally, it is clear that this review article neither deals with nor takes into account the
fundamental nature of the polytropic DM constituents, i.e., the field nature of the cosmic
fluid. In this context, recent studies suggest that certain barotropic fluids may arise naturally
from a k−essence lagrangian, involving a self-interacting (real or complex) scalar field [196].
In direct connection to the quantum origin of the polytropic DM fluid, one should also
address the origin of the (extra) amount of heat, CdT, offered to the volume elements, as
suggested by Equation (7). According to [76], this could be due to a long-range confining
force between the DM particles. In our case, it would be of the form F = −Kr2+3|Γ|,
where r is the radial distance and K > 0 is a normalization constant (in connection, see
Equations (80) and (89) of [76]). This force may be either of gravitational origin or a new
force [141,144]. In any case, it is not yet clear whether a system subject to a long-range
confining force can reach thermodynamic equilibrium; hence, this is also a matter of debate
that must be addressed in future studies.

In any case, instead of treating any novel DE component and/or modified gravity the-
ories as pillars of contemporary cosmology, let us address a much simpler possibility: the
polytropic flow of the conventional matter–energy content of the universe, in connection to
a potential self-interacting nature of DM [197]. As we have demonstrated in this review, the
yet ignored thermodynamical content of the universe could arise as a mighty and relatively
inexpensive contestant for an extra (dark) energy candidate that could compensate both
spatial flatness and accelerated expansion. In view of all the above, the cosmological model
with matter content in the form of a self-interacting DM fluid whose volume elements per-
form polytropic flows looks very promising and should be further explored and scrutinized
in the search for a viable alternative to the ΛCDM model.
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