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Abstract: It is known that relativistic wavefunctions formally propagate beyond the light cone when
the propagator is limited to the positive energy sector. By construction, this is the case for solutions
of the Salpeter (or relativistic Schrödinger) equation or for Klein–Gordon and Dirac wavefunctions
defined in the Foldy–Wouthuysen representation. In this work, we quantitatively investigate the
degree of non-causality for free propagation for different types of wavepackets that all initially
have a compact spatial support. In the studied examples, we find that non-causality appears as
a small transient effect that can in most cases be neglected. We display several numerical results
and discuss the fundamental and practical consequences of our findings concerning this peculiar
dynamical feature.

Keywords: relativistic quantum mechanics; causality; locality; relativistic Schröedinger equation;
Klein-Gordon equation; Dirac equation

1. Introduction

In classical relativistic physics, causality is associated with the light-cone structure of
Minkowski space-time: no event can be affected by an event lying outside its past light-cone.
In relativistic quantum mechanics, the situation is more involved. It is indeed well-known
that a relativistic evolution driven by a positive energy Hamiltonian instantaneously turns
an initial state having compact spatial support into a distribution having mathematically a
non-zero amplitude everywhere in space [1–3]. Relativistic propagators restricted to the
positive energy sector spill outside the light cone [4]: it is only by including the contribution
of the anti-particle sector that a causal propagator is obtained.

While this observation points to the necessity of having antiparticles in a relativistic
quantum theory in order to preserve causality [5], there are instances in which no negative
energies appear. For instance, in the Salpeter equation [6] (also known as the relativistic
Schrödinger equation), by construction the propagator is restricted to positive energies.
This also appears when the solutions of the Klein–Gordon or Dirac equations are unitarily
transformed in the Foldy–Wouthuysen (FW) representation. Given the importance of
the FW solutions—they are necessary to obtain the classical limit, and it is sometimes
claimed that densities constructed from the FW wavefunctions are the only ones having a
physical meaning [7]—it is instructive to investigate to which extent there is an effective
propagation outside the light cone. Indeed, the instantaneous spreading of an initially
localized wavefunction is a mathematical fact, but it is often regarded as being physically
irrelevant on the ground that beyond the light-cone, propagation is extremely small and
not detectable in practice for any realistic physical state [8,9].

In this work, we will numerically investigate the fraction of the wavefunction that
effectively propagates outside the light-cone for different initial states characterized by
different parameters (width, mean momentum, and shape). The common feature to the
initial states we will employ is the requirement that they have a compact spatial support.
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Up to now, most works that have investigated this type of propagation, essentially in
the context of the Salpeter equation, have used states that have tails at t = 0, such as
initial Bessel functions [10] (one of the few cases for which analytical solutions can be
obtained) or Gaussian wavepackets [8,11–13]. If the states have initial compact support, we
can meaningfully and numerically follow the fraction that remains inside the light cone
as time evolves. We will see that although the fraction spilling outside the light cone is
small and does so during very short times, it could have observational consequences for
elementary particles.

To this end, we will first (in Section 2) set the context by recalling in which situations
one is led to deal only with the propagator of the positive energy sector. We will briefly
recall in Section 3 the arguments proving the propagator is non-causal. We will give our
results in Section 4, describing the method employed and our choice of initial states. We
close the paper with a short discussion and conclusive comments (Section 5).

2. Positive Energy Propagation
2.1. Standard Relativistic Wave Equations

The standard relativistic wave equations for spin-0 and spin-1/2 particles, respectively,
are the Klein–Gordon (KG) and Dirac equations,

ih̄∂tΦ = HΦ (1)

where H represents the KG or Dirac Hamiltonians

HKG = − h̄2

2m
(σ3 + iσ2)∂

2
x + mc2σ3, (2)

HD = −ih̄cσ1∂x + mc2σ3 (3)

and σi are the usual Pauli matrices. We have used the Hamiltonian form [14] of the
Klein–Gordon equation, for which Φ has two components. We will be interested throughout
this work in free propagation along a single spatial direction; therefore, effectively restricting
the Hamiltonian to a spatial 1D problem: in this case, the Dirac spinor Φ has only two
nontrivial components, and this is why HD as given by Equation (3) is two dimensional
rather than four.

As is well-known [14], both HKG and HD admit positive and negative energy solutions
denoted Φ±p (t, x), with the + and − signs corresponding to positive and negative energy
solutions. For instance, for the Klein–Gordon equation we have [15]

Φ±p (t, x) =
1

2
√

mc2Ep

(
mc2 ± Ep
mc2 ∓ Ep

)
eipx/h̄e∓iEpt/h̄, (4)

where
Ep =

√
m2c4 + p2c2 (5)

and the prefactor is a normalization constant. The propagator K(t, t′; x, x′), evolving an
initial state Φ(t′, x′) into Φ(t, x), when expanded over the Hamiltonian eigenfunctions
will contain contributions from both the positive and negative states Φ±p (t, x). It is
well-known [4] that while the propagator is causal, – K(t, t′; x, x′) vanishes for space-
like separated points, for which x− x′ > c(t− t′) – ; the restrictions K±(t, t′; x, x′) to an
expansion over the sole positive or negative energy eigenstates are not causal, in the sense
that K±(t, t′; x, x′) does not vanish for space-like separated events. This is why it is often
remarked that negative energies are necessary in order to preserve relativistic causality [5].
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2.2. The Salpeter or Relativistic Schrödinger Equation

The Salpeter equation [16], also known as the relativistic Schrödinger equation or the
Newton–Wigner–Foldy equation [6,17], describes a spinless particle obeying Equation (1)
with a Hamiltonian defined by

HS =

√
−h̄2c2∂2

x + m2c4. (6)

Note that although this equation is obtained by formally quantizing the classical relativistic
energy, the Salpeter equation was derived in [16] in a particular setting (see [18] for more
details). Due to the ambiguities of dealing with the differential inside the square root
operator, it is customary to work in momentum space since√

−h̄2c2∂2
x + m2c4ψ(t, x) =

1√
2πh̄

∫
dpEpeipx/h̄ψ(t, p). (7)

The plane-waves of positive energy Ep

ψp(t, x) = exp
(
−ipx/h̄− iEpt/h̄

)
(8)

fulfill the relativistic Schrödinger equation. By definition, HS is positive definite so that
the time evolution only includes a propagator expanded over energy eigenstates, given by
Equation (16) below.

Note that an arbitray initial wavefunction has a Fourier transform

ψ(0, x) =
1√
2πh̄

∫
dpeipx/h̄ψ(0, p). (9)

By solving the evolution in momentum space, the time-evolved spatial wavefunction is
formally obtained as the Fourier transform

ψ(t, x) =
1√
2πh̄

∫
dpeipx/h̄e−iEpt/h̄ψ(0, p). (10)

2.3. Foldy–Wouthuysen Density for the Klein–Gordon or Dirac Equation

The solutions Φ±p (t, x) of the KG or Dirac equation in the canonical representation
(2) and (3) are well-known to give rise to apparently curious properties (for example, the
eigenvalues of the velocity are always zero in the KG case and c in the Dirac case [14]; or,
the classical limit cannot be obtained as h̄ → 0 [7]). This is due to the fact that particle
and anti-particle contributions interfere even in the free case. The Foldy–Wouthuysen
transformation [19,20] is a unitary transformation in momentum space that separates
particles from anti-particles. For example, in the KG case the (pseudo-unitary) operator

U =

(
mc2 + Ep

)
− σ1

(
mc2 − Ep

)√
4mc2Ep

(11)

applied to the eigenstates Φ±p given by Equation (4) lead to

Ψ+(t, p) = UΦ+ =

(
1
0

)
e−i(Ept−px)/h̄ (12)

Ψ−(t, p) = UΦ− =

(
0
1

)
ei(Ept−px)/h̄ (13)
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and the transformed Hamiltonian is

HFW = UHU−1 = σ3

√
p2c2 + m2c4. (14)

Similar relations for the Dirac solutions may be found in textbooks [14,15].
The solutions Ψ± are indeed uncoupled: an initial particle state Ψ(0, x) = (ψ(0, x), 0)

has only an expansion over the Ψ+(t, p) basis states, and thus only the upper component is
non-zero. Note that the HFW Hamiltonian is block diagonal, with each block consisting of
a Salpeter equation. We therefore see that if a density is defined from the wavefunctions
Ψ(t, x) in the FW representation, then the density of a positive energy state will be simply
given by |ψ(t, x)|2, which is precisely the density computed from the Salpeter equation. We
stress, however, that such a step involves defining a new density that is different from the
standard KG or Dirac densities (a unitary transformation does not change the density nor
the current). This new density is free from the issues caused by the fact that the standard
KG or Dirac densities mix particles and anti-particles. For this reason, this density displays
several advantages and has been favored in some works [7,8,17,21], though it suffers from
one important drawback: it is formally non-causal.

3. Non-Causality and Its Physical Implications
3.1. Non-Causality of the Propagator

The most straightforward way for showing the non-causality of the positive energy
propagator KS(t, t′; x, x′) associated with the Salpeter Hamiltonian (6), or equivalently the
positive component of Equation (14), is to compute its expression. Indeed, by definition the
propagator should obey

ψ(t, x) =
∫

dx′KS(t, t′; x, x′)ψ(0, x′). (15)

Starting from Equation (10) and using the inverse transform of Equation (9), we
immediately obtain

KS(t− t′; x− x′) =
1

2πh̄

∫
dpeip(x−x′)/h̄e−iEp(t−t′)/h̄. (16)

Different methods (see, e.g., [11,22]) lead to the closed-form expression

KS(t− t′; x− x′) =
im(t− t′)

πh̄
(
(x− x′)2 − c2(t− t′)2

)1/2 K1

[
mc
((

x− x′
)2 − c2(t− t′

)2
)1/2

/h̄
]

(17)

where K1 is a modified Bessel function of the second kind. From the asymptotic behavior
K1(X) ∼ exp(−X)/

√
X for large X, it immediately follows that the propagator spills beyond

the light cone. Recall that KS, sometimes known as the Newton-Wigner propagator [23], is
not Lorentz-invariant but does propagate the wavefunction, Equation (15), whereas a Lorentz-
invariant propagator does not [5]. Note that the negative energy propagator displays the same
behavior as KS, with the value for space-like arguments being of opposite sign.

Another line of reasoning relies on Paley-Wiener arguments. It can be proved (see,
e.g., [1–3]) that for any semi-bounded Hamiltonian, a wavefunction initially localized on
a compact support immediately spreads everywhere as soon as the evolution starts (or,
conversely, any wavefunction that remains bounded on a compact support must be zero
everywhere). Instructive illustrations of this theorem for simple wave equations were given
in Ref. [24].
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3.2. Physicality of Positive Energy Propagation

The Salpeter equation, although it is attractive as it results from quantizing the classical
relativistic Hamiltonian, is usually regarded as an approximate model for a spinless particle,
correctly described by the Klein–Gordon equation. Note, however, that for a neutral
particle, the solutions of the Klein–Gordon equation are real and can be combined to obtain
a complex wavefunction obeying the Salpeter equation [25,26].

The situation is more involved from the point of view of the FW representation.
The interpretational difficulties of the standard KG or Dirac densities are related to the
problems of defining a position operator. The position operator X̂ in the FW representation
is equivalent to the Newton-Wigner position operator [23] in the standard representation.
On this basis, it is often argued that the FW density is the physical one [27]. The problem is
then knowing how to cope with the non-causal nature of the propagation.

The answer that has been given is, in a nutshell, that non-causality is in practice
undetectable. First, it has been argued that the probability of such a detection is so low that
it would be unlikely to detect such an event even over billions of years [9]. Second, it is
difficult to imagine how signals could be sent superluminally since modulations cannot
be produced from the exponentially decaying tail [8]. It can also be remarked that since
non-causality is non-negligible only on distances of the order of a Compton wavelength
(λc = h̄/mc) away from the light cone, a detection on this scale is hardly feasible for
elementary particles and totally impossible for larger (not to mention macroscopic) bodies,
for which the Compton wavelength falls below the Planck length. The first step in assessing
whether these observations are plausible is to quantitatively compute the fraction of the
wavepacket that is propagated beyond the light cone.

4. Results
4.1. Method

The initial wave packet (WP) is defined by Equation (9), which we rewrite here as

ψ(0, x) =
1√
2πh̄

∫
dpeipx/h̄C(p; x0, p0) (18)

where x0 and p0 are the average position and momentum, respectively, of our initial wave
packet. We require ψ(0, x) to have compact spatial support. In this work, we will set x0 = 0
and consider three different initial WP of the form

ψ f (0, x) = (θ(π∆x/2− x)− θ(x− π∆x/2))e−ip0x f (x) (19)

with f (x) given by cos8(x/∆x), cos2(x/∆x), or 1 (yielding a rectangular distribution). ∆x
gives the scale of the spatial width of the packet, and θ(x) is the unit step function. ψ(0, x)
is normalized to 1.

The initial momentum distribution is computed as the Fourier transform of the
compact wave function in coordinate space

C f (p; x0, p0) =
1√
2πh̄

∫ ∆xπ/2

−∆xπ/2
ψ f (0, x)e−ipxdx (20)

hence, with the present notation, the time evolved wavefunction is given by

ψ f (t, x) =
∫

dx′KS(t, t′; x, x′)ψ f (0, x′) (21)

=
1√
2πh̄

∫
dpeipx/h̄e−iEpt/h̄C f (p; x0, p0). (22)
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The initial momentum space wavefunctions C f (p; x0, p0) can be obtained analytically,

Ccosm(p; x0, p0) = (2m!/∆m
x )

sin[(p− p0)∆xπ/2] exp[i(p− p0)x0]

(p− p0)∏n=m/2
n=1 (p− p0 − 2n

∆x
)(p− p0 +

2n
∆x
)

, (23)

when the initial state is a cosine function, and

C1(p; x0, p0) =
2 sin[(p− p0)∆xπ/2]

p− p0
ei(p−p0)x0 (24)

for the case of the rectangular distribution for which f (x) = 1. Note that the simple poles
appearing in the denominator are cancelled out by the sine in the numerator.

In practice, Equation (21) is obtained numerically employing the trapezoidal method
in Matlab, with the bounds on the integration variable, pi and p f , taken large enough so
that C(pi, f ; x0, p0) ∼ 0. Numerically, the actual computed value of the wave packet will not
be exactly zero outside its compact support (including at t = 0), but a very small number
that should be smaller than our numerical zero, see Figure 1 for the f (x) = cos8(x/∆x)
case for which the numerical zero is set at 10−20. The calculations based on the method
employed here have recently been compared [28–30] to direct solutions of the relativistic
wave equations obtained by employing a high-precision finite-difference scheme, resulting
in an excellent agreement. In this section, all our results will be given in natural units,
h̄ = c = m = 1,; hence, the Compton wavelength is λC = h̄/mc = 1.
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Figure 1.
∣∣∣ψ f (t, x)

∣∣∣2 for the function with compact support f (x) = cos8(x/∆x) (with ∆x = 1 and
p0 = 0) is shown for different values of t (in natural units h̄ = c = m = 1). Left panel displays the
plots in the usual (linear) scale and the right panel shows the same quantities with a logarihtmic
scale. The horizontal dashed line indicates the numerical zero. The initial wavefunction has compact
support (no density above the numerical zero), whereas beyond the light-cone propagation appears
for times t > 0.

4.2. Numerical Results

The left panel of Figure 1 shows the probability density for a typical initial wavefunction
with compact support (ψ f (0, x) is given by Equation (19) with f (x) = cos8(x/∆x)), along
with a few snapshots as the wavefunction evolves. On this scale, the tails propagating
outside the light cone are not visible, so we have plotted on the right panel the same
quantities on a logarithmic scale, clearly displaying beyond the light-cone propagation
(the light cone position is ±(π/2 + t) in these units). Figure 2 (left) shows a density plot
for the same initial wavefunction, while the right panel shows the fraction of the density
lying outside the light cone as time evolves. This fraction reaches a maximum a very short
time after initial propagation and then decreases to zero for longer times. Figure 3 shows
the fraction of the probability density outside the light cone for the same ψ f (0, x) but with
different initial widths ∆x and initial momenta p0.
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Figure 2. Left panel: time evolution of log[
∣∣∣ψ f (t, x)

∣∣∣2] for the function with initial compact support

f (x) = cos8(x/∆x) (with ∆x = 1 and p0 = 0) for short values of t. Note that the tails propagating
beyond the light cone appear as soon as t > 0. Right panel: Fraction of that same wave packet
outside the light cone, where the transient aspect can be noticed.
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Figure 3. Fraction of the probability density lying outside the light cone for an initial wavepacket
ψ(0, x) [Equation (19)] with f (x) = cos8 x/∆x, where ∆x and p0 vary as indicated.

Figures 4 and 5 display similar results but for an initial wavefunction ψ f (0, x) with
f (x) = cos2(x/∆x) and f (x) = 1, respectively, (only the case with initial average momentum
p0 = 0 is shown). Note that we have taken a higher value for the numerical 0, given that the
momentum range over which we need to integrate in Equation (21), for each value of t, is
significantly more extended than with a cos8(x/∆x) function. Finally, Figure 6 compares the
probability density propagating beyond the light cone for the three functions f (x) we have
considered in this paper (with the same initial compact support and mean momentum).
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Figure 4. Left panel:
∣∣∣ψ f (t = 0, x)

∣∣∣2 is plotted in logarithmic scale for the function with compact

support f (x) = cos2(x/∆x) (with ∆x = 1 and p0 = 0). Right panel: fraction of the probability density
leaking outside the light cone as this initial wavepacket evolves (each curve shows the result for a
different width ∆x).
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Figure 5. Same as Figure 4 but for an initial rectangle distribution, f (x) = 1.

We have, in addition, included two tables. Table 1 specifies the duration of significant
superluminal propagation depending on f (x) (the compact support) and the width. We see
that in the rectangular case for a narrow wavepacket, a fraction (0.01%) of the probability
density remains outside the light cone for times up to t ≈ 104 in natural units (for an
electron this corresponds to 1.3× 10−17 s.). Table 2, on the other hand, is interested in short
times, reporting the time at which the fraction of the probability density lying outside the
light cone is maximal, as well as the value of that fraction.

Table 1. Time for which the fraction of the probability density propagating beyond the light cone
remains above 10−4, for different initial wavefunctions.

∆x = 10 ∆x = 2 ∆x = 1 ∆x = 0.1

cos8, p0 = 0 - - - t ∼ 27

cos2, p0 = 0 - - t ∼ 3.1 t ∼ 43.5

rectangular, p0 = 0 t ∼ 225 t ∼ 1150 t ∼ 2250 t ∼ 9000
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Table 2. Time for which the fraction of the probability density lying outside the light cone is maximal,
along with the corresponding value of that fraction, for different initial wavefunctions (all with
p0 = 0).

Wavefunction ∆x = 10 ∆x = 2 ∆x = 1 ∆x = 0.1

cos8 t ∼ 0.96 t ∼ 0.89 t ∼ 0.84 t ∼ 0.65
1.1× 10−13 2.15× 10−6 7.25× 10−5 1.38× 10−3

cos2 t ∼ 0.84 t ∼ 0.84 t ∼ 0.80 t ∼ 0.66
2.23× 10−8 2.88× 10−5 3.14× 10−4 1.87× 10−3

rectangular t ∼ 0.64 t ∼ 0.68 t ∼ 0.66 t ∼ 0.63
2.28× 10−3 6.46× 10−3 1.06× 10−2 4.40× 10−2

0 20 40 60 80 100

t

10-10

10-5

100
p0 = 0, x = 1

cos8

cos2

rectangular

Figure 6. Fraction of the probability density leaking outside the light cone as time evolves. Left panel:
Comparison of the three wave different initial compact supports f (x) considered in this work, see
Equation (19), with p0 = 0 and ∆x = 1. Right panel, for the case f (x) = cos8(x/∆x), comparison of
different values of the initial momentum p0 (with ∆x = 1 in all cases).

5. Discussion and Conclusions

As expected from mathematical arguments, our calculations confirm that the wavefunction
propagates beyond the light cone as soon as t > 0. Typical wavepackets will have a spatial
distribution ∆x much larger than the Compton wavelength λC. In this case, the propagation
beyond the light cone appears as a small transient effect, though not totally negligible at
short times (see the ∆x = 10 curve in Figure 5). Note that short times, of the order of t ≈ 1
in the units used here, would lie for an electron in the zeptosecond regime, a regime that is
near experimental reach [31]. Of course for heavier particles, the time scale scales inversely
to the mass, so that for macroscopic bodies t ≈ 1 would be shorter than the Planck time.

Even at considerably longer times, there is still a non-negligible probability outside
the light cone (see Table 1)). For narrower wavepackets, the fraction of the probability
distribution beyond the light cone can reach a non-negligible percentage (see the ∆x = 0.1
curve in Figures 3–5). While it is generally believed that the single particle formalism breaks
down for wavepackets narrower than λC (but see [32–34]), the propagating wavepacket
would still contribute to the one-particle sector of the corresponding quantum-field theoretical
description [8,17]. This does not necessarily entail that the superluminal propagation could
actually be detected, but, to the extent that the spatial density defined above is the correct
physical one, our results indicate this possibility must be kept open.

Another interesting effect is the role of the initial average momentum. From Figure 3,
one can see that the fraction of the probability density leaking beyond the light-cone
decreases as p0 increases. Somewhat paradoxically, wavepackets in the ultrarelativistic
regime (p0 ∼ 10) remain almost entirely within the light cone, while wavepackets with
initial zero momentum (whose average position does not move) are those that display the
highest proportion of superluminal propagation (see Figure 6). It would be interesting to
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understand the reasons for this behavior. The role of the shape of the wavepacket, which
determines the range of the contributing momenta in Equation (21), is also interesting.
From our choices for f (x), we can say that beyond the light cone, spreading increases
as the momentum range increases. Here too, there is no obvious argument to explain
this behavior.

In summary, motivated by the issue of the physicality of the Foldy–Wouthuysen (FW)
density, we have numerically explored the time evolution of free relativistic wavefunctions
propagated by the sole positive energy propagator. We have done so by choosing three
different initial wavefunctions with compact support and varying parameters. We conclude
from our findings that beyond the light cone, propagation is a very small effect that is
non-negligible for particles having a small mass (of the order of elementary particles) over
a short time after preparation of the initial state. It is, however, impossible to assert that this
effect cannot lead to any observational consequences if the FW density is taken as being the
physically meaningful quantity.
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