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Abstract: For Hamiltonian systems with time-dependent potential, the Hamiltonian, and thus the
energy, is no longer a constant of motion. However, for such systems as the parametric oscillator,
i.e., an oscillator with time-dependent frequency ω(t), still, a dynamical invariant can be found that
now has the dimension of action. The question, if such an invariant still exists after the addition
of a dissipative friction force is analyzed for the classical as well as for the quantum mechanical
case from different perspectives, particularly from that of a complex hydrodynamic formulation of
quantum mechanics.
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1. Introduction

As classical Hamiltonian mechanics in terms of Newton’s equation of motion is
not invariant under coordinate transformations, a more general formulation is required,
leading finally to Hamiltonian mechanics, which is even invariant under so-called canonical
transformations. This form is also the basis for a transition to quantum mechanics via
canonical quantization. The Hamiltonian function not only generates the dynamics of the
system, but it also represents its energy; the same also applies after quantization. Usually,
systems with time-independent potential energy are considered, and hence the Hamiltonian
is a constant of motion and the energy is conserved.

A different situation arises for systems with time-dependent potential, such as the
parametric oscillator, i.e., an oscillator whose frequency of oscillation, ω, is no longer con-
stant, like it is for the harmonic oscillator (ω = ω0 = const.), but explicitly time-dependent
(ω = ω(t)). There exist only few frequencies ω(t) for which still exact analytic solutions
exist, but in any case, the Hamiltonian is no longer a constant of motion. However, already
in 1880, Ermakov was able to show [1] that for those systems, still a dynamical invariant
can be constructed. For this purpose, he used the Newtonian equation of motion for the
system plus another auxiliary Newtonian equation that contained the same frequency
ω(t). By eliminating the frequency between the two equations, he arrived at the invari-
ant that is named after him and has essentially the dimension of action (not energy, like
the Hamiltonian).

The same invariant was also obtained by Lewis [2] in a quantum mechanical context
by solving the corresponding time-dependent Schrödinger equation. Since an oscillator
potential is quadratic in position coordinate, also for ω(t), there exist exact analytic solutions
in the form of Gaussian wave packets for this system. These Gaussians are uniquely
determined by their maximum and width, and it was shown that the equation of motion for
the maximum was just the classical Newtonian equation of motion as expected according
to Ehrenfest, but the equation for the dynamics of the width could be brought in a form
that was exactly that of Ermakov’s auxiliary equation. Therefore, now, a physical meaning
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could be associated with the quantity obeying this equation, namely that of the wave packet
width and thus the position uncertainty. Although the two equations were obtained from a
Hamiltonian, the operator in the Schrödinger equation, the construction of the invariant
followed exactly Ermakov’s procedure, using only Newtonian equations. A quantum
version of the invariant is obtained simply by canonical quantization.

Recently, in [3] it was shown that the same invariant can also be obtained in a different
way without Newtonian equations but from a Hamiltonian formalism that is based on
a complex version of Madelung’s hydrodynamic formulation of quantum mechanics in
connection with a complex nonlinear Riccati equation that contains the information about
the dynamics of the wave packet width. The question to be answered in this paper is, if there
are other systems where the energy is not conserved, but still a dynamical invariant can be
obtained via our complex hydrodynamic approach and the corresponding Hamiltonian
formalism. Our formalism shall also be compared with other approaches trying to describe
the same systems, and differences or similarities shall be specified, giving a hint as to which
types of problems which approach could be most favorable.

In this category obviously fall open systems, i.e., systems that interact with some kind
of environment. In those systems, such as Brownian motion, energy is dissipated due
to friction forces, and the evolution is irreversible, reflected by the broken time-reversal
symmetry of the equations of motion.

This situation actually represents a many-body problem, but one is essentially inter-
ested in the dynamics and energetics of the observable Brownian particle, not in the degrees
of freedom of the surrounding environment. This can be taken into account by an effective
description of this situation.

In the trajectory picture, taking into account the particle aspect, this can be achieved
by the phenomenological Newton-type Langevin equation that contains the environmental
effect in the form of a (deterministic) friction force that is linearly proportional to velocity
(or momentum) and a (statistical) stochastic fluctuating force that vanishes on average.

Looking at the same situation from the viewpoint of distribution functions, an equiva-
lent description can be given by so-called Fokker–Planck equations, i.e., continuity equa-
tions that take into account not only reversible convection currents, but also irreversible
diffusion currents.

As this description is, in the trajectory picture, in terms of a Newton-type equation
of motion, the question arises if a more general or invariant formulation in terms of an
efficient Hamiltonian for the system of interest is possible. If this is possible, one could
try to quantize this approach in order to obtain the corresponding equations of motion
for position and position uncertainty that hopefully could again be combined to find a
dynamical invariant for this system.

Trying to find a corresponding Hamiltonian function by simply adding a (real) “friction
potential” to the classical Hamiltonian function fails to provide the desired equations of
motion. Another type of approach tries to reach this goal by a non-canonical transformation
of the position and momentum variables leading to (eventually explicitly time-dependent)
Hamiltonians that supply the correct equations of motion, including the friction force; see,
for example, [4,5]. This approach has the disadvantage that after canonical quantization, the
uncertainty principle seems to be violated (a solution of this problem is shown in Section 4).

Other approaches try to circumvent the classical part and start already on the quantum
mechanical level by adding a “friction potential” to the Hamiltonian operator, leading to
nonlinear modifications of the Schrödinger equation [6–10]. Although, by construction,
according to the Ehrenfest theorem, the correct equation of motion, including the friction
force is obtained for the average values, there are other problems with the physical results
due to ambiguities in the definition of the friction term. In particular, for real “friction
potentials” [6,7], the equation for the probability density ρ = ψ∗ψ remains the reversible
continuity equation, contradicting the irreversible character of the process. Irreversibility
can only be achieved by adding a term to the continuity equation, which causes an addi-
tional imaginary contribution to the Hamiltonian operator, turning into a non-Hermitian



Dynamics 2023, 3 20

one. An attempt like that will be used by us in Section 3. In this context, an approach
by Dekker [11,12] shall only be mentioned that also uses non-Hermitian Hamiltonians
obtained by introducing complex variables as linear combinations of position and mo-
mentum, used to define complex Lagrange and Hamilton functions that finally allow
canonical quantization.

In our recent complex hydrodynamic description of quantum mechanics [13,14], we
started with the two Madelung equations [15] obtained using a polar ansatz for the wave
function, ψ =

√
ρ exp

( i
h̄ S
)
, a continuity equation for ρ, and a modified Hamilton–Jacobi

equation for the phase S. Introducing our complex quantities, we were able to bring the
dynamics in a Hamiltonian form with complex Hamiltonian. From one of the corresponding
Hamiltonian equations of motion, we were able to obtain directly the Ermakov invariant.

For the above-mentioned open system, we want to follow the same scheme, however,
guaranteeing the irreversibility of the dynamics by introducing a diffusion term into the
continuity equation, changing it (like in the theory of Brownian motion) into a Fokker–
Planck-type equation in position space, called the Smoluchowski equation. To complete our
hydrodynamic description, the modified Hamilton–Jacobi equation for the phase, including
the environmental effect, is missing. This can be obtained by separation of the equation
for ρ = ψ∗ψ into two equations containing only ψ or ψ∗, following a method proposed
by Madelung [16] and Mrowka [17]. Due to the diffusion term, this is not possible in
general, but for special separation conditions that still allow Gaussian solutions for the
resulting nonlinear Schrödinger equation with non-Hermitian Hamiltonian. This equation
provides the missing Hamilton–Jacobi equation for the phase S as well as the modified
Riccati equation that enters our derivation of the Ermakov invariant.

The paper is organized as follows: In Section 2, the situation without an environment
is summarized to an extent that is necessary to keep this paper self-contained. The equa-
tions of motion for the wave packet maximum and width are given explicitly as well as
the resulting Ermakov invariant, based on the Newtonian form of the equations. Then,
Madelung’s hydrodynamic formulation [15], that is also the formal basis for Bohmian
mechanics, is presented and extended to a complex version. It should be stressed that this
is different from approaches that write the wave function in terms of a complex action
function [18–26], from which a complex momentum field arises, similar to our formulation.
However, these approaches then draw the incorrect conclusion that also the (independent)
position variable must be complex. For further details, see [13] and references cited therein.
In our version, a complex Hamiltonian equation of motion can be used to find an alternative
way to obtain the invariant.

In Section 3, it is shown how the introduction of a diffusion term into the Madelung
formalism can provide the above-mentioned modification leading to a Schrödinger equa-
tion with complex nonlinearity. Solving this equation provides two modified Newtonian
equations for the maximum and width of the Gaussian solution that can again be combined
to a dynamical invariant, following Ermakov’s procedure. It is shown that, using our
complex hydrodynamic formalism, it is also possible to obtain the same invariant via a
Hamiltonian equation of motion, where the Hamiltonian is now derived from the nonlinear
Schrödinger equation.

The derivation of this invariant shows similarities to the approaches using non-
canonical transformations [5,6]. A way to avoid nonphysical violations of the uncertainty
principle is shown in Section 4.

Section 5 shows the connection between our complex Hamiltonian approach and
generalized creation and annihilation operators, including the open system. This allows
also comparison with the complex formalism of Dekker.

So, a complete picture of our complex hydrodynamic approach and its connections
with formally different effective approaches for the description of the Brownian system
is given.
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In the conclusions, the advantages of the hydrodynamic approach for certain problems,
such as time-dependent tunneling, are specified, and certain fields of possible application
are mentioned.

2. Time-Dependent Schrödinger Equation with Gaussian Solutions, Hydrodynamic
Formulation and Dynamical Invariant

In order to obtain exact analytical expressions, the following discussion is restricted
to generalized coherent states, i.e., to Gaussian wave packets with time-dependent width
in position space. These functions are solutions to the time-dependent Schrödinger equa-
tion with potentials that are, at most, quadratic in the position variable. Without loss of
generality, we consider the one-dimensional case, i.e.,

ih̄
∂

∂t
ψ(x, t) =

{
− h̄2

2m
∂2

∂x2 + V(x, t)
}

ψ(x, t), (1)

where ψ(x, t) is the wave packet in position representation.
As we restrict our discussion to the quadratic potentials and assume a constant mass

m, the time-dependence of the potential V(x, t) originates from the time dependence of the
oscillator frequency ω(t) and has the form V(x, t) = 1

2 mω2(t)x2, describing the so-called
parametric oscillator.

In the following, we use a generalized Gaussian wave packet ansatz for the solution
of Equation (1) that provides the classical Newtonian equation of motion and the auxiliary
Newton-type Ermakov equation that was used by Ermakov to eliminate the frequency ω(t)
and to obtain the dynamical invariant.

The Gaussian solution can be written in the form

ψ(x, t) = 〈x|ψ(t)〉 = N(t) exp

[
i
h̄

(m
2
C x̃2 + 〈p〉x̃ + f (t)

)]
, (2)

where x̃ .
= x − 〈x〉 = x − η(t), i.e., the maximum of the wave function is at 〈x〉 =∫ +∞

−∞ ψ∗(x, t)xψ(x, t)dx. This is in agreement with Ehrenfest’s theorem that the mean value
〈x〉 follows the classical trajectory, here denoted as η(t). The coefficient of the quadratic
term, C = C(t), is a complex function of time and 〈p〉 = mη̇, where overdots denote
time derivatives. The possibly time-dependent normalization factor N(t) and the purely
time-dependent function f (t) are not relevant for the following discussion, as they do not
contribute to the equations of motion of η(t) and C(t). (If the ground state energy is in-
cluded in a complex N(t), the function f (t) is given by 1

2 〈x〉〈p〉; see also [27].) Inserting (2)
into (1) provides the two equations of motion for η(t) and C(t),

η̈ + ω2(t)η = 0 (3)

and
Ċ + C2 + ω2(t) = 0. (4)

Equation (3) is Newton’s equation of motion for the trajectory. Equation (4) is a
complex nonlinear Riccati equation that is connected with the time-dependence of the
wave packet width. This connection becomes clearer by introducing a new variable α(t)
according to CI =

1
α2 = h̄

2m
1

σ2
x

with σ2
x = 〈x̃2〉 = 〈x2〉− 〈x〉2 being the mean square deviation

of position, so α(t) represents, up to a constant factor, the position uncertainty. With this
definition of CI, it follows from the imaginary part of Equation (4) for the real part

CR =
α̇

α
. (5)
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Inserting CI and CR in this form into the real part of (4) turns this into

α̈ + ω2(t)α =
1
α3 , (6)

a real nonlinear differential equation known as the Ermakov equation.
Ermakov used this auxiliary equation to obtain a dynamical invariant by eliminating

the frequency ω(t) with the help of Equation (3) (see, for example, [1,28]), leading to

IL =
1
2

[
(η̇α− α̇η)2 +

(η

α

)2
]
= const. (7)

So, Ermakov used two Newton-type equations, Equations (3) and (6), to derive this in-
variant. In the following, we show how this is also possible using a (complex) Hamiltonian
equation of motion and the complex nonlinear Riccati Equation (4). For this purpose, we
consider next Madelung’s hydrodynamic version of quantum mechanics.

Shortly after Schrödinger published his wave equation, Madelung [15] achieved a
decomposition of this linear complex equation into two real equations that have similarity
with hydrodynamic equations, namely the continuity equation

∂

∂t
ρ +

∂

∂x

(
ρ

1
m

∂

∂x
S
)
= 0 (8)

and a modified Hamilton–Jacobi equation

∂

∂t
S +

1
2m

( ∂

∂x
S
)2

+ V + Vqu = 0 (9)

by using a polar ansatz for the wave function, i.e., ψ(x, t) =
√

ρ exp
( i

h̄ S
)
, where ρ = ψ∗ψ.

The appearance of the “quantum potential”

Vqu = − h̄2

2m

∂2

∂x2
√

ρ
√

ρ
(10)

distinguishes the modified Hamilton–Jacobi Equation (9) from the classical counterpart.
This formulation was adopted 25 years later by Bohm [29,30] in his interpretation of

quantum mechanics in terms of “hidden variables”. We have argued recently [31] that these
variables cannot be considered as real trajectories of really existing “quantum particles”,
but have to be seen in a probabilistic context, however, different from the conventional
probabilistic viewpoint usually taken in quantum mechanics. The experiments of this year’s
Nobel laureates, particularly those of Aspect [32–34], indicate that hidden variables do not
exist and support our result. In the following, we do not explore ontological interpretations
of quantum mechanics but stick to the formal structure that was established by Madelung.

In [13], it was shown that this hydrodynamic version of quantum mechanics can
be formulated in terms of complex quantities that are obtained by applying a quantum
mechanical operator Fop onto a quantum state or wave function 〈a|ψ(t)〉 in the {|a〉}
representation (in this paper “a” is position x and 〈x|ψ(t)〉 = ψ(x, t)) and dividing the
result by 〈a|ψ(t)〉, in our case here,

F =
Fopψ(x, t)

ψ(x, t)
= FR + iFI. (11)

The result is, in general, complex; however, the mean value of the imaginary part
always vanishes (〈FI〉 = 0), i.e., it cannot be observed directly (for further details, see [13,14]).
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Taking the gradient of Equation (9) and using that ∂
∂x S = PR is the real part of

the complex momentum according to (11), the result can be written in the form of an
Euler-type equation:

∂

∂t
PR +

1
m

PR
∂

∂x
PR =

D
Dt

PR = − ∂

∂x

(
V + Vqu

)
(12)

with the substantial or convective time-derivative D
Dt for a co-moving observer.

For the Gaussian wave packets (2), the relevant complex quantities are

X = x (13)

P = mη̇ + mC x̃ = PR + iPI (14)

V =
m
2

ω2(t)x2 (15)

T =
1

2m

[
(P)2 +

h̄
i

∂

∂x
P
]
=

1
2m

[
(P)2 − ih̄mC

]
= TR + iTI (16)

TR =
1

2m

[
P2

R − P2
I + h̄

∂

∂x
PI

]
=

1
2m

P2
R + Vqu (17)

TI = − 1
2m

[
2PRPI − h̄

∂

∂x
PR

]
(18)

HL = T + V. (19)

As shown in [13], in position space, the Hamiltonian equation for the complex mo-
mentum P is given by

∂

∂t
P = − ∂

∂x
HL. (20)

With the expression for P as given for the Gaussians in (14), one obtains

∂

∂t
P = − ∂

∂x

( 1
2m

(P)2 − ih̄
2
C + m

2
ω2(t)x2

)
. (21)

Using Riccati Equation (4) to replace ω2(t) and ∂
∂x P = mC leads to

∂

∂t
P = −PC + mĊx + mC2x (22)

which can be rearranged to yield

∂

∂t
ln
(
P−mCx

)
= −C = − ∂

∂t
ln α− i

1
α2 . (23)

As the logarithm of a complex quantity w = |w| exp(iφ) is given by ln w = ln |w|+ iφ,
Equation (23) can be rewritten as

∂

∂t
ln
∣∣P−mCx

∣∣+ i
∂

∂t
tan−1

(
PI −mCIx

PR −mCRx

)
= − ∂

∂t
ln α− i

1
α2 , (24)

where 1
α2 = φ̇, i.e., the time derivative of the angle determined by the expression in the

round brackets. The meaning of this angle has been discussed and will not be affected by
the inclusion of the environment.

For the absolute value, this finally leads to

α2∣∣P−mCx
∣∣2 = α2

0
∣∣P0 −mC0x

∣∣2. (25)

Using P−mCx = −mCη + mη̇ yields

α2
[(
−mCRη + mη̇

)2
+
(
−mCIη

)2
]
= const. (26)
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In the cases under consideration, the initial classical position η0 and the initial spread-
ing α̇0 can be taken equal to zero. With the initial classical momentum p0 = mη̇0,
Equations (25) and (26) can be simplified to

(η̇α− α̇η)2 +
(η

α

)2
=
(α0 p0

m

)2
(27)

which is, up to a factor 1
2 , the Ermakov invariant.

3. Open Systems with Irreversibility and Dissipation

As mentioned in the Introduction, one characteristic feature of the open systems that
can be found in Brownian motion is the irreversibility of the dynamics, expressed in the
broken time symmetry of the corresponding equations of motion. Considering Madelung’s
hydodynamic equations, this can be achieved by adding a corresponding diffusion term to
the continuity equation, transforming it into a Fokker–Planck-type equation, in position
space specifically called the Smoluchowski equation:

∂

∂t
ρ +

∂

∂x

(
ρ

1
m

∂

∂x
S
)
−D

∂2

∂x2 ρ =
∂

∂t
ρ +

∂

∂x

[
ρ
( 1

m
∂

∂x
S−D

∂ρ
∂x
ρ

)]
= 0, (28)

with the convection velocity field υcon = 1
m

∂
∂x S = 1

m PR = η̇ + CR x̃ = η̇ +
(

α̇
α −

γ
2
)

x̃ and the
diffusion velocity υdif = −D( ∂

∂x ρ)/ρ = D 2
h̄ PI = D 2m

h̄ CI x̃ = γ
2 x̃.

In conventional quantum mechanics, the continuity equation for ρ = ψ∗ψ is obtained
by combining the Schrödinger equation for ψ with its complex conjugate equation for ψ∗.
So, the question arises of whether this procedure can be reversed to obtain the complex
modified Schrödinger equation corresponding to (28) by the separation of this equation. A
method to achieve this was found by Madelung [16] and Mrowka [17] in their attempt to
derive the Schrödinger equation without making use of Hamiltonian mechanics. Unfortu-
nately, due to the diffusion term, ψ and ψ∗ are coupled, and this method cannot be applied
in general. However, there might be special conditions that can be fulfilled by the diffusion
term to still allow separation.

One such separation condition is given by

−D
∂2

∂x2 ρ

ρ
= γ

(
ln ρ− 〈ln ρ〉

)
(29)

that particularly is also fulfilled for Gaussian functions, the ones we consider in our analysis.
The subtraction of the mean value of ln ρ is necessary to guarantee normalizability of the
solutions of the corresponding Schrödinger equation, as the diffusion term will lead to an
imaginary contribution in the Hamiltonian, thus turning it into a non-Hermitian one.

The separation of (29) leads to a nonlinear Schrödinger equation with complex loga-
rithmic nonlinearity:

ih̄
∂

∂t
ψ(x, t) =

(
− h̄2

2m
∂2

∂x2 + V + γ
h̄
i
(

ln ψ− 〈ln ψ〉
))

ψ(x, t) = HNL, opψ(x, t). (30)

Further details concerning the derivative of this equation, its properties and connection
with similar nonlinear approaches can be found in [27].

The additional nonlinear term has also a real contribution that is not arbitrary but
fixed by the separation condition, provides the missing second hydrodynamic equation
for our approach, and has a clear physical meaning. A first idea about this meaning can
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be obtained by looking at the modified Hamilton–Jacobi equation. Due to the additional
nonlinear term and the polar form of the wave function, it turns into

∂

∂t
S +

1
2m

( ∂

∂x
S
)2

+ V + Vqu + γ
(
S− 〈S〉〉

)
= 0. (31)

Taking the gradient of this equation now provides a kind of Euler equation with a
substantial time derivative and an additional friction term that is linearly proportional to
momentum, as it is known from the Langevin equation, but without putting it in by the
assumption of a corresponding “friction potential”, as in other similar approaches [6–10],( ∂

∂t
+

1
m

PR
∂

∂x

)
PR =

D
Dt

PR = − ∂

∂x
(
V + Vqu

)
− γPR. (32)

Additionally, the nonlinear Schrödinger Equation (30) has Gaussian-shaped solutions,
as the separation condition (29) that determines the additional nonlinear term is also
compatible with Gaussian functions. Inserting the Gaussian ansatz (2) into (30) provides
the equations of motion for the maximum and width,

η̈ + γη̇ + ω2η = 0 (33)

Ċ + γC + C2 + ω2 = 0. (34)

The one for the maximum, and thus the classical trajectory, contains the linear friction
term, the complex Riccati equation, an additional term linear in C.

Also in this case, an Ermakov equation can be obtained from the Riccati equation, using
the same definition of CI in terms of α(t), i.e., CI =

1
α2 . Inserting this into the imaginary part

of (34) now yields

CR =
α̇

α
− γ

2
. (35)

With these expressions for CR and CI, the real part of Equation (34) turns into the
modified Ermakov equation:

α̈ +

(
ω2 − γ2

4

)
α =

1
α3 . (36)

In a procedure similar to Ermakov’s in the case without dissipation, from
Equations (33) and (36), also in this case a dynamical invariant can be obtained that can be
written as

INL =
1
2

exp(γt)

[(
η̇α− (α̇− γ

2
)η
)2

+
(η

α

)2
]

=
1
2

exp(γt)α2
[
(η̇ − CRη)2 + (CIη)

2
]
= const. (37)

Next we want to show how the same invariant can also be obtained via the complex
hydrodynamic formulation, using again a (complex) Hamiltonian equation of motion with
the Hamiltonian HNL = HL + WNL where WNL is given by

WNL = γ
h̄
i

(
ln ψ− 〈ln ψ〉

)
= γ

(m
2
C x̃2 + mη̇x̃− m

2
C〈x̃2〉

)
(38)

and the complex Riccati Equation (34).
From the Hamiltonian equation of motion follows

∂

∂t
P = − ∂

∂x
HNL = −PC + mĊx + mC2x + mγCx− γP (39)
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where the last two terms on the rhs originate from WNL and the additional linear term in
the Riccati Equation (34).

Equation (39) can be rewritten using the relations

∂

∂t
P + γP = exp(−γt)

∂

∂t

(
P exp(γt)

)
= exp(−γt)

∂

∂t
P̂ (40)

Ċ + γC = exp(−γt)
∂

∂t

(
C exp(γt)

)
= exp(−γt)

∂

∂t
Ĉ (41)

CR =
α̇

α
− γ

2
=

∂
∂t α exp(− γ

2 t)
α exp(− γ

2 t)
=

∂
∂t α̃

α̃
=

∂

∂t
ln α̃ (42)

with P̂ = P exp(γt), Ĉ = C exp(γt) and α̃ = α exp(− γ
2 t) to yield

∂

∂t
ln
(

P̂−mĈx
)
= − ∂

∂t
ln α̃− i

1
α2 . (43)

This equation is identical to Equation (23), with only P and C replaced by P̂ and Ĉ, as
well as ln α being replaced by ln α̃ .

With the same assumptions about the initial conditions as in the case without dissipa-
tion, the equation for the absolute value can be written as

α̃2
∣∣∣P̂−mĈx

∣∣∣2 = α2 exp(γt)
∣∣∣P−mCx

∣∣∣2 = m2
(α0 p0

m

)2
. (44)

Again using P−mCx = −mCη + mη̇, but now with CR = α̇
α −

γ
2 finally leads to

exp(γt)α2

[(
η̇ − CRη

)2
+ (CIη)

2

]
= exp(γt)

[(
η̇α− (α̇− γ

2
α)η
)2

+
(η

α

)2
]
=
(α0 p0

m

)2
, (45)

which is, apart from a factor 1/2, identical to the invariant INL in (37).
Since the common factor exp(γt) in P̂ and Ĉ does not change the ratio of their real and

imaginary parts, the phase of the complex quantity remains unchanged.
Concerning the variables involved, the major difference between the systems with-

out and with dissipation is the replacement of P by P̂ = P exp(γt), which corresponds,
according to our definition (11), to the replacement of Pop = h̄

i
∂

∂x by P̂op = exp(γt)Pop =
h̄
i exp(γt) ∂

∂x .
This definition of “canonical” momentum is, however, identical to the one used by

Caldirola [4] and Kanai [5] in their approach to describe the dissipative system within a canonical
formalism that is connected with the physical position and momentum via a non-canonical
transformation. Using canonical quantization, they obtain the corresponding operators and
modified Schrödinger equation. As already mentioned, the quantized version of their approach
seems to violate the uncertainty principle, which has been criticized by several authors [35–37],
and attempts to justify or modify the Caldirola–Kanai approach [38–40] in order to avoid
this nonphysical behavior are not convincing. In the next section, we will show how our
nonlinear approach can be linked to the quantum version of Caldirola and Kanai, and how
this can avoid the above-mentioned violation.

4. Connection with Canonical Approaches for the Description of Dissipative Systems

To show the connection with the canonical approaches, we recall Schrödinger’s original
definition of the wave function ψ via the action S in his first communication in 1926 [41];

S = K ln ψ. (46)



Dynamics 2023, 3 27

In the beginning, Schrödinger assumed K to be real and equal to K = h̄ as well as ψ to
be a real function of position and time. Later in the same year [42], he accepted that ψ must
be complex and K has to include the imaginary unit i =

√
−1, i.e.,

Sc =
h̄
i

ln ψ (47)

with complex ψ, and therefore the subscript “c”.
Using (47), the friction term (38) in our logarithmic nonlinear Schrödinger Equation (30)

can be written as
WNL = γ

(
Sc − 〈Sc〉

)
. (48)

With the definition of our complex quantum hydrodynamic quantities according
to (11), and dividing Equation (30) by ψ, allows to write this equation as

− ∂

∂t
Sc = HL + γ

(
Sc − 〈Sc〉

)
. (49)

Ignoring the purely time-dependent term 〈Sc〉 at the moment (we will see that this
term is essentially necessary for normalization purposes) and using

∂

∂t
Sc + γSc = exp(−γt)

∂

∂t

(
Sc exp(γt)

)
= exp(−γt)

∂

∂t
Ŝc (50)

with
Ŝc = exp(γt)Sc, (51)

Equation (49) can be written as the transformed Hamilton–Jacobi equation,

∂

∂t
Ŝc + Ĥ = 0 (52)

with Ĥ = exp(γt)HL.
A crucial point that is usually ignored by the canonical approaches is the change of

the wave function, taking into account Schrödinger’s definition (47) and Equation (51),
according to

ln ψ̂ = exp(γt) ln ψ, (53)

i.e., a non-unitary transformation between the wave function ψ(x, t), depending on the
physical variables, and ψ̂ depending on the canonical variables, requesting a corresponding
“renormalization” via 〈Sc〉. In the case of the Caldirola–Kanai approach, only the momen-
tum variable is non-canonically transformed, p̂ = exp(γt)p, the position variable remains
unchanged, x̂ = x. This leads, unfortunately, to the wrong assumption that ψ̂(x̂, t) = ψ̂(x, t)
is identical to ψ(x, t), ignoring (53) and thus causing an apparent violation of the uncer-
tainty principle that can be avoided when operators and wave functions are transformed
simultaneously [43].

Further details as well as an additional canonical/unitary transformation on the
canonical level that leads to a time-independent Hamiltonian can be found in [27].

5. Connection with Generalized Creation-/Annihilation-Operators

The dynamical invariant derived in the cases without and with dissipation is the sum
of two quadratic expressions that can also be expressed as the product of a linear expression
and its complex conjugate. It will now be shown how such linear expressions are connected
with our complex hydrodynamic approach and the creation/annihilation operators and
their generalizations for coherent states with time-dependent width as well as those for
systems with dissipation.
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Keeping in mind the derivation of the dynamical invariant from our complex Hamil-
tonian Equations (20) and (39), the key points are the expressions (25) and (44), where the
absolute values can also be considered as the product of two complex conjugate quantities.

Recalling the definition of our complex hydrodynamic quantities according to Equation (11),
P−mCx can be considered as the application of an operator to the wave function ψ and then
divided by ψ. The corresponding operator would be Pop −mCx = h̄

i
∂

∂x −mCx. Comparing
this to the definition of the dynamical invariant as a product of two complex conjugate
operators a(t) and a†(t), a corresponding operator would in our case be

a(t) ∼ m
(Pop

m
− Cx

)
(54)

or, taking into account the factor α in (25) and the constant factors,

a(t) = i
√

m
2h̄

α
(Pop

m
− Cx

)
. (55)

This operator is a generalization of the conventional annihilation operator of the
harmonic oscillator, that can be rewritten for α̇ = 0 and 1

α2 = ω0 as

a0 = i
√

m
2h̄

(Pop

m
− iω0x

)
. (56)

Whereas the application of (56) can provide a Gaussian coherent state with constant
width (although the general solution provides Gaussians with oscillating width), the appli-
cation of (55) provides always generalized coherent states with a time-dependent width.

A further generalization of the annihilation (and corresponding creation) operator can
be found in agreement with our results in Section 3 for dissipative systems, particularly
with Equation (44) as

aNL(t) = i
√

m
2h̄

α exp(
γ

2
t)
(Pop

m
− CNLx

)
, (57)

where CNL is a solution of (34).
This operator also provides the Gaussian wave packet solution of the nonlinear

Schrödinger Equation (30) (see also [27]).
For a time-independent solution of Riccati Equation (34), i.e., a particular solution C̃ for

the damped harmonic oscillator, C̃ = − γ
2 ± iΩ with Ω =

√
ω0 − γ2

4 , the classical expression
corresponding to (57) would be identical to Dekker’s definition of his complex variable
q in [11] (where his ω

.
= our Ω and his λ

.
= our γ

2 ), apart from the missing exponential
factor in his case. So, also a link to this approach and generalization to time-dependent
uncertainties is possible.

This shows clearly how our complex hydrodynamic Hamiltonian approach is not
only connected with Dekker’s approach, but also with the powerful tool of creation and
annihilation operators, even if time-dependent uncertainties and environmental effects
are included.

6. Conclusions

Considering Hamiltonian systems where the Hamiltonian function, and consequently
also the corresponding quantum mechanical operator, is no longer a constant of motion
shows that there are systems where still another constant of motion exists. This is the
case for the so-called parametric oscillator, i.e., a harmonic oscillator with time-dependent
frequency ω = ω(t). In this case, Ermakov showed [1] that from the classical Newtonian
equation of the system with the help of an auxiliary, also a Newtonian-type equation, a
dynamical invariant with the dimension of an action, can be obtained. In an earlier work,
we showed that the same invariant can also be obtained via the more general Hamiltonian
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formalism, if a complex Hamiltonian function is applied that originates from a complex
hydrodynamic version of quantum mechanics, following Madelung’s idea.

The questions we wanted to answer in this paper are whether it is also possible to
extend our formalism to other systems where the Hamiltonian is no longer a constant of
motion, particularly to open systems with dissipative forces and irreversible dynamics, and
how our approach is related to other attempts trying to describe these systems and aiming
to find corresponding invariants.

To be comparable with the situation describing the parametric oscillator and the other
approaches mentioned above, we chose an effective one for the description of the open
system, i.e., one where the degrees of freedom of the environment do not enter explicitly,
only the effect of the environment on the system of interest.

To take into account the irreversibility of the dynamics, we added to the continuity
equation for the probability density a time-symmetry breaking diffusion term, leading to a
Fokker–Planck-type Smoluchowski equation. In order to find the corresponding changes
in the modified Hamilton–Jacobi equation, the separation of the Smoluchowski equation
into complex conjugate equations for ψ and ψ∗ was necessary, which was possible for
a well-defined separation condition, leading to a nonlinear Schrödinger equation with
complex logarithmic nonlinearity. From the real part of this nonlinearity, an additional term
to the modified Hamilton–Jacobi equation was obtained that, when taking the gradient of
this equation, provided the desired friction force proportional to momentum or velocity.

Using a Gaussian wave packet ansatz for the solution of the nonlinear Schrödinger
equation, two equations of motion for the time-dependence of the wave packet maximum
and width were obtained that were Newtonian equations, similar to the ones used by
Ermakov, but including the friction effects. These two equations could be combined to
provide the dynamical invariant, but again only in a Newtonian formalism. However,
within our hydrodynamic formulation, it was possible, with a new complex Hamiltonian,
derived from the Hamiltonian operator of the nonlinear Schrödinger equation, to derive
the same invariant via a Hamiltonian formalism. In this context, it turned out that the
quantity (44) obtained from our complex Hamiltonian equation of motion and providing the
invariant is closely related to non-canonical variables used in an approach by Caldirola [4]
and Kanai [5]. Since our approach uses only physical position and momentum variables,
no problems with apparent violations of the uncertainty principle occur.

Furthermore, this quantity is also, apart from constant factors, identical to general-
ized creation and annihilation operators for this open system. This could provide closer
insight into the similarities between approaches using these operators and our complex
hydrodynamic approach.

Additionally, a formal similarity to a complex Hamiltonian approach of Dekker [11,12]
could be established, where our approach seems to be a generalization, including the time
dependence of the quantum degrees of freedom.

Therefore, our complex hydrodynamic approach with complex Hamilton structures
does not only supply an alternative to other effective descriptions of open systems, but can
also be directly translated into the relevant variables and parameters of these approaches
and vice versa.

These connections in themselves would already be interesting, but what could be the
advantages and applications of our approach? A major motivation of our investigation is
the treatment of time-dependent tunneling, also including environmental effects. Whereas
time-independent tunneling is well understood, knowing that the boundary conditions at
the borders to the barriers have to be fixed by the assumption of appropriate behavior of
the wave function and its first derivative at these borders, the situation is more involved for
time-dependent systems, as these boundary conditions also change in time. There are many
different approaches to find analytical solutions to this problem using the time-dependent
Schrödinger equation, but none of them is really completely satisfactory.

Alternative approaches are based on the hydrodynamic formulation of Madelung, but
mostly used in the Bohmian interpretation [44,45]. In particular, an attempt by Nassar [46]
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tries to describe this problem involving more hydrodynamic quantities, such as momentum
and energy densities. In [14], we showed how to generalize this approach. A problem with
these approaches based on Bohmian mechanics is that they consider real so-called Bohmian
trajectories as hidden variables. The experiments of this year’s Nobel laureates, particularly
those of Aspect [32–34], however, indicate that this kind of variable does not exist. Does
this rule out these approaches? Not necessarily, particularly not their numerical results,
as in [31] we showed that a different, probabilistic interpretation of these trajectories can
be given. Furthermore, Brandt et al. [47] have shown that an interpretation like ours can
also be used to describe the tunneling process of interest. Therefore, our approach would
also be applicable, but now even including dissipative effects, such as those in inelastic
scattering. As nuclear fusion very recently has gained renewed remarkable interest and
tunneling processes are involved, this might also be an interesting field of application for
our approach.

Another field of problems that is gaining importance is the effect of tunneling in
nano-structures, as our electronic devices become more and more miniaturized. When do
tunneling effects play a crucial role for the functionality of these devices, and what is the
influence of the environment, e.g., its temperature? To find at least qualitative answers
would be very useful, and we think our hydrodynamic approach could be helpful in
this direction.

Not to forget, our formalism can also be connected via the creation/annihilation
operators with other approaches using these operators. So, for example, two-level systems
as they are considered for quantum computing, can be described using these operators,
e.g., in the Dicke model [48] or Jaynes–Cumming model [49,50]. Including environmental
effects would be quite useful to estimate the influence on the performance of these devices.

We hope this shows that our complex hydrodynamic formulation of quantum mechan-
ics can provide an alternative method to tackle important problems in quantum mechanics,
such as time-dependent tunneling, with wide fields of application and that it is possible
to link our results with other approaches, using formally different methods for the same
purpose. In particular, the relation of our complex Hamiltonian approach to derive the
dynamical invariant for the open system with generalized creation/annihilation operators
appears promising.
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